The cloud point temperature (CPT) of a polymer is defined as the temperature at which a transparent polymer solution exhibits the first sign of cloudiness. This solution cloudiness is an indication of polymer non-solvency, or in other words, polymer precipitation.
At temperatures beyond the CPT, some polymers exhibit gel formation. This gel formation can be in the form of discrete polymer particles that are reversible, in which the gelled precipitate is capable of re-solubilizing, or non-reversible, where the gelled precipitate is permanently in-solubilized. This temperature is defined as the gel point temperature (GPT).
Macromolecules comprised of lactam monomers, such as N-vinyl-2-pyrrolidone (VP) and N-vinyl-2-caprolactam (VCL), are known to exhibit cloud points. For example, polyvinyl pyrrolidone (PVP) exhibits an aqueous Theta temperature, as determined by the cloud point titration method, of 130.5° F. (Brandrup et al. Polymer Handbook, 4th ed., J. Wiley and Sons, New York, pg. VII/306, 1999.)
In the presence of salts, the cloud point temperature (CPT) of PVP can be decreased. Sekikawa et al. (Chem. Pharm. Bull. 26(8) 2489-2496 (1978)) report that the CPT of PVP generally decreases, linearly, with increasing salt concentration. For example, in the presence of 0.8 Molar ammonium sulfate, the CPT of PVP is 20° C. While differing in the rate, similar effects were also demonstrated for sodium chloride and potassium chloride salts.
Sekikawa et al. also report that additions of some derivatives of urea, such as urea, methyl urea, and 1,3-dimethyl urea can result in increasing the cloud point of the PVP/ammonium sulfate solution. Conversely, thiourea and 1,3-dimethylthiourea result in lower cloud point temperatures of the PVP/ammonium sulfate solution.
Recently, Hood et al. (WO 02/22722 A1, the disclosure of which is hereby incorporated by reference in its entirety, and Journal of Applied Polymer Science, 89, 734-741 (2003)) presented a novel, two-phase composition of polyvinyl pyrrolidone comprised of water soluble polyvinyl pyrrolidone and poly(polyvinyl pyrrolidone) particles in water. This composition will be referred to as molecular-composite PVP or MCPVP. This system exhibits a GPT in the presence of salts. Similar compositions are also described in U.S. Pat. Nos. 6,458,888; 6,541,565; 6,548,597; 6,713,538, and 6,872,787, all of which are commonly assigned with the present application and are hereby incorporated by reference.
The present application discloses aqueous polymeric compositions comprising (a) a water-soluble polymer having (b) in situ-formed, substantially water-insoluble resinous particles of the polymer substantially uniformly dispersed therein, (c) a gel point temperature additive and (d) water. More particularly, the present application describes additives suitable for adjusting the cloud point behavior of aqueous polymeric compositions comprised of water soluble polymer and in-situ formed, substantially water-insoluble resinous particles of the polymer that are dispersed in water containing a salt. Salt, when present in the composition, typically is in the presence of 1 to 30%, more particularly 5 to 25%, by weight of the polymeric composition solution. In accordance with certain embodiments, the polymeric compositions disclosed herein form clear to translucent films upon application to a substrate.
In accordance with particular aspects, the polymeric composition comprises, by weight, 0.1-75% of (a) a water-soluble polymer having (b) in situ-formed, substantially water-insoluble resinous particles of said polymer substantially uniformly dispersed therein, (c) a gel point temperature additive, by weight 1 to 20%, and (d) 5% to 98.9% of water.
In accordance with certain embodiments, the polymer is polyvinylpyrrolidone (PVP), poly(vinylcaprolactam) (PVCL), a copolymer of PVP and/or PVCL, and, optionally, one or more comonomers, including comonomers such as dimethylaminopropyl(meth)acrylamide (DMAPMA) and dimethylaminoethyl(meth)acrylate (DMAEMA). Preferably, the polymer is a vinyl lactam polymer, optionally copolymerized with a methacrylate/acrylate and/or methacrylamide/acrylamide comonomer.
In certain embodiments, the composition includes particles having a size of <500 μ, more particularly <100 μ, and in certain cases between >1 nm and <500 μ.
Typically, the composition includes a substantially water-insoluble polymer which is a crosslinked or branched polymer, neutralized and/or quaternized, and/or functionalized quaternized. In particular embodiments, the ratio of (a):(b) is 20-95% to 5-80%, more particularly 20-75% to 25-80%, and the crosslinking agent is a substantially water-insoluble compound, such as pentaerythritol triallyl ether (PETE), or pentaerythritol tetraacrylate (PETA), preferably at least partially soluble in water, and the crosslinking agent may be present in an amount of 0.02-0.5% by weight of said composition, more particularly 0.05-0.3%.
