The present invention relates to a manual bundling tool.
Conventionally, manual bundling tools used for metal cable ties have been known. This type of manual bundling tool is equipped with a tightening means, which pulls the band part after passing through the head part of the cable tie relative to the head part, a securing mechanism, which secures the tip end side of the band part to the base end using the head part, and a holding mechanism, which holds the band part so as to prevent return movement toward the head part side.
The above manual bundling tool is further equipped with a tool body which includes a handle and a lever which opposes the handle. The aforementioned manual bundling tool is configured such that when the handle and the lever are rotated, the tightening mechanism is operated until the tension produced by the tightening mechanism reaches a maximum value (set value), and when it reaches the set value, the securing mechanism is operated instead of the tightening mechanism.
Additionally, the aforementioned manual bundling tool is configured such that during cable tie mounting, the band part is held by the holding mechanism to prevent the band part from easily falling out of the tool body. Therefore, once the cable tie is mounted in the manual bundling tool, the cable tie cannot be removed from the manual bundling tool without damaging the cable tie because of the action of the holding mechanism.
Thus, when performing the bundling operation, if the cable tie is mounted on the manual bundling tool when, for example, there is an error in the tightening position of the cable tie relative to the bundled objects or the bundled objects are insufficient, the operations on the cable tie cannot be redone without labor such as cutting and removing the cable tie and preparing a new cable tie.
The present invention was achieved taking such circumstances into consideration, and an object thereof is to improve the convenience of bundling operations that use cable ties.
According to one aspect of the present invention, a manual bundling tool can be used for a cable tie for bundling bundled objects with the metal cable tie having a belt-shaped band part and a head part provided on one end of the band part in the lengthwise direction. The tool includes a tool body having a housing, a handle projecting from the housing, and a setting part connected to the housing and formed so as to be capable of setting the head part of the cable tie. A first operating means is capable of positional shift relative to the tool body so as to oppose the handle. A tightening mechanism is capable of pulling another end side of the band part in the lengthwise direction after passing through the head part set in the setting part, in a direction away from the head part in response to a positional shift operation of the first operating means. A holding mechanism is capable of holding the other end side of the band part in the lengthwise direction pulled by the tightening mechanism, on the tool body so as to prevent return movement toward the head part side. A second operating means is capable of positional shift relative to the tool body. A securing mechanism capable of securing the other end side of the band part in the lengthwise direction passing through the head part set in the setting part, to the one end side of the band part in the lengthwise direction in response to a positional shift operation of the second operating means. A release operation means is capable of positional shift relative to the tool body and a release mechanism is capable of releasing the hold on the other end side of the cable tie band part in the lengthwise direction by the holding mechanism in response to a positional shift of the release operation means.
According to another aspect of the present invention, the tool body has a pistol shape, and the setting part is disposed in a region equivalent to a muzzle portion on the tool body.
According to a further aspect of the present invention, the setting part is provided on the tool body such that the other end side of the band part in the lengthwise direction after passing through the head part set in the setting part is positioned on a side opposite the handle and sandwiching the housing.
According to yet another aspect of the present invention, the setting part is mounted on the housing such that it can be attached and detached.
According to another aspect of the present invention, the second operating means is configured using the first operating means and a switching operation means for switching a mechanism that operates according to a positional shift of the first operating means, between the tightening mechanism and the securing mechanism.
According to another aspect of the present invention, the switching operation means is mounted on the first operating means so as to be capable of positional shift integrally with the first operating means relative to the tool body and so as to be capable of positional shift relative to the first operating means, such that the handle and the first operating means can be grasped individually or together.
According to another aspect of the present invention, the manual bundling tool further comprises a mechanism which disables switching by the switching operation means during positional shift of the first operating means.
According to another aspect of the present invention, the manual bundling tool further comprises a third operating means capable of positional shift relative to the tool body and a disconnect mechanism capable of disconnecting the other end side of the band part in the lengthwise direction after passing through the head part set in the setting part, to separate it in the lengthwise direction of the band part in response to a positional shift operation of the third operating means.
According to another aspect of the present invention, the second operating means and the third operating means are identical operating means.
According to the present invention, provided is a manual bundling tool capable of improving the convenience of bundling operations that use cable ties.
