The present invention relates to a design for a manned aircraft as well as an unmanned or drone aircraft. More particularly, the present invention relates to a manned and unmanned aircraft, having a circular shape and blades positioned about the outer circumferential periphery that can be folded upward into a storage position. Both the manned and unmanned crafts operate upon the exact same perimeter drive and lift system, only differing in the manner in which they are powered.
In current helicopters, a mechanically intricate system featuring a vertical drive shaft (mast) connected to an engine (gas piston or jet turbine) turn a series of blades that are very elongated and narrow. The rotational spinning of the blades about the mast at a sufficient RPM creates a lift factor consistent with the Bernoulli Principle. One way to move the helicopter forward or backward, is to provide a mechanical assembly on the drive shaft that can change the angle of the shaft either forward or backward, thus tilting the blades forward to achieve forward movement and backward to achieve backward movement. Similarly, another intricate mechanical linkage allows for the pilot to change the blades' angle of attack thus increasing and decreasing the lift factor of the blades. The drive system is at a mechanical disadvantage since it is positioned at the vertical vertex of rotation, requiring a high horsepower requirement to provide ample RPMs for the greatly elongated and narrow blades to achieve lift.
This entire drive system is permanently affixed well above the helicopter's horizontal centerline. However, this creates a top heavy platform, and many helicopter crashes result in the craft rolling or flipping on contact. To prevent the main lift blades spinning force to cause the craft to spin uncontrollably, a geared mechanical link from the main engine and mast to a tail rotor counteracts the main blades effect and allows the craft to remain stable.
Despite many variations of airframe body designs (improved aerodynamic bodies), there remains essentially an identical center line torque at the vertex drive systems.
Current industry design configurations for rotor type drones/Unmanned Aircraft Vehicles (UAVs) usually have 3-6 vertically mounted motors connected to propellers, each on a single vertical shaft. This configuration/design commonality has an inherent weakness. If any one of the motor/propeller assemblies fail, the drone/UAV craft will become unstable and experience uncontrollable flight.
Accordingly, it is an object of the invention to provide an aircraft that is highly stable, maneuverable, and mechanically efficient, and especially one that can be utilized as a helicopter and avoids the dangers involved during a mechanical failure.
This invention changes the historical concept of helicopters by modifying the entire mechanical and lift structure mechanisms. An aircraft is provided that has the rotor blades at the outer perimeter of the craft and at or below the horizontal centerline of the craft. Much shorter and wider rotor blades are utilized, and the angle of attack is permanently fixed at a predetermined constant lift position. The rotor blades are coupled with the drive system at or below the center mass of the craft. The invention alleviates the need for a blade tilt system and achieves greatly enhanced mechanical advantage, including increased torque at the blade's drive point.
In accordance with the invention, a lift system is provided that includes internally mounted jet engines linked to electric generators that produce electric power for three (3) electric motors. The motors are linked via a series of gears that drive large annular/ring gears positioned about the entire perimeter of the craft and freely roll one on top the other, each on a series of roller bearings. The annular/ring gears are directly attached to both main lift blades and counter-rotation blades. Lateral movement and turning function of the craft are achieved by vectoring the exhaust of the jet engines using ducts out the side of the craft and/or a rudder affixed to the bottom rear of the craft.
These and other objects of the invention, as well as many of the intended advantages thereof, will become more readily apparent when reference is made to the following description, taken in conjunction with the accompanying drawings.
In describing a preferred embodiment of the invention illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, the invention is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents that operate in similar manner to accomplish a similar purpose. Several preferred embodiments of the invention are described for illustrative purposes, it being understood that the invention may be embodied in other forms not specifically shown in the drawings.
Turning to the drawings,
The main body 110 has a generally circular shape when viewed from the top (i.e., a horizontal cross-section) (
The upper and lower body portions 112, 114 can be formed separately and coupled together such as by welding, or the entire main body 110 can be a single piece integrated device. In addition, while the upper and lower body portions 112, 114 are shown being substantially equal in size and shape, other suitable embodiments can be provided. For instance, the upper body 112 can be smaller and differently shaped than the lower body 114. In addition, both the upper and lower bodies 112, 114 need not be circular or dome-shaped but can have a different shape (such as rectangular or square), with an outer circular ring (either internal or external to the main body) for the blades.
