1. Field of the Invention
The subject invention relates to a heat exchanger assembly including a first heat exchanger and a second heat exchanger disposed in parallel relationship to one another for greater heat transfer capacity.
2. Description of the Prior Art
The heat exchanger assemblies to which the subject invention pertains are systems which include overlapping or double flows of working fluid to improve performance while minimizing space requirements. The design and manufacture of such a heat exchanger normally includes parallel communication manifolds which are of a round cross sectional shape to optimally contain the pressures normally occurring in such systems. Such cylindrical manifolds require a means of fluid communication between the side by side and parallel communication manifolds to attain the overlapping or double flow of working fluid in the heat exchanger assembly.
One such heat exchanger assembly is disclosed in U.S. Patent Application 2007/0193731 to Lamich, et al, wherein the heat exchanger assembly includes a first heat exchanger assembly and a second heat exchanger assembly disposed in parallel and sandwiched relationship. The first heat exchanger assembly includes a cylindrical communication manifold disposed parallel and adjacent to a cylindrical communication manifold of the second heat exchanger assembly. A flow connection is disposed between the two manifolds at adjacent the bottom ends of the communication manifolds and defines one fluid passage to establish fluid communication from the first heat exchanger assembly to the second heat exchanger assembly. However, the flow connection only at one end of the communication manifolds does not provide the distribution of coolant along and between the entire length of the communication manifolds.
Another heat exchanger assembly is disclosed in U.S. Patent Application 2002/0066553 to Fischer, et al, wherein the communication manifolds of the first and second heat exchanger assemblies define a plurality of communication orifices disposed linearly along the manifolds and wherein the communication orifices of the communication manifold of the first heat exchanger assembly are coaxial with the communication orifices of the communication manifold of the second heat exchanger assembly. This heat exchanger assembly establishes the communication manifolds disposed flush to one another. As a result, the communication manifolds are planar at the point of fluid communication which requires tight manufacturing tolerances to establish fluid communication between the first and second heat exchanger assemblies.
Additionally, it is common in a double flow heat exchanger, with cylindrical manifolds, to utilize a series of U-shaped return tubes disposed along the bottoms of the two parallel communication manifolds to establish fluid communication between the two heat exchanger assemblies. However, this arrangement requires the utilization of numerous individual return tubes which increases the manufacturing time, labor and costs. Each of the U-shaped return tubes must be handled individually and each return tube requires two braze joints to fixture the return tube to the communication manifolds. Additionally, since the return tubes are disposed along the bottom of the communication manifolds, the use of such return tubes increases the overall height of the heat exchanger assembly.
Alternatively, in place of a series of tubes, it is common to utilize a single U-shaped return tube which extends from and is brazed to the ends of the communication manifolds to establish fluid communication between the two heat exchanger assemblies. However, like the previously disclosed heat exchanger assembly, the disposition of the return tube only at one end of the communication manifolds does not provide the distribution of coolant along and between the entire length of the communication manifolds.
Although the prior art heat exchangers are able to communicate a working fluid from a first heat exchanger assembly to a second heat exchanger assembly, there remains a need for a communication design for optimizing fluid communication between a first and second heat exchanger assembly while reducing time, labor and cost during the manufacturing process.
The invention provides for a communication plate extending along and sandwiched between the manifolds of the first and second heat exchanger assemblies. The communication plate defines a plurality of communication plate orifices disposed linearly along the communication plate and aligned co-axially with the communication orifices of the manifolds to establish distributed and sealed fluid communication between the first heat exchanger assembly and the second heat exchanger assembly.
One advantage of the invention is that the communication plate can be produced as a stamped, extruded, or machined part, and thus results in cheaper manufacturing costs when compared to a series of U-shaped tubes which must be procured and handled individually. In addition, the sandwiched design of the communication plate improves the manufacturing and fabrication process and unlike the series of return tubes does not substantially increase the overall height of the multi-sectional heat exchanger assembly.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, the invention comprises a multi-sectional heat exchanger assembly including a first heat exchanger assembly 20 generally shown and parallel to a second heat exchanger assembly 21 generally shown for receiving a flow of air in a transverse direction to transfer heat between the flow of air and a working fluid in the multi-sectional heat exchanger assembly. The first and second heat exchanger assemblies 20, 21 each include at least one communication manifold 22 which is cylindrical and is disposed parallel and adjacent to a corresponding cylindrical communication manifold 22 of the other heat exchanger assembly.