First, the configuration of a manual bundling tool 1 according to an embodiment of the present invention will be described while referencing the drawings. Note that in the descriptions below, the direction of the X arrow in
As illustrated in
Also, the manual bundling tool is configured such that the other end (tip end) 13 side of the band part 10 in the lengthwise direction after being wrapped around the bundled objects 3 and passing through the head part 11 is pulled relative to the head part 11, and the tip end 13 side can be secured to the base end 12 using the head part 11 so that the tightened state of the band part 10 is maintained.
In the present embodiment, as illustrated in
The head part 11 is constructed using a metal member such as a stainless steel sheet, and is shaped into a C shape capable of externally fitting onto the band part 10. The head part 11 has a first opening part 16 and a second opening part 17 which are positioned coaxially with a through-hole 15 through which the band part 10 can pass and the through-hole 14, respectively, and is held on the base end 12 of the band part 10 by projecting parts 18 and 19.
Furthermore, as illustrated in
The housing 21 and the handle 22 are constructed using a left part 25 and a right part 26 which can be mutually attached and detached. The housing 21 has a hollow shape and extends in the forward/rearward direction such that the front end (tip end) side becomes narrower than the front/rear intermediate part. The handle 22 projects downward from the front/rear intermediate part of the housing 21. A grip 24 is provided on the handle 22.
In the present embodiment, the tool body 20 has a pistol shape, and the setting part 23 is disposed in a region equivalent to a muzzle portion (front end) on the tool body 20. The setting part 23 is configured such that the head part 11 can be set such that the tip end 13 side of the band part 10 passes through the head part 11 (the through-hole 15) and protrudes rearward therefrom.
As also illustrated in
The manual bundling tool 1 also has a first operating means. The first operating means is capable of positional shift relative to the tool body 20 so as to oppose the handle 22 of the tool body 20. In the present embodiment, the first operating means is a trigger 30 capable of a manual positional shift operation (rotation operation), and has a first operating part 31 and left and right extending parts 32 which extend from the first operating part 31.
The trigger 30 extends in the vertical direction. The first operating part 31 is disposed beneath the housing 21 and forward of the handle 22. A grip 33 is provided on the first operating part 31. The left and right extending parts 32 are disposed mainly inside the housing 21. The left and right extending parts 32 are supported such that they can rotate on a bush 35 held on the housing 21 at each top end.
The trigger 30 is configured such that the first operating part 31 is capable of taking a non-operating position separated by a prescribed amount from the handle 22 (position indicated by the solid line in
On the other hand, when operated against the force of the kick spring 36, the trigger 30 can be rotated in the counterclockwise direction in
As illustrated in
In the present invention, the tightening mechanism 40 is provided inside the housing 21 of the tool body 20, and spans between the trigger 30 and the tip end of the housing 21. The tightening mechanism 40 has a tightening lever 41, a trigger link 42, a link bar 43, a rear chuck bar 44, a front chuck bar 45 and a chuck 46.
The tightening lever 41 has left and right plate parts 51 and a connecting part 52 which connects the left and right plate parts 51. The tightening lever 41 is disposed such that the front/rear intermediate part of the left and right plate parts 51 is positioned between the trigger 30 and the left and right extending parts 32 and such that the connecting part 52 is positioned forward of the left and right extending parts 32. The left and right plate parts 51 are supported such that they can rotate on the bush 35 at each top end.
On the lower part of each of the left and right plate parts 51, a long hole 53 is provided so as to extend in substantially the vertical direction. In the long hole 53, a first pin 54 is inserted so as to be capable of moving along the lengthwise direction of the long hole 53. The first pin 54 is supported on the bottom end of a tension slide 121 to be described later, and is maintained inside the upper part of the long hole 53 during tightening by the tightening mechanism 40 (refer to
The connecting part 52 extends between the left and right plate parts 51. On the front end of the tightening lever 41 (each front end of the left and right plate parts 51 and/or the connecting part 52), an indentation 55 is provided so as to open substantially forward and upward. The indentation 55 is formed such that it can engage with a switching pin 85. The switching pin 85 can be disengaged from the indentation 55 in response to operation of the trigger 30.