Referring to
In one embodiment, the main blades 120 can be the same size and shape as a small Cessna Aircraft wings. In one embodiment of the invention, the blades 120 can be between 10-15 feet in length and 2-3 feet in width. However, other suitable dimensions can be utilized, greater or smaller, within the spirit of the invention. The length, width and thickness of the blades are contingent upon the size of the craft's main body. However, the great torque advantage achieved by having the drive system at the craft's perimeter (away from the craft's center/vertex) allows for much wider and shorter blades (wings) appropriately designed and sized to achieve lift. In one embodiment, the six main lift blades and the six counter rotation blades are sufficient to provide lift, though more or fewer blades can be provided.
Turning to
The counter-rotational assembly 300 can also be a gear train having an annular gear 310 and one or more planet gears 150. As best illustrated in
Turning to
The exhaust 174 from the jet turbines has two functions. First, it is used to move the craft in a lateral direction. Second, a portion of the exhaust (such as via one or more optional ducts 175) can be vectored out of side ports 178 at the sides of the craft (see
The rudders 105 can be elongated with a main body 107 that extends downward from the lower body 114 substantially perpendicular to the outer surface of the lower body 114. The rudder 105 can be tapered outward from the front end 108 to the rear end 109 to have a general triangular shape with a tapered rear end 109. The bottom edge 111 of the rudder 105 can be relatively straight. The rudders 105 can be attached to the lower body 114 by one or more control bars 106 that the pilot can control to adjust the positioning of the rudders 105. The rudders 105 can pivot about one of the control bars 106 so that the front end 108 of the rudder remains relatively fixed and the rear end 109 of the rudder 105 moves side-to-side and/or pivot upward/downward with respect to the lower body 114. Or both the front and rear ends 108, 109 can move side-to-side and/or pivot upward (as shown by arrow Z in
It should further be appreciated that the main body 110 can have other suitable sizes and/or shapes, and that the blades 120, 130 can be driven in other suitable manners. And, the blades 120, 130 can be configured in different manners (with or without an outer and/or inner gear ring 210, 310) within the scope of the invention. It should be further appreciated that other suitable techniques can be provided to drive the gears 150, such as turbine engines, turboshaft engines or engines that run on gasoline, jet fuel, or nitromethane.
As further shown in
As the motor 178 rotates the drive gear 158 in a first direction A, it turns the first intermediate gear 156 in a second direction B opposite to the first direction A, which turns the second intermediate gear 154 in the first direction A, which turns the driven gear 152 in the second direction B. The drive gear 158 is located inside the counter-rotational annular gear 310 and the teeth of the drive gear 158 engage the teeth 314 of the counter-rotational annular gear 310 to rotate the counter-rotational annular gear 310 in the first direction A. In addition, the driven gear 152 is located just inside the main annular gear 210 and the teeth of the driven gear 152 engage the teeth 214 of the main annular gear 210 to rotate the main annular gear 210 in the second direction B. Thus, the counter-rotational annular gear 310 rotates in the opposite direction than the main annular gear 210.
The gears 152, 154, 156, 158 rotate at the same time to simultaneously drive the annular rings 210, 310 (as well as the respective blades 120, 130). The gears 152, 158 are the same size and gears 154, 156 are the same size, so that the gears 150 drive the annular rings 210, 310 at the same speeds. The same speed and operation of the rings 210, 310 provides stabilization of the aircraft by the counter-rotation blades 130, while at the same time providing sufficient lift by the main blades 120. It will be appreciated, however, that the planet gears 150 need not be coupled together and drive by a single motor, but instead the annular rings 210, 310 can be driven by separate planet gears and motors. And, the planet gears 150 can be configured to drive the annular rings 210, 310 at different speeds.
