The present invention relates generally to liquid sprayers, and specifically to priming valves for priming the fluid supply of a liquid sprayer.
Paint sprayers are well known and commonly used to paint various surfaces. Airless paint sprayers provide the highest-quality finish due to the ability to finely atomize liquid paint. To ensure a high-quality finish from an airless paint sprayer, air cannot be allowed to enter the pumping mechanism of the paint sprayer. Typically, the fluid supply is included in a rigid container and a suction hose is provided within the container. Air then replaces the volume of liquid sprayed throughout the spraying process. The suction hose generally extends to the bottom of the container from the pumping mechanism to allow a much fluid as possible to be sprayed before air begins to enter the suction hose. Alternatively, to ensure that air does not enter the fluid supply, a collapsible liner for holding the liquid to be sprayed can be used, as described in U.S. application Ser. No. 13/660,248 titled Sprayer Fluid Supply with Collapsible Liner, which is hereby incorporated by reference. When a collapsible liner is used, air is purged from the collapsible liner to prime the fluid supply.
A fluid supply for a liquid sprayer includes a collapsible liner for holding a liquid, a cup for supporting the collapsible liner, a lid for connecting to the cup to secure the collapsible liner relative to the lid and the cup, and a manual check valve attached to the lid. The manual check valve includes a chamber, a closure, and an orifice extending between the collapsible liner and the chamber.
Collapsible liner 36 is secured within cup 34 and between cup 34 and lid 38. Cup 34 is removably secured to lid 38. Collapsible liner 36 is fabricated from a flexible material, such as low density polyethylene, to allow collapsible liner 36 to deform as pumping mechanism 18 draws fluid from collapsible liner 36. Cup 34 includes cut-out section 42 to allow access to collapsible liner 36 when collapsible liner 36 is secured within cup 34. Chamber 48 is integral with lid 38, and chamber 48 projects vertically from lid 38. Closure 50 is releasably attached to chamber 48.
Pumping mechanism 18 and drive element 20 are disposed within housing 14. Connector 32 couples spray tip assembly 16 to pumping mechanism 18. Fluid supply 12 is secured to pumping mechanism 18 by tabs 60 that engage connecting slots 46 in neck portion 44. Pumping mechanism 18 protrudes through lid 38 and receives fluid from collapsible liner 36. Guard 28 is attached to connector 32 to prevent objects from directly contacting fluid exiting spray tip 30 at high velocity.
Fluid supply 12 is primed by squeezing collapsible liner 36 through cut-out portion 42 with closure 50 removed or left in an open position. When collapsible liner 36 is squeezed, air exits collapsible liner 36 through orifice 52 and chamber 48. Once air has been purged from collapsible liner 36, closure 50 is positioned to seal an upper opening of chamber 48.
Spray gun 10 is activated by pulling trigger 24. Drive element 20 engages pumping mechanism 18, and pumping mechanism 18 draws liquid from collapsible liner 36. Collapsible liner 36 continues collapsing as liquid is drawn out of collapsible liner 36. When spray gun 10 is in use, closure 50 seals an upper opening of chamber 48 to prevent any air from reentering collapsible liner 36 through orifice 52. The liquid is sprayed through spray tip 30 at high velocity and applied to a desired surface.
Chamber 48 is defined by floor 48a (which contains orifice 52), sidewall 48b, and upper opening 48c. Closure 50 is used to manually open and close manual check valve 40. In the closed position, closure 50 covers and seal seals upper opening 48c of chamber 48.
In the present embodiment, closure 50 is a hinged cap and includes attachment portion 54, hinge 56 (shown in
Collapsible liner 36 is secured within cup 34 when lid 38 is secured to cup 34 at connection 70. Connection 70 is shown as a press-fit connection in
Collapsible liner 36 is filled with a liquid and collapsible liner 36 is secured within cup 34. Collapsible liner 36 is secured in place by attaching lid 38 to cup 34. To prime fluid supply 12 for spraying, air is forced out of collapsible liner 36 by squeezing collapsible liner 36 through cut-out portion 42 in cup 34. The air is forced out of collapsible liner 36 through orifice 52, and when the air has been expelled from collapsible liner 36, the liquid begins to exit through orifice 52 and into chamber 48. Orifice 52 is sized so air can easily flow out of collapsible liner 36 through orifice 52, but liquid encounters more resistance when flowing through orifice 52, which causes a significant increase in the force required to continue expelling fluid from fluid supply 12. The force increase required to squeeze liquid through orifice 52 signals the user to close closure 50.