When the trigger 30 is in the non-operating position, the tightening lever 41 is held in the state illustrated in
The trigger link 42 has left and right plate parts 57 and a connecting part 58 which connects the left and right plate parts 57. The trigger link 42 is disposed such that the front part of the left and right plate parts 57, respectively, and the connecting part 58 are positioned between the left and right plate parts 51 of the tightening lever 41. The left and right plate parts 57 are supported such that they can rotate on the bush 35 at each top end.
On each of the lower parts of the left and right plate parts 57, an indentation 59 is provided so as to open downward. The first pin 54, which protrudes from the long hole 53 in the tightening lever 41, can engage with the indentation 59. The trigger link 42 can rotate integrally with the tightening lever 41 with the bush 35 as a fulcrum by engagement with the first pin 54.
The link bar 43 has an elongated shape and is provided on the rear side of the trigger link 42. The link bar 43 is connected such that it can rotate via a second pin 61 to the rear bottom end of the left and right plate parts 57 of the trigger link 42 at one end (front bottom end) in the lengthwise direction. The link bar 43 is disposed so as to extend rearward and upward from the connecting portion with the trigger link 42.
The rear chuck bar 44 extends in the forward/rearward direction and is connected via a third pin 62 to the other end (rear top end) of the link bar 43 in the lengthwise direction at one end (rear end) in the lengthwise direction. On each of the two ends of the third pin 62 in the lengthwise direction, a cylindrical body 63 is externally fitted. The cylindrical body 63 is supported such that it can move back and forth in the forward/rearward direction in a guide channel 64 provided on the inner surface side of the housing 21.
The front chuck bar 45 extends in the forward/rearward direction and is connected via a fourth pin 65 to the other end (front end) of the rear chuck bar 44 in the lengthwise direction at one end (rear end) in the lengthwise direction. The front chuck bar 45 is disposed so as to extend forward from the connecting portion with the rear chuck bar 44, such that the other end (front end) is positioned rearward of the setting part 23.
The front chuck bar 45 is configured such that it can move back and forth in the forward/rearward direction integrally with the rear chuck bar 44. That is, the front chuck bar 45 is configured such that it moves rearward along the guide channel 64 integrally with rearward movement of the rear chuck bar 44, and moves forward along the guide channel 64 integrally with forward movement of the rear chuck bar 44.
When the front chuck bar 45 is positioned at the front-most side, the front end of the front chuck bar 45 becomes positioned immediately rearward of the setting part 23 (the guide part 28), as illustrated in
The chuck 46 is supported via a fifth pin 66 such that it can rotate on the front end of the front chuck bar 45. As illustrated in
On the chuck 46, a hook which faces the rear passage route 67 is provided on the rear top end. The chuck 46 is biased so as to rotate in the counterclockwise direction in
Thus, when the chuck 46 catches a portion of the tip end 13 side of the band part 10, the tip end 13 side of the band part 10 is prevented from returning toward the direction (forward direction) that passes through the rear passage route 67, and also, the tip end 13 side of the band part 10 is permitted to move in the direction (rearward direction) opposite the direction that passes through the rear passage route 67.
Note that, as illustrated in
The manual bundling tool 1 also has a holding mechanism 70. The holding mechanism 70 is configured so that it can hold the tip end 13 side of the band part 10 pulled by the tightening mechanism 40, on the tool body 20 such that it cannot return toward the head part 11 (forward) that is set in the setting part 23. In the present embodiment, the holding mechanism 70 has a non-return chuck 71.
The non-return chuck 71 is supported via a sixth chuck pin 72 such that it can rotate in the guide part 28 of the setting part 23. As illustrated in
On the non-return chuck 71, a hook which faces the front passage route 29 is provided on the rear top end. The non-return chuck 71 is biased so as to rotate in the counterclockwise direction in
Thus, when the non-return chuck 71 catches a portion of the tip end 13 side of the band part 10, the tip end 13 side of the band part 10 is prevented from moving in the direction (forward direction) that passes through the front passage route 29, and also, the tip end 13 side of the band part 10 is permitted to move in the direction (rearward direction) opposite the direction that passes through the front passage route 29.
As illustrated in
The switching lever 80 is for switching the mechanism that operates in response to a positional shift of the trigger 30, between the tightening mechanism 40 and a securing mechanism 90 to be described later (in the present embodiment, the securing means 90 and the disconnect means 100). The switching lever 80 is mounted on the trigger 30 to enable positional shift integrally with the trigger 30 and to enable positional shift relative to the trigger 30 when it positionally shifts.
