1. Technical Field
The present disclosure relates generally to manipulators and, more particularly, to a manipulator used in manufacturing.
2. Description of Related Art
Manipulators are widely used in the manufacturing industry to increase production efficiency. The manipulator generally moves in a predetermined path according to machining programs stored in a controller, to assemble or combine workpieces. However, the manipulator may experience positioning errors caused by inner components with insufficient precision, such as gears. Therefore, the manipulator may deviate from the predetermined path, resulting in unsatisfactory assembly standards.
Therefore, a manipulator which overcomes the described limitations is desirable.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
Referring also to
The base 21 is substantially cylindrical. A cylindrical protrusion 212 (shown in
The connecting member 23 includes a first assembling portion 231 and a second assembling portion 232. The first assembling portion 231 decreases in size with distance from the second assembling portion 232. In the illustrated embodiment, the first assembling portion 231 is a frusto-conical shaped, and the second assembling portion 232 is cylindrical. The first assembling portion 231 defines a receiving groove 2313 in a center portion. A positioning protrusion 2311 extending towards the second assembling portion 232 is formed on a bottom wall, thereby defining an assembling groove 2323 in a center portion. The positioning protrusion 2311 defines a through hole 2315 communicating with the receiving groove 2313. An engaging groove 2312, partially receiving the engaging member 24, is defined in the sidewall defining the receiving groove 2313. The second assembling portion 232 defines a positioning cutout 2321 in the cylindrical surface.
The holder 25 defines an assembling hole 251 in a center portion. A fixing portion 253 is formed on an end of the holder 25. A perimeter of the assembling hole 251 increases with distance from the fixing portion 253. The fixing portion 253 defines a plurality of fixing holes 2532 arranged regularly, and a plurality of cutouts 2531 corresponding to the fixing holes 2532.
The flange 26 includes a main portion 261 and a connecting portion 262 formed on an end of the main portion 261. In the illustrated embodiment, both the main portion 261 and the connecting portion 262 are cylindrical. The main portion 261 defines an assembling groove 2611 in a center portion. The connecting portion 262 defines a restricting groove 2621 in the cylindrical surface to partially receive the engaging member 24. The connecting portion 262 further defines a threaded hole 2622 communicating with the assembling groove 2611.
In assembling the connecting assembly 20, the holder 25 sleeves on the first assembling portion 231 of the connecting member 23. The engaging member 24 partially engages with the engaging groove 2312 of the connecting member 23. The connecting portion 262 is received in the receiving groove 2313 of the connecting member 23, and the engaging member 24 is partially received in the restricting groove 2621 of the flange 26, thus preventing the connecting member 23 from rotating relative to the flange 26. A fastener extends through the through hole 2315 of the connecting member 23, and engages with the threaded hole 2622 of the flange 26, thus fixedly connecting the connecting member 23 with the flange 26. One end of the elastic member 22 partially sleeves on the positioning protrusion 2311. The connecting member 23 is received in the receiving groove 211 of the base 21, and an opposite end of the elastic member 22 partially sleeves on the protrusion 212. The fixing portion 253 of the holder 25 is fixed to the base 21 via fasteners. The adjusting member 27 extends through the through hole 213 of the base, and the positioning cutout 2321 of the connecting member 23, to prevent the connecting member 23 from rotating relative to the base 21. The fastening member 28 engages with the adjusting member 27. After the connecting assembly 20 is assembled, the connecting member 23 can move axially relative to the holder 25
Referring to
Referring to
After the first workpiece 50 is placed in the connecting hole 61 of the second workpiece 60, the connecting member 23 returns to the original position, driven by the restoring elastic force of the elastic member 22. Since the elastic member 22 is a compression spring, the connecting member 23 again tightly engages the holder 25.
It should be pointed out that the first assembling portion 231 may be other shapes, such as hemispherical. The engaging member 24 can be integrally formed with the first assembling portion 231. The connecting assembly 20 may not include the adjusting member 27 and the fastening member 28, rather, a positioning pole can be formed on the inner surface of the base 21, engaging the assembling groove 2323 of the connecting member 23. In addition, the flange 26 can be integrally formed with the first assembling portion 231, and the connecting member 23 can be integrally formed with the base 21.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the disclosure or sacrificing all of its material advantages.
Number | Date | Country | Kind |
---|---|---|---|
200810306500.2 | Dec 2008 | CN | national |