The six main lift blades 120 are spaced approximately 60 degrees apart from one another and are affixed respectively to the ring gear 210 by a shaft 121 that extends outward (preferably beyond the outer perimeter 115). And six counter-rotation blades 130 are spaced at 60 degrees from one another and also are coupled to an inner facing perimeter ring/planetary gear 310 by a shaft 131 that extends outward (preferably beyond the outer perimeter 115), just below ring gear 116. The counter-rotation blades 130 can be positioned between the main blades 120 (
In this manner, the counter-rotational blades 130 rotate in the opposite direction as the main blades 120, so that the counter-rotation blades 130 offset the torque of the main rotor blades 120. The counter-rotational blades 130 are smaller than the main rotor blades 120 since the main blades 120 are the primary source for lift, whereas the counter-rotational blades 130 are mostly utilized as anti-torque. It should be recognized that the blades 120 need not all be the same size and the blades 130 need not all be the same size, and one or more of the counter-rotational blades 130 can be the same size or larger than the main blades 120. And, any suitable number of blades 120, 130 can be provided, and the number of main blades 120 need not be the same as the number of counter-rotational blades 130.
The rings 210, 310 can be positioned inside the aircraft body 110 and the blades 120, 130 can project outside the body 110 through an annular channel. The blades 120, 130 extend substantially perpendicularly and horizontally outward from the body 110.
It will be readily apparent that although six main blades 120 and six counter-rotation blades 130 are provided, any suitable number of blades 120, 130 can be provided within the spirit and scope of the invention. In addition, there need not be an equal number of main blades 120 as counter-rotation blades 130. And while the counter-rotation blades 130 are shown smaller than the main blades 120, any suitable size and configuration of those blades 120, 130 can be utilized. Further, the need for standard mast tilt assemblies is not necessary for the main blades since the craft's lateral movement is achieved by the main jet turbine thrust out the rear of the craft (
The main blades 120 and counter-rotation blades 130 rotate about the entire outer circumference of the aircraft main body 110 and are connected to the annular gear rings 210, 310, respectively. As further shown in
As still further shown in
Thus, the main blades 120 are at an upper position and the counter-rotational blades 130 are at a lower position, so that the main blades 120 and the counter-rotation blades 130 do not interfere with each other. As illustrated, one or both of the intermediate gears 154, 156 (the second intermediate gear 156 is behind the first intermediate gear 154 in the embodiment of
The entire drive/propulsion system (
It is further noted that a processing device and related control mechanisms at the pilot seat can be provided to control operation of the aircraft, including the speed of the blades 120, 130, maneuvering, speed, and stability. As will be apparent to those skilled in the art, the invention can be utilized for other suitable applications beyond helicopter designs.
With respect to the shortened blades (wings) 130, the required RPM to generate lift for this craft will be substantially lower than in traditional helicopters since the blades are substantially wider and will achieve a greater lift coefficient per unit of surface area than traditional blades. In current helicopters, the RPM required for lift ranges from 460-600 RPM. The present invention will require approximately only 70-80 RPMs to achieve vertical lift for takeoff. This calculation is based upon examining the take-off air speed of both small aircraft and commercial aircraft and associates those speeds with the necessary blade speed of this invention. Typically, small aircraft (such as a Cessna single engine etc . . . ) require between 70-100 MPH for takeoff and larger commercial aircraft (Jets) require approximately 140-180 MPH. Considering a variant of the present invention had a main body of 30 feet in diameter with main lift blades at 10 feet in length, the resulting circumference of outermost blade travel in its rotation for one revolution would be 157 feet. If the main lift blades travelling 157 feet equates to one revolution and we multiply 70 (RPM)×157, the result is 10,990 feet travelled in one minute. This equates to approximately 120 MPH, which is the average take off speed between small aircraft and commercial jets.
With the main lift blades 130 at the horizontal center line of craft, a parachute 104 (or multiple parachutes) can be located at the top of the craft's airframe superstructure, as shown in
Since the craft's lift and counter-rotation blades are at the perimeter of the horizontal center line of craft, weapon systems can be imbedded on both the bottom and top of the craft allowing a nearly full spherical 360 degree deployment. With the lift and counter-rotation blades being very short and close to the craft's main superstructure, the availability of suitable landing zones is greatly increased. In addition, since the proposed mechanical and blade lift mechanism achieves greater lift per unit of horsepower, a greater level of armoring on lower airframe can be used to protect craft from ground fire. Finally, the craft can easily be configured in a drone capacity and remotely piloted.
