The invention relates to a manifold comprising a body with a plurality of branch fittings diverging therefrom.
A manifold is used in pipeworks at points where liquid flowing in a pipework is conveyed from a main pipe to branch pipes. A manifold comprises a body including several branch fittings. Liquid is conveyed to the manifold along a main pipe while the branch fittings are provided with branch pipes, the manifold thus enabling the liquid to be divided from the main pipe into the several branch pipes. Typically, a manifold is used e.g. in tap water systems and heating systems, such as in floor heating systems.
Application Fl 20 012 460 discloses a bypass manifold manufactured e.g. from plastic. A connecting piece can be arranged in the branch fittings of the bypass manifold, which comprises a means for locking the connecting pieces in place, the locking means comprising one or more parts. Furthermore, the publication discloses a bypass manifold whose structure forms a modular system, enabling the body of the bypass manifold to be provided with different connecting pieces and the connecting pieces to be locked in place tightly and reliably. Such a bypass manifold is extremely versatile, enabling e.g. branch pipes of different sizes and even of different materials to be connected to the same bypass manifold by means of a connecting piece.
An object of the present invention is to provide a novel and improved manifold.
The manifold of the invention is characterized in that the inner surface of the body is conical such that the inner cross-sectional area of the body decreases in the direction of flow.
The idea underlying the invention is that in the case of a manifold with a body comprising a plurality of branch fittings diverging therefrom, the inner surface of the body is conical such that the inner cross-sectional area of the body decreases in the direction of flow. This makes the flow characteristics of the manifold extremely good since the conical shape enables flows to be divided in an advantageous manner. Furthermore, such a manifold is quite simple and easy to manufacture e.g. from plastic by die-casting since a tool used in the die-casting can be very easily withdrawn from inside the conical body. The idea underlying an embodiment is that a wall of the body of the manifold is substantially equally thick throughout, which means that the outer surface of the body of the manifold is also substantially conical. The amount of material to be used for the manifold is then reduced considerably, thus enabling material savings to be achieved while manufacturing the manifold. Furthermore, while manufacturing a manifold by die-casting, the manifold is thoroughly and uniformly cooled down, which means that no additional stress appears inside the material. The idea underlying a second embodiment is that the convergent angle of the outer surface of the body of the manifold is larger than the convergent angle of the inner surface. The wall of the manifold is then thinner at the rear end of the manifold than at the front end thereof. In such a case in particular it is possible to save in the amount of material. The strength of the manifold can still be kept sufficient. An embodiment is that the ratio of the outer diameter of the body of the manifold to the thickness of the wall is constant all the time. The thickness of the wall is thus at its thinnest when the outer diameter is at its smallest. The idea underlying yet another embodiment is that the inner diameter of the body of the manifold at the rear end of the manifold is arranged to be equal in size to the inner diameter of the last branch fitting. This enables the amount of material necessary for the structure of the manifold and the flow of liquid inside the manifold to be optimized.
The invention will be described in closer detail in the accompanying drawing, in which
In the case shown by
Liquid is arranged to flow from the main pipe to the branch pipes. As seen in the direction of flow of liquid, the inner surface of the manifold 1 is conically convergent. Consequently, at the end where the main pipe is to be connected, the inner diameter of the manifold 1 is larger than at the opposite end. The manifold 1 converges such that the coning angle α of the inner surface of the body 2 is e.g. at least 2°. The coning angle α may vary e.g. between 2° and 10°. Preferably, the coning angle varies between 3° and 8°. A preferred embodiment is that the coning angle α is 5°.
The wall of the body 2 of the manifold 1 is substantially equally thick throughout, which means that the shape of the outer surface of the body 2 thus also resembles a convergent cone and the coning angle of the outer surface is substantially equal in size to the coning angle of the inner surface. If desired, the coning angle of the outer surface can also be made larger than the coning angle of the inner surface, as shown in
The inner diameter of the manifold 1 is convergent such that at the rear end, i.e. at the closing end, of the manifold 1, the inner diameter of the body 2 is equal in size to the inner diameter of the last branch fitting 3. Hence, the flow of liquid inside the manifold can be divided in an optimal manner. Also preferably, if one of the branch fittings 3 is larger than the others, this branch fitting with the larger diameter is arranged at the front end of the manifold, i.e. closest to the main pipe.
The outer surface of the body 2 of the manifold 1 is provided with ribs 4 around the body 2. The outer diameters of the ribs 4 are all substantially equal in size, i.e. at the front end of the manifold 1 the height of the ribs 4 from the outer surface of the body 2 is smaller than that at the closing end of the manifold 1. This enables the ribs 4 to be readily utilized while attaching the manifold in place. The manifold 1 can be attached in place e.g. such that at the location where the manifold is to be placed, e.g. in an installation cabinet or room, e.g. a wall has been provided with fasteners for the ribs 4. The manifold 1 can simply be pressed in place such that the ribs fasten to a fastener equipped with jaws. The ribs 4 also stiffen the structure of the body 2 such that the wall of the body 2 does not have to be very thick.
The main pipe and the branch pipes can be attached to the body 2 of the manifold and to the branch fittings 3 e.g. by push-pull coupling and/or using clamping rings. Furthermore, the connections can also be implemented by means of thread joints or in some other manner.
The manifold shown in the figure is particularly advantageously suited for use in tap water systems. The manifold must then be able to resist a temperature of 95° temporarily and a temperature of 70° for a period of fifty years. The manifold 1 is manufactured from plastic by die-casting. The manifold may then be manufactured e.g. from polyphenyl sulfone PPSU, polysulphone PSU, polyvinylidene fluoride PVDF, glass fibre reinforced polyamide PA, or cross-linked polyolefin plastic, such as cross-linked polyethylen PEX. It is also possible to use other appropriate materials.
The drawing and the related description are only intended to illustrate the idea of the invention. In its details, the invention may vary within the scope of the claims. Thus, the coning angle of the inner surface of the manifold 1 does not necessarily continuously have to be equal in size. The manifold can be formed e.g. such that the coning angle of the inner surface is larger at the front end than at the rear end thereof. On the other hand, the coning angles can be formed to change such that at the front end of the manifold the coning angle is smaller while at the rear end of the manifold the coning angle is larger. Furthermore, the coning angle may change more often than once along the manifold. Other ways of change in the coning angle of the manifold are also possible and a portion of the manifold may also be straight, i.e. its coning angle at the particular point is then about 0°. The coning angle of the outer surface may also change in a similar manner.
Number | Date | Country | Kind |
---|---|---|---|
20030329 | Mar 2003 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2004/000112 | 3/2/2004 | WO | 00 | 10/11/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/079250 | 9/16/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
884326 | Emery | Apr 1908 | A |
1271779 | Schroeder et al. | Jul 1918 | A |
1801091 | Krauss | Apr 1931 | A |
2262627 | Whitesell, Jr. et al. | Nov 1941 | A |
2608819 | Moorehead et al. | Sep 1952 | A |
3103942 | Sharp | Sep 1963 | A |
3794056 | Warren | Feb 1974 | A |
4609009 | Tisone | Sep 1986 | A |
4690174 | Jarvenkyla | Sep 1987 | A |
4971307 | Killerud et al. | Nov 1990 | A |
7168448 | Schmidt | Jan 2007 | B2 |
20040168727 | Smahl et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
790869 | Mar 1973 | BE |
1107453 | Jan 1956 | FR |
2001182886 | Jul 2001 | JP |
2004116601 | Apr 2004 | JP |
WO 03004924 | Jan 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070062592 A1 | Mar 2007 | US |