The preferred arrangement of the multi-sectional heat exchanger assembly includes the first heat exchanger assembly 20 and the second heat exchanger assembly 21 disposed in parallel and sandwiched relationship with the first heat exchanger assembly 20 for receiving the flow of air in a transverse direction successively through the first heat exchanger assembly 20 and the second heat exchanger assembly 21. The communication manifolds 22 of the first and second heat exchanger assemblies 20, 21 define a plurality of communication orifices 26 disposed linearly along the manifolds 22 such that the communication orifices 26 of the communication manifold 22 of the first heat exchanger assembly 20 are co-axial with the communication orifices 26 of the communication manifold 22 of the second heat exchanger assembly 21.
A communication plate 30, 40, 50 extends along and is sandwiched between the communication manifolds 22, and a first embodiment of the communication plate 30 is generally indicated in
In the first embodiment, the communication plate 30 extends continuously and presents the first set of saddling surfaces 31, 32 extending continuously along opposite sides of the communication plate 30 for arcuately engaging each of the communication manifolds 22. The communication plate 30 includes at least one male protrusion 36 extending linearly along each of the first saddling surface arcuate in one direction 31 and the first saddling surface arcuate in the opposite direction 32. The at least one male protrusion 36 is rectangular and has a protrusion length Lp and a protrusion width Wp and a protrusion height Hp measured from the associated first saddling surface 31, 32. Correspondingly, the communication manifolds 22 define a plurality of female notches 38 extending linearly along the manifolds 22 and aligned with the male protrusions 36. The female notches 38 also are rectangular but have a notch length Ln slightly larger than the protrusion length Lp and a notch width Wn slightly larger than the protrusion width Wp and a notch depth Hn slightly larger than the protrusion height Hp for receiving the plurality of male protrusions 36 to align the orifices 26, 28 and stabilize the communication plate 30 during the assembly process.
In the second embodiment, the communication plate 40 is segmented into a plurality of concave plate segments 43, 44 each having a rectangular cross-section and spaced from one another and interconnected by a first center strip 45 with the second set of arcuate saddling surfaces 41, 42 extending radially and in a continuous arc in opposite directions from the center strip 45. The concave plate segments 43, 44 present the second saddling surfaces arcuate in one direction 41 on alternating concave plate segments 43 and the second saddling surfaces arcuate in the opposite direction 42 on concave plate segments which are interleaved 44 with the alternating concave plate segments 43 to present alternating concave plate segments 43 which engage the manifold 22 of the first heat exchanger assembly 20 with the saddling surfaces arcuate in one direction 41 and alternating first plate segments 44 which engage the manifold 22 of the second heat exchanger assembly 21 with the saddling surfaces arcuate in the opposite direction 42. A plurality of tabs 46 extend from the ends of the center strip 45 for engaging the ends of the manifolds 22 to align the orifices 26, 28 and stabilize the communication plate 40 during the assembly process.
In the third embodiment, like the second embodiment, the communication plate 50 is also segmented into a plurality of plate segments 53, 54 each having a rectangular cross-section and spaced from one another and interconnected by a second center strip 55 with the third set of arcuate saddling surfaces 51, 52 extending radially in opposite directions from the center strip 55. In addition, the plate segments 53, 54 present the third saddling surfaces arcuate in one direction 51 on alternating plate segments 53 and the third saddling surfaces arcuate in the opposite direction 52 on plate segments which are interleaved 54 with the alternating plate segments 53.
However, contrary to the second embodiment of the communication plate 40, the communication plate 50 is segmented into a plurality of serpentine plate segments 53, 54 which present the third set of arcuate saddling surfaces 51, 52 extending in first and second oppositely curved arcs 57, 58. As a result, the first curved arcs 57 present the third saddling surfaces arcuate in one direction 51 and the second curved arcs 58 present the third saddling surfaces arcuate in the opposite direction 52 to define a serpentine cross-section in each of the plate segments 53, 54. Further, the alternating serpentine plate segments 53 are arranged in a serpentine cross-section opposite, or a mirror image to, the serpentine cross-section of the interleaved serpentine plate segments 54 to engage the manifold 22 of the first heat exchanger assembly 20 with the first curved arcs 57 and the manifold 22 of the second heat exchanger assembly 21 with the second curved arcs 58. As a result, contrary to the second embodiment of the communication plate 40, the communication plate 50 engages the communication manifolds 22 of the first and second heat exchanger assemblies 20, 21 on opposite sides of each plate segment 53, 54. Like the second embodiment, a plurality of tabs 46 extend from the ends of the second center strip 55 for engaging the ends of the communication manifolds 22 to align the orifices 26, 28 and stabilize the communication plate 50 during the assembly process.