In further detail, the switching lever 80 has a second operating part 81 and left and right extending parts 82 which extend from the second operating part 81. The switching lever 80 is provided on the front side of the trigger 30, extending in the substantially vertical direction. The second operating part 81 is disposed beneath the housing 21, and the left and right extending parts 82 are disposed inside the housing 21.
The switching lever 80 is connected via a seventh pin 83 to the vertical intermediate part of the trigger 30 such that it can rotate at the vertical intermediate part of the switching lever 80. Additionally, in the switching lever 80, the switching pin 85 extends between the top ends of the left and right extending parts 82 so as to be capable of positional shift in response to operation of the switching lever 80 and/or the trigger 30.
The switching lever 80 is configured such that it can take a first switching operating position at which the second operating part 81 does not positionally shift relative to the trigger 30 (refer to
On the other hand, when the switching lever 80 is operated against the force of the kick spring 86, it is rotated in the counterclockwise direction in
When the switching lever 80 is positionally shifted together with the trigger 30 while at the first switching operating position, it causes the switching pin 85 to engage with the indentation 55 of the tightening lever 41 (refer to
The manual bundling tool 1 is equipped with the securing mechanism 90. The securing mechanism 90 is configured so as to be capable of securing, using the head part 11, a portion of the tip end 13 side of the band part 10 passing through the head part 11 set in the setting part 23, to the base end 12 of the band part 10 in response to respective positional shift operations of the switching lever 80 and the trigger 30.
The securing mechanism 90 is provided mainly inside the front part of the housing 21 of the tool body 20, spanning between the switching lever 80 and trigger 30 and the setting part 23. The securing mechanism 90 can operate alternatively with the tightening mechanism 40 through the switching action of the switching lever 80. It has a punch lever 91, a holder 92 and a punch 93.
The punch lever 91 is provided so as to extend in the forward/rearward direction, and has a curved shape which is convex downward. The punch lever 91 is disposed at a position lower than the front chuck bar 45, and is supported on the front part of the housing 21 via an eighth pin 94 such that it can rotate at the front/rear intermediate part. The eighth pin 94 is disposed forward of the curved portion of the punch lever 91.
A rear end 95 of the punch lever 91 is disposed beneath the switching pin 85 such that it can engage from below with the switching pin 85 provided on the switching lever 80. A front end 96 of the punch lever 91 is inserted in an insertion hole 97 of the holder 92 so as to engage with the holder 92 disposed inside the fitting part 27 of the setting part 23 (refer to
When the switching lever 80 is at the first switching operating position, the punch lever 91 is held by the force of a kick spring 98 so as to engage with the switching pin 85 (refer to
After engagement with the switching pin 85, if the switching lever 80 is operated together with the trigger 30, the punch lever 91 is rotated in the clockwise direction in
The holder 92 is provided on the fitting part 27. The holder 92 has the insertion hole 97, which penetrates through the holder 92 in the forward/rearward direction, and is integrally connected with the front end 96 of the punch lever 91 inserted in the insertion hole 97. When the front end 96 is inserted into the insertion hole 97, the holder 92 can be positionally shifted in the vertical direction in response to rotation of the punch lever 91.
The punch 93 projects upward from the top face of the holder 92 so as to positionally shift in the vertical direction together with the holder 92. The punch 93 has a pointed protruding end formed so as to taper in the upward direction, and can pass from this protruding end through the through-hole 14 of the band part 10 and the first opening part 16 and the second opening part 17 of the head part 11.
The punch 93 can take a non-deforming position at which it does not inhibit setting of the head part 11 in the setting part 23 (refer to
The convex part 99 formed on the tip end 13 side of the band part 10 engages with the inner face of the second opening part 17 of the head part 11 in the lengthwise direction (forward/rearward direction) of the band part 10. As a result, in the state where the cable tie 2 has appropriately tightened the bundled objects 3, the tip end 13 side of the band part 10 can be secured on the base end 12 side thereof using the head part 11.