The (polymer) composition, in accordance with certain embodiments, has a Brookfield viscosity of 1,000 to 45,000 cps, preferably 2,000 to 20,000 (at 10% polymer solids in water).
Also provided herein is a process for making a stable, aqueous polymeric composition which includes the steps of providing a reaction mixture of a water-soluble vinyl monomer, optionally with one or more water-soluble comonomers, a predetermined amount of a crosslinking agent and water, heating the mixture, then periodically adding a predetermined amount of an initiator, and polymerizing at about 30-130° C., optionally further including the step of diluting with water during or after the polymerization.
Suitably, the crosslinking agent may be present in an amount of 0.02-0.5 wt. % based on monomers present, and preferably is PETE or PETA, and the initiator is an azo initiator.
The compositions herein may be dried if desired to provide the polymeric composition as a solid. The dried stable polymeric composition thereby includes, by weight, (a) 20% to 95% of a water-soluble polymer, and (b) 5% to 80% of in situ-formed, substantially water-insoluble resinous particles of said polymer substantially uniformly dispersed therein in the presence of 2 to 15% of GPT additive.
In accordance with the present application, there is provided herein an aqueous polymeric composition containing a gel point temperature additive wherein the composition has two phases therein, a water-soluble polymeric phase and a discrete, water-insoluble polymer particle phase which is generated in-situ during the polymerization of the monomers. In certain embodiments, the polymerization is carried out in aqueous solution of a vinyl lactam monomer, such as vinyl pyrrolidone or vinyl caprolactam. Optionally, a comonomer may be present to form a copolymer. Suitable comonomers include methacrylate/acrylate monomers, such as dimethylaminoethyl(meth)acrylate (DMAEMA) and/or methacrylamide/acrylamide monomers, such as dimethylaminopropylacrylamide (DMAPMA).
This stable, aqueous polymeric composition typically forms a clear to translucent film upon application to a substrate and the polymeric composition comprises, by weight, 0.1-75% of (a) a water-soluble polymer having (b) in situ-formed, substantially water-insoluble resinous particles of said polymer substantially uniformly dispersed therein, (c) a gel point temperature additive, by weight 1 to 20%, and (d) 5% to 98.9% of water.
The gel point temperature additive typically is added in an amount of about 1 to 20% by weight, more particularly from about 2 to 15% and in certain cases from about 5 to 10% based on the weight of the composition. Of course, amounts outside these ranges can be used depending on the polymeric composition and the GPT additive being used.
Classes of compounds suitable for modifying the GPT behavior of aqueous, two phase polymeric systems include, but are not limited to, amines (linear or cyclic), alcohols (linear or cyclic), amides (linear or cyclic), acids (linear or cyclic, organic or inorganic), thiols (linear or cyclic), and sulfoxides (linear or cyclic).
The GPT additive can also be a material comprised of one or more moieties of amines (linear or cyclic), alcohols (linear or cyclic), amides (linear or cyclic), acids (linear or cyclic, organic or inorganic), thiols (linear or cyclic), sulfoxides (linear or cyclic) functional moieties or mixtures of.
Compositions prepared in accordance with the present disclosure can be used in a variety of applications. Examples of some of the applications include UV protection, sunscreens, drug delivery systems (smart-delivery, smart-release), transdermal drug systems, textile or fiber sizings, dye transfer inhibition, autowaxes, agricultural coatings/delivery, personal care applications for hair and skin (i.e., shampoos, conditions, gels and creams), abrasives (industrial and personal), encapsulant systems, dispersants, electro/optical systems, oil field applications, coatings, cementitious compounds, adhesives, contrast mediums, wrinkle masking, cryoprotectants, marking instruments, flocculation moderators, lubricating oil additives, and lubricants.
The present application is illustrated in more detail by reference to the following non-limiting examples.
The MCPVP polymer was weighed into a 400 ml capacity beaker, followed by DI water. Solution mixed until uniform. Sodium Chloride was then added and mixed until dissolved. The gel point additive, urea, was added and mixed until dissolved. Appearance of the solution was noted. Beaker was placed on a Thermolyne hot plate with magnetic stirrer. Solution was heated while stirring at medium speed. Temperature of the solution was noted with a thermometer immersed in the solution at the first sign of visual gel formation. The remaining examples would be prepared using the same basic procedure but substituting the components as indicated.
The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/184969 filed Jun. 8, 2009, the contents of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/037693 | 6/8/2010 | WO | 00 | 2/21/2012 |
Number | Date | Country | |
---|---|---|---|
61184969 | Jun 2009 | US |