Turning to
When the lift and drive system of the invention is applied to rotor type drone/UAV craft, the stability and efficiency as a platform is greatly enhanced similar to that achieved by the helicopter variant shown and described with respect to
By applying the concept of
Referring to
The fans 25 achieve lateral movement and turning of the drone/UAV craft 500. The wind/thrust from these blades/fans 25 pushes the craft 500 in a lateral direction. To facilitate turning the craft, two functions can be applied. First, the RPM level of either motor 22 can be increased so as to cause the craft to turn. Second, the increased RPM level of either motor operating in conjunction with the two rudders 105 (in conjunction with the control bars 106) that are affixed to the craft's lower airframe, as best shown in
In addition, the drone/UAV 500 is much smaller than the manned variant so accordingly, all the components such as the crafts fuselage (if needed), drive motors, lift blades etc. . . . will be smaller. Likewise, if the drone/UAV 500 is of significant size so as to not warrant battery use, the original application's power generation scheme can be used applying smaller jet engines linked to appropriately smaller electric generators.
Still further, the drone craft 500 includes components needed to communicate with a user remote control device. For instance, the craft 500 can have a wireless receiver to receive signals from the user remote control device. The receiver can communicate by radio frequency (RF), infrared (IR), Bluetooth, or any other suitable frequency or wireless communication. The craft 500 can also have a control mechanism, such as a processing device or controller, that receives the command signals from the user remote control device, and controls operation of the drone craft 500. For instance, the controller can control operation of the motors 22 to work the fans 25, and motors 170.
Turning to
As shown, the solar panels 650 can be one or more panels positioned on the top outer surface of the craft body. Together, the panels 650 can substantially form a circular shape with a center opening. The circular shape can be continuous, or discontinuous to permit placement of a cockpit window or other craft feature.
As best shown in
As shown, the connection 626, 636 is positioned close to the body of the craft, so that the outer blade portion 624, 634 is as large as possible to minimize the amount of space required by the craft when the blades 620, 630 are in the storage position. However, the connection 626, 636 can be at any suitable location along the inner and outer blades. In addition, it should be apparent that the rotating connection 626, 636 can be any suitable connection, and can include, for instance, hydraulic actuators or servo motors to move the outer blade portions 626, 636 to be positioned in each of the storage and operating positions. In the folded position, the craft takes less space and enables more efficient storage and/or transport of the craft in limited cargo spaces.
As further illustrated in
Because of the torque advantage achieved by the craft's perimeter drive system, the lift blades length can be significantly shorter in length but have a significantly wider chord than traditional helicopter blades creating an airfoil surface area equal to or greater than traditional blades but being vastly shorter so as to facilitate easier transport onboard either land or airborne platforms. Thus, for example, the length of the lift blades can be fifty percent (50%) shorter in length and one hundred and fifty percent (150%) wider in chord than traditional helicopter blades, creating an optimal airfoil surface area equal to or greater than traditional blades. The increased drag value created by such blades will be mitigated by the torque advantage. Using shortened blades will result in a total blade rotation diameter approximately fifty percent (50%) less than traditional helicopters/rotor drones.
Standard helicopter blade length is typically substantially equal to the length of the aircraft. For instance, if a helicopter platform is 40 feet in length, the resultant main lift blade is approximately 40 feet total length creating a 80 foot diameter rotation pattern. In one embodiment of the present invention, the main lift blades (and secondary blades) can be substantially shorter in length than the diameter of the craft, and for example the blades can have a length that is less than half of the diameter of the aircraft, and potentially as low as 25% of the diameter of the aircraft depending on the chord width of the blade. For example, if the circular fuselage is ten feet in diameter, each of the mail lift blades can be approximately five feet in length with a chord width approximately 2.5 feet creating an airfoil area of 12 square feet. Each of the blades extend from the craft's perimeter (
In addition, not all the blades 620, 630 need be foldable. For instance, only the main blades 620 can fold, and the counter-rotation blades 630 can be non-folding.
