Manual input device with force feedback function and vehicle-mounted equipment controller using same

Information

  • Patent Grant
  • 6591175
  • Patent Number
    6,591,175
  • Date Filed
    Thursday, December 20, 2001
    23 years ago
  • Date Issued
    Tuesday, July 8, 2003
    21 years ago
Abstract
A manual input device and a vehicle-mounted equipment controller are provided. The manual input device includes: a knob secured to an operation shaft and sensing portion for detecting the operation state of the operation shaft; an actuator to apply force to the knob; a power transmission portion for transmitting power between the operation shaft and a drive shaft of the actuator; and an input/output portion to send a first signal to the external device and to receive a second signal from an external device. The device further includes a control portion for generating a control signal for the actuator in accordance with an external signal outputted from an external sensing portion, or in accordance with control information generated in accordance with, at least, the external signal. The vehicle-mounted equipment controller includes selection switches for vehicle-mounted electric equipment, function selection switches, and the manual input device to adjust functions of the vehicle-mounted electric equipment selected.
Description




BACKGROUND




1. Field of the Invention




This invention relates to a manual input device with a force feedback function and a vehicle-mounted equipment controller using the same. More specifically, the present invention relates to control means for controlling an actuator that applies an external force as a feedback force to a knob.




2. Description of the Related Art




Conventionally, to provide a satisfying sensation while manipulating a knob and to secure the operation thereof, a manual input device with a force feedback function has been known which provides the knob with a sense of resistance and/or thrust corresponding to the amount and direction of manipulation of the knob.




Referring to

FIG. 17

, an example of a manual input device of the known type is illustrated. The known manual input device includes a knob


101


, sensing means


102


for detecting the amount and direction of manipulation of the knob


101


, and an actuator


103


for applying an external force to the knob


101


. The manual input device further includes a control portion


104


which receives a detection signal a outputted from the sensing means


102


and which generates a control signal c for controlling the actuator


103


, a D/A converter


105


which performs a digital-to-analog conversion of the control signal c outputted from the control portion


104


, and a power amplifier


106


which amplifies an analog signal c outputted from the D/A converter


105


to provide driving power for driving the actuator


103


. The control portion


104


is provided with a CPU


104




a


, and a memory


104




b


in which the control signal c corresponding to the detection signal a is stored in a table format. The CPU


104




a


receives the detection signal a from the sensing means


102


, reads from the memory


104




b


the control signal c corresponding to the received detection signal a, and outputs the control signal c to the D/A converter


105


.




This causes the driving of the actuator


103


, so that force feedback in response to the amount and direction of manipulation of the knob


101


can be provided to the knob


101


. Thus, the manual input device of this example can provide a satisfying sensation while manipulating the knob


101


and can secure the operation of the knob


101


.




These kinds of manual input devices have been applied to shift-by-wire gear systems for automobiles, and function adjusting devices for various vehicle-mounted electric equipment, such as air-conditioners, radios, TVs, CD players, and navigation systems.




When the manual input device is used as a gear shifter, a force feedback function provided in the manual input device is utilized, for example, to provide a notchy feeling while shifting the shift lever. Other applications include locking means for disabling irregular operations of the shift lever from changing from one gear to another, such as shifting from P (park) to R (reverse), and from D (drive) to second. When used as a function adjusting device for vehicle-mounted electric equipment, the force feedback function provided in the manual input device is utilized to provide an adequate sense of resistance to the knob


101


, thereby facilitating fine adjustment of the functions, and provides adequate thrust to the knob


101


, thereby facilitating the manipulation of the knob


101


.




When the manual input device is applied to the gear shifter of an automobile, the force feedback function provided in the manual input device may be used to prevent an incorrect operation of the shift lever from one position to another. In this case, however, electric power must be constantly supplied to the actuator


103


during the period of time when the shift lever is switched to a certain position, thus requiring more power consumption. Thus, in order to avoid such a disadvantage, the force feedback function, which is provided in the manual input device, may be utilized for only providing a notchy feeling while switching the shift lever. In this case, locking means for disabling the incorrect operation of the shift lever from one position to another is commonly accomplished by means of a mechanical arrangement.




However, the known manual input device is configured to control the actuator


103


merely based on the amount and direction of manipulation of the knob


101


. Thus, with the locking means mechanically configured, after the locking means is released, the force feedback function of the manual input device only provides a notchy feeling while switching the shift lever, thereby permitting the switching of