The manual bundling tool 1 also has a release operation means. The release operation means is capable of positional shift relative to the tool body 20. In the present embodiment, the release operation means is a release pin 140 capable of manual operation. The release pin 140 is disposed extending in the left/right direction such that one end side in the lengthwise direction (left end side) passes through a long hole 141 in the housing 21 (refer to
The release pin 140 is provided such that it is capable of positional shift relative to the housing 21 in the forward/rearward direction along the long hole 141. The release pin 140, which can take a non-operating position located at the rear side of the long hole 141 or an operating position located closer to the front side of the long hole 141 than the non-operating position, is held in a state where it is exposed outside the housing 21.
In the present embodiment, the manual bundling tool 1 also has a release mechanism 150. The release mechanism 150 is configured so as to be capable of releasing the hold on the band part 10 of the cable tie 2 by the holding mechanism 70 in response to a positional shift of the release pin 140. As illustrated in
The moving body 151 is disposed rearward of the holding mechanism 70 (the non-return chuck 71), extending in the forward/rearward direction. The moving body 151 is supported on the housing 21 such that it can move back and forth in the forward/rearward direction along a guide channel 155 provided on the inner face of the housing 21. The other end side (right end side) of the release pin 140 in the lengthwise direction is secured to the rear part of the moving body 151.
The depressing body 152 extends in the forward/rearward direction and consists of a rod-shaped member. The depressing body 152 is disposed such that it can move back and forth in the forward/rearward direction between the moving body 151 and the non-return chuck 71. A curved part 156 is provided on the rear end of the depressing body 152. The depressing body 152 is integrally connected with the moving body 151 via the curved part 156.
The connecting body 153 is disposed forward of the depressing body 152. The connecting body 153 is provided integrally with the non-return chuck 71 so as to operate in connection with the non-return chuck 71. The connecting body 153 has a contact face which faces the front end of the depressing body 152, and is able to contact the front end of the depressing body 152 by this contact face.
As illustrated in
As illustrated in
When such operation of the release pin 140 ends, the release pin 140 is moved backward in
Therefore, if the tip end 13 side of the band part 10 is held by the holding mechanism 70 in the state where the head part 11 of the cable tie 2 has been set in the setting part 23 of the tool body 20, the tip end 13 side of the band part 10 is released from the holding mechanism 70 using the release mechanism 150, and can be moved in any direction (forward or rearward) relative to the tool body 20.
Thus, after the cable tie 2 is mounted on the manual bundling tool 1, if the position of tightening with the cable tie 2 is wrong or the bundled objects are insufficient, the entire cable tie 2 is removed from the manual bundling tool 1 and the tip end 13 side of the band part 10 is returned to the head part 11, and the operations on the cable tie 2 can be redone quickly and easily.
The following is a description of an example of the method of performing the bundling operation using the manual bundling tool 1 with the cable tie 2 for bundling the bundled objects 3.
First, a preprocessing step is performed for mounting the cable tie 2 on the manual bundling tool 1 and the bundled objects 3. Specifically, the band part 10 of the cable tie 2 is wrapped around the bundled objects 3. Then, the head part 11 of the cable tie 2 is set in the setting part 23 (the fitting part 27) of the tool body 20 in the manual bundling tool 1.
The band part 10 is passed from the tip end 13 side thereof through a through-hole 15 of the head part 11, the front passage route 29 in the manual bundling tool 1, and the rear passage route 67 in that order, and the tip end 13 side of the band part 10 is maintained in a state where it is held by the holding mechanism 70. Note that in the preprocessing step, if the operations on the cable tie 2 must be redone, they are performed using the release mechanism 150.
Then, to temporarily tighten the cable tie 2, the tip end 13 side of the band part 10 after passing through the rear passage route 67 is pulled by a manual operation toward the direction (rearward) away from the head part 11. At this time, the movement of the tip end 13 side of the band part 10 is as described above, and is not hindered by the non-return chuck 71 in the holding mechanism 70 or the chuck 46 in the tightening mechanism 40.
After the preprocessing step, a tightening step is performed, wherein the band part 10 is pulled until the cable tie 2 reaches the desired state of tightening for the bundled objects 3 using the tightening mechanism 40 of the manual bundling tool 1. Specifically, the handle 22 of the tool body 20 and the trigger 30 are grasped, and the trigger 30 is operated so as to positionally shift from the non-operating position illustrated in
During this operation, since the switching lever 80 positionally shifts together with the trigger 30 at the first switching operating position as is, the switching pin 85 first positionally shifts rearward so as to engage with the indentation 55 and then positionally further shifts rearward in the state where it is engaged with the indentation 55. For this reason, the tightening lever 41 is pressed by the switching pin 85 and rotates counterclockwise in
By rotation of the tightening lever 41, the first pin 54 inserted in the long hole 53 positionally shifts rearward. Due to the fact that the first pin 54 is engaged with the indentation 59, the trigger link 42 is pressed by the first pin 54 and rotates in the counterclockwise direction in
The rear chuck bar 44 moves rearward due to the positional shift of the link bar 43. The front chuck bar 45 moves rearward accordingly. Therefore, the chuck 46 first starts to move rearward so as to separate from the setting part 23 to capture the tip end 13 side of the band part 10 in the rear passage route 67, and then moves further rearward in the state where it has captured the tip end 13 side of the band part 10.
Thus, the tightening mechanism 40 is capable of pulling the tip end 13 side of the band part 10 rearward relative to the head part 11 so as to increase the tension of the cable tie 2 by a prescribed amount. After that, the trigger 30 is released to return to its original state. As a result, the tightening mechanism 40 returns to its original state so that it can operate again by the next operation of the trigger 30.
In the tightening step, the trigger 30 is operated as described above at least once until the tension of the cable tie 2 reaches the desired tension. Note that completion of the tightening step (the tension of the cable tie 2 has reached the desired tension) can be judged, for example, by looking at the state of the cable tie 2 or by using a tension adjustment mechanism 120 to be described later.
After completion of the tightening step, a securing step is performed using the securing mechanism 90 to secure the tip end 13 side to the base end 12 of the band part 10. Specifically, first, the handle 22 and the switching lever 80 are grasped while the trigger 30 is in the non-operating position, and the switching lever 80 is operated so as to positionally shift from the first switching operating position illustrated in
Thus, the switching pin 85 is caused to engage with the rear end 95 of the punch lever 91 so that the mechanism that operates in response to positional shift of the trigger 30 is switched. Then, with the switching lever 80 at the second switching operating position, the trigger 30 is again grasped and operated so as to positionally shift to the operating position together with the switching lever 80, as illustrated in
During this operation, the punch lever 91 is pressed by the switching pin 85 and rotates in the clockwise direction in
Therefore, the convex part 99 in the band part 10 engages with the head part 11, and the securing mechanism 90 secures the tip end 13 side of the band part 10 to the base end 12 thereof using the head part 11. After that, the trigger 30 and the switching lever 80 are released to return to their original states. For this reason, the securing mechanism 90 and the disconnect mechanism 100 return to their original states.
After the securing step is completed, the tip end 13 side of the band part 10 is removed from the holding mechanism 70 and so forth and the head part 11 is also removed from the setting part 23 by operation of the release mechanism 150. As a result, the cable tie 2 is removed from the manual bundling tool 1, and the bundling operation using the manual bundling tool 1 is complete.
Based on the above, according to the aforementioned manual bundling tool 1, bundled objects 3 can be bundled with the cable tie 2 having a desired tension. Moreover, if a problem is discovered after the cable tie 2 has been mounted on the manual bundling tool 1, the operations on the cable tie 2 can be redone quickly and easily. Thus, the convenience of the bundling operation can be improved.
In the present embodiment, the tool body 20 has a pistol shape and the setting part 23 is disposed in a region equivalent to the muzzle portion of the tool body 20. In other words, the setting part 23 is provided on a relatively narrow front end (tip end) on the tool body 20, and is configured such that the band part 10 can be extended from the head part 11 set in the setting part 23 during the bundling operation.
Through such a configuration, even when the bundled objects 3 are disposed in a relatively small work space such as a location surrounding by equipment, when the manual bundling tool 1 is used, the setting part 23 (the head part 11) can be easily brought into contact with the bundled objects 3. Therefore, the ease of handling of the manual bundling tool 1 and the cable tie 2 can be improved.
Furthermore, in the present embodiment, the setting part 23 is disposed on the tip end of the housing 21 so as to be positioned on the side (top side) opposite the protrusion direction of the handle 22. As a result, it is possible to prevent the problem that the tip end 13 side of the band part 10 hits the hand that is grasping the trigger 30 when the cable tie 2 has been mounted on the manual bundling tool 1 and the band part 10 is pulled.
In the present embodiment, as illustrated in
In other words, when the user wishes to perform a bundling operation using the other cable tie, the manual bundling tool 1 (excluding the setting part 23) can be used simply by exchanging the setting part 23 and the separately prepared other setting part 113. Thus, it is possible for the manual bundling tool 1 to be compatible with various cable ties at low cost without preparing a manual bundling tool (in its entirety) other than the manual bundling tool 1.
In the present embodiment, the switching lever 80 is mounted on the trigger 30 such that it can positionally shift integrally with the trigger 30 relative to the tool body 20 and can positionally shift relative to the trigger 30 such that it can be grasped together with each of the handle 22 and the trigger 30.
Due to this configuration, after the handle 22 and the trigger 30 have been operated in order to operate the tightening mechanism 40, when the mechanism that operates in response to positional shift of the trigger 30 is operated by switching from the tightening mechanism 40 to the securing mechanism 90 and the disconnect mechanism 100, the switching lever 80 is again grasped while still grasping the trigger 30 and without changing the hold on the trigger 30 and so forth, and the switching lever 80 as well as the trigger 30 can be operated. Therefore, the manual bundling tool 1 can be operated quickly and easily.
In the present embodiment, the manual bundling tool 1 has a mechanism that disables switching by the switching lever 80 during positional shift of the trigger 30. Specifically, when the trigger 30 is in the position to which it shifted from the non-operating position due to operation of the tightening mechanism 40, the switching pin 85 cannot engage with the punch lever 91 even when the switching lever 80 is operated.
Due to such a configuration, if the switching lever 80 is unintentionally positionally shifted (for example, if fingers that are not grasping the trigger 30 and the handle 22 end up hitting the switching lever 80 in the tightening step), the securing mechanism 90 and the disconnect mechanism 100 can be prevented from being erroneously operated so that securing and disconnecting related to the band part 10 are not performed.
In the present embodiment, the manual bundling tool 1 has a third operating means. The third operating means is provided such that it can positionally shift relative to the tool body 20. In the present embodiment, the third operating means is the same operating means as the second operating means, consisting of the trigger 30 and the switching lever 80, which is capable of manual positional shift (rotation) operation. In other words, the second operating means also serves as the third operating means.
In the present embodiment, the manual bundling tool 1 is equipped with the disconnect mechanism 100. The disconnect mechanism 100 is capable of disconnecting the tip end 13 side of the band part 10 after passing through the head part 11 set in the setting part 23 to separate it in the lengthwise direction of the band part 10 in response to a positional shift operation of the trigger 30 and the switching lever 80.
The disconnect mechanism 100 is equipped with the punch lever 91, the holder 92, and a cutter blade 101. The cutter blade 101 projects upward from the top face of the holder 92 so as to positionally shift together with the holder 92 in the vertical direction. In other words, the cutter blade 101 can positionally shift in sync with a positional shift of the punch 93.
The cutter blade 101 is disposed rearward of the punch 93. The cutter blade 101 is formed such that when it positionally shifts together with the punch 93 due to the upward positional shift of the holder 92, disconnect of the tip end 13 side of the band part 10 can be completed earlier than when the action of the punch 93 on the tip end 13 side of the band part 10 begins.
The cutter blade 101 can take a non-disconnecting position at which it does not disconnect the tip end 13 side of the band part 10 protruding rearward from the through-hole 15 of the head part 11 set in the setting part 23 toward the front passage route 29 (refer to
Due to such a configuration, when the holder 92 positionally shifts upward due to operation of the switching lever 80 and the trigger 30, after securing by the securing mechanism 90 begins, the cutter blade 101 begins positionally shifting upward to split the tip end 13 side of the band part 10 between the non-return chuck 71 and the head part 11 set in the setting part 23.
Therefore, if there is an excess portion of the tip end 13 side of the band part 10, this excess portion can be removed using the disconnect mechanism 100 after completion of the tightening step (the securing step). Note that in the present embodiment, the securing step by the securing mechanism 90 and the disconnect step by the disconnect mechanism 100 can be executed substantially simultaneously through a single operation of the switching lever 80 and the trigger 30.
In the present embodiment, the manual bundling tool 1 is equipped with the tension adjustment mechanism 120. The tension adjustment mechanism 120 is for raising or lowering the maximum tension of the cable tie 2 produced by the tightening mechanism 40. As described above, at completion of the tightening step, disconnect becomes possible based on the maximum value (set value) set by the tension adjustment mechanism 120.
As illustrated in
The tension slide 121 is disposed extending in the vertical direction between the left and right plate parts 57 of the trigger link 42. The bottom end of the tension slide 121 is connected via the first pin 54 to the tightening lever 41 and the trigger link 42, and the top end of the tension slide 121 is connected via a roller pin 131 to the tension slew 122.
The tension slew 122 is disposed on the rear side of the bush 35 and is supported via a ninth pin 130 on the housing 21 such that it can rotate. The front part of the tension slew 122 has an indentation 133 into which the roller pin 131 fits such that it can rotate. On the rear part of the tension slew 122, it has a long hole 135 into which a tenth pin 132 is inserted such that it can move back and forth roughly in the forward/rearward direction.
The tension plate 123 has a U shape. The tension plate 123 is disposed in a state where it sandwiches the tension slew 122 from the left and right such that the blocking part of the tension plate 123 is positioned rearward of the tension slew 122. The tension plate 123 is linked via the ninth pin 130 to the tension slew 122.
The tension base 124 is disposed so as to partition off a prescribed gap rearward of the blocking part of the tension plate 123. On the rear side of the tension base 124, the tension dial 125 is provided so as to be exposed outside the housing 21. On the front side of the tension base 124, the rolling cam 126 is provided such that it can move back and forth in the forward/rearward direction relative to the housing 21.
The tension dial 125 can be held in any of a plurality of rotational states. The rolling cam 126 can be held in a position that is shifted by a prescribed amount in the forward/rearward direction in accordance with the rotational state of the tension dial 125. The compression coil spring 127 is provided between the tension plate 123 and the rolling cam 126 such that the direction of compression is the forward/rearward direction.
Thus, while the tightening mechanism 40 is operating, during the time before the tension of the cable tie 2 reaches the maximum value (set value), the roller pin 131 is pressed by a prescribed force toward the forward side by the tension slew 122 so as to maintain the position thereof, and the tension slide 121 rotates coupled with the tightening lever 41 and the trigger link 42 with the roller pin 131 as a fulcrum.
If the tension of the cable tie 2 reaches the maximum value, when the trigger 30 is operated, the tension slew 122 rotates such that the tension slide 121 positionally shifts, as illustrated in
As a result, the trigger link 42 becomes unlinked from the tightening lever 41. For this reason, the rear chuck bar 44 and the front chuck bar 45 no longer move back and forth even if the tightening lever 41 rotates. Therefore, in this case, although it is possible to positionally shift the trigger 30, the tension of the cable tie 2 cannot be increased by the tightening mechanism 40.
Due to such a configuration, when the tension dial 125 is rotated in either the left or right direction, the compression coil spring 127 is held in a compressed state due to movement of the rolling cam 126, and the tension slew 122 (the roller pin 131) can be pressed with a stronger force. Thus, it can be adjusted in a direction that increases the maximum tension of the cable tie 2 produced by the tightening mechanism 40.
Conversely, if the tension dial 125 is rotated in the other of either the left or right direction, the compression coil spring 127 is held in a stretched state due to movement of the rolling cam 126, and the tension slew 122 (the roller pin 131) can be pressed with a weaker force. Thus, it can be adjusted in a direction that decreases the maximum tension of the cable tie 2 produced by the tightening mechanism 40.
Note that in the present embodiment, the plurality of rotational states related to the tension dial 125 include a prescribed rotational state that has no effect on the operation of the tension adjustment mechanism 120. The above description of the tension adjustment mechanism 120 is for the case where the tension dial 125 is operated to any rotational state excluding the aforementioned prescribed rotational state.
This application is a national stage application under 35 U.S.C. § 371 of PCT Application Number PCT/JP16/62229 having an international filing date of Apr. 18, 2016, which designated the United States, the entire disclosure of which is hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/062229 | 4/18/2016 | WO | 00 |