As discussed, both the manned and unmanned crafts have a perimeter drive system that provides greater torque to the blades. The gears 210, 310 are inside the body and substantially at the perimeter of the craft. And the mechanisms used to drive those gears 210, 310, such as the gears 152, 154, 156, 158, bearings 122, 124 and struts 126, 128, can also be provided at the inside of the body and substantially at the perimeter of the craft. It is noted that the counter gear ring 310 can be located below and/or slightly inside of the main gear ring 210, as shown in
Glossary of terms: 100, aircraft; 101, escape hatch; 104, parachute; 105, rudder; 106, control bars for rudder; 107, main body of rudder; 108, front end of rudder; 109, rear end of rudder; 110, main body of craft; 112, upper body of craft; 114, lower body of craft; 115, outer periphery (perimeter) of craft; 116, general horizontal centerline of craft; 118, landing struts; 119, stairs; 120, main lift blades; 121, connector bars linking annular gear to main lift blades; 122, roller bearings for main lift blades annular gear; 124, roller bearings for counter rotation blades annular gear; 126, support strut for roller bearing supporting main rotation blades annular gear; 128, support strut for roller bearing supporting counter rotation blades annular gear; 130, counter rotation blades; 131, connector bars linking annular gear to counter rotation blades; 150, general overall set of drive gears; 152, driven gear; 154, intermediate gears; 156, intermediate gears; 158, drive gear; 170, jet turbine engines; 172, intake port for jet turbines; 174, exhaust ports for jet turbine engines; 175, ducts; 176, electric generators; 177, ducts; 178, electric drive motors; 200, overview of main rotational assembly; 210, main annular gear for main lift blades; 212, base I frame structure of annular gear for main lift blades; 214, teeth of annular gear 210; 300, counter rotation assembly; 310, annular gear for counter rotation blades; 312, teeth of annular gear 310; 500, drone aircraft.
The foregoing description and drawings should be considered as illustrative only of the principles of the invention. The invention may be configured in a variety of shapes and sizes and is not intended to be limited by the preferred embodiment. Numerous applications of the invention will readily occur to those skilled in the art. Therefore, it is not desired to limit the invention to the specific examples disclosed or the exact construction and operation shown and described. Rather, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 15/600,296, filed May 19, 2017, which is a continuation-in-part of application Ser. No. 15/058,708, filed Mar. 2, 2016, now U.S. Pat. No. 9,840,323, issued Dec. 12, 2017, which is a continuation-in-part of application Ser. No. 14/712,062, filed May 14, 2015, now U.S. Pat. No. 9,555,879, issued Jan. 31, 2017, which claims the benefit of U.S. Provisional Application No. 62/001,418, filed May 21, 2014. The entire contents of those applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2521684 | Bates | Sep 1950 | A |
2740595 | Bakewell | Apr 1956 | A |
2935275 | Grayson | May 1960 | A |
3041012 | Gibbs | Jun 1962 | A |
3064925 | Preston | Nov 1962 | A |
3142455 | Burke | Jul 1964 | A |
3210025 | Lubben | Oct 1965 | A |
3321021 | Girard | May 1967 | A |
3470765 | Campbell | Oct 1969 | A |
3690597 | Di Martino | Sep 1972 | A |
4071206 | Magill | Jan 1978 | A |
4787573 | Pauchard | Nov 1988 | A |
5072892 | Carrington | Dec 1991 | A |
5807202 | Sammataro | Sep 1998 | A |
6308912 | Kirjavainen | Oct 2001 | B1 |
7604198 | Petersen | Oct 2009 | B2 |
8033498 | Blackburn | Oct 2011 | B2 |
8979016 | Hayden, III | Mar 2015 | B2 |
9004393 | Barrett-Gonzales | Apr 2015 | B2 |
9555879 | Kaiser | Jan 2017 | B1 |
20030136875 | Pauchard | Jul 2003 | A1 |
20050067527 | Petersen | Mar 2005 | A1 |
20090121076 | Blackburn | May 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20180244378 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
62001418 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15600296 | May 2017 | US |
Child | 15883781 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15058708 | Mar 2016 | US |
Child | 15600296 | US | |
Parent | 14712062 | May 2015 | US |
Child | 15058708 | US |