The first heat exchanger assembly 20 includes a second manifold which defines a first outlet manifold 23 extending in spaced and parallel relationship to the first communication manifold 22. A first heat exchanger core 60 is disposed between the first communication manifold 22 and the first outlet manifold 23 for conveying a working fluid from the first communication manifold 22 to the first outlet manifold 23. The second heat exchanger assembly 21 includes a second manifold which defines a second inlet manifold 24 extending in spaced and parallel relationship to the second communication manifold 22. The second inlet manifold 24 is disposed parallel and adjacent the first outlet manifold 23 and the second communication manifold 22 is disposed parallel and adjacent the first communication manifold 22. A second heat exchanger core 62 is disposed between the second inlet manifold 24 and the second communication manifold 22 for conveying a working fluid from the second inlet manifold 24 to the second communication manifold 22.
Each of the cores 60, 62 include a plurality of tubes 64 extending in spaced and parallel relationship to one another between the communication manifolds 22 and each of the second inlet manifold 24 and the first outlet manifold 23. The tubes 64 have a cross section presenting flat sides extending in the transverse direction interconnected by round ends with the flat sides of adjacent tubes 64 spaced from one another by a fin space Sf across the transverse direction. A plurality of air fins 66 are disposed in the fin space Sf between the flat sides of the adjacent tubes 64 and have a cross-section presenting a plurality of legs 68 extending perpendicularly between the flat sides of the adjacent tubes 64 and bases 70 interconnecting alternate ends of adjacent legs 68 and engaging the flat sides of the adjacent tubes 64 to present a serpentine pattern extending between the manifolds 22, 23, 24. The second inlet manifold 24 defines an inlet port 72 for receiving the working fluid and the first outlet manifold 23 defines an outlet port 74 for dispensing the working fluid.
The first and second communication manifolds 22 define the plurality of communication orifices 26 disposed linearly along the communication manifolds 22 and spaced from one another by an orifice space So, and the communication orifices 26 of the first communication manifold 22 are co-axial with the communication orifices 26 of the second communication manifold 22. The communication plate 30, 40, 50 extends along and is sandwiched between the first and second communication manifolds 22 and defines the plurality of communication plate orifices 28 disposed linearly along the communication plate 30, 40, 50 and spaced from one another by the orifice space So and co-axial with the communication orifices 26 of the first communication manifold 22 and the second communication manifold 22 for sealing the communication orifices 26 of the first and second communication manifolds 22 to establish sealed fluid communication between the first heat exchanger assembly 20 and the second heat exchanger assembly 21.
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This Application is a Divisional of and claims priority to U.S. patent application Ser. No. 12/582,069, filed on Oct. 20, 2009, titled MANIFOLD FLUID COMMUNICATION PLATE, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2044457 | Young | Jun 1936 | A |
2184657 | Young | Dec 1939 | A |
4213640 | Miles | Jul 1980 | A |
5086835 | Shinmura | Feb 1992 | A |
5348081 | Halstead et al. | Sep 1994 | A |
5529116 | Sasaki et al. | Jun 1996 | A |
6116048 | Hebert | Sep 2000 | A |
6523606 | Dienhart et al. | Feb 2003 | B1 |
6964296 | Memory et al. | Nov 2005 | B2 |
7398820 | Inaba | Jul 2008 | B2 |
7793710 | Lamich et al. | Sep 2010 | B2 |
8353330 | Lim et al. | Jan 2013 | B2 |
20020066553 | Fischer et al. | Jun 2002 | A1 |
20070163766 | Fischer et al. | Jul 2007 | A1 |
20070193731 | Lamich et al. | Aug 2007 | A1 |
20080023187 | Kirschenmann | Jan 2008 | A1 |
20080296003 | Higashiyama | Dec 2008 | A1 |
20100270012 | Hur et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 2008038948 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20130240191 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12582069 | Oct 2009 | US |
Child | 13873387 | US |