In the current embodiment, when closure 50 is sealed, top portion 58 is secured to attachment portion 54. Sealing closure 50 prevents air from reentering collapsible liner 36 through chamber 48 while spray gun 10 is in use. Capturing expelled liquid in chamber 48 prevents the liquid from leaking onto lid 38 and keeps the priming operation clean, which allows spray gun 10 to be used in any position, including upside down, without worrying about liquid leaking through orifice 52.
Collapsible liner 36 is secured within cup 34 by affixing lid 38 to cup 34. Chamber 48 is integrally connected to an upper surface of lid 38 and projects vertically from the upper surface of lid 38. Orifice 52 extends through lid 38 and provides a connection between collapsible liner 36 and chamber 48. Closure 50 is removably secured to chamber 48 via connection 62. In the present embodiment, closure 50 is secured by connecting attachment portion 54 to chamber 48. Hinge 56 connects top portion 58 to attachment portion 54. Fluid supply 12 is secured to spray gun 10 by tabs 60 that engage connecting slots 46 through neck portion 44.
In the present embodiment, when priming fluid supply 12, top portion 58 of closure 50 is in the open position (
Collapsible liner 36 is secured within cup 34 and between lid 38 and cup 34. Cup 34 is secured to lid 38 at connection 70. Connection 70 includes threads 70A on an inner portion of lid 38 and complementary threads 70B on an outer portion of cup 34. Although connection 70 is shown as a threaded connection, connection 70 may include mechanical snap connections, press fit connections, or any other suitable connecting mechanism. When fluid supply 12 is attached to pumping mechanism 18, lip 72 sealingly engages pumping mechanism 18 such that air or liquid in collapsible liner 36 must exit collapsible liner 36 through orifice 52 and into chamber 48 during priming. Closure 50 is releasably secured to chamber 48 at connection 62. In the embodiment shown, connection 62 includes threads 62A on an inner area of attachment portion 54 and threads 62B on an outer area of chamber 48.
Collapsible liner 36 is filled with the liquid to be sprayed and collapsible liner 36 is secured within cup 36 by affixing lid 38 to cup 36 at connection 70. Fluid supply 12 is secured to pumping mechanism 18 by tabs 60 engaging connecting slots 46. To prime fluid supply 12 before use, collapsible liner 36 is squeezed through cut-out portion 42 to force air out of collapsible liner 36 through orifice 52 and chamber 48. When fluid level F rises to the level that liquid begins to enter chamber 48 through orifice 52, closure 50 is closed to seal chamber 48 (
The manual check valve described herein provides several advantages. Manual check valve 40 provides chamber 48 for liquid to be contained in without spilling onto other surfaces, preventing any messy cleanup. In addition, orifice 52 is large enough that it will not become clogged, but if orifice 52 does become clogged it can easily be cleared by passing an object, such as a pipe-cleaner, though orifice 52. Orifice 52 allows the same fluid supply 12 to be reused by the user, which reduces the user's costs because a new lid does not have to be used for each spraying job. The small diameter of orifice 52 allows air to easily be expelled from collapsible liner 36, but the diameter prevents liquid from quickly entering chamber 48 and increases the amount of force that the user must apply to continue pushing liquid out of collapsible liner 36 after the air has been expelled. This increase in force notifies the user to seal closure 50 and prevents the liquid from overflowing chamber 48 before the user can seal closure 50.
Closure 50 prevents air from entering collapsible liner 36 through orifice 52 during use. Additionally, closure 50 is removable from chamber 48, which allows the user to transfer closure 50 between various fluid supplies 12, decreasing the user's costs. A removable closure 50 also allows the user to replace closure 50 if it becomes worn out due to excessive use without having to replace the entire fluid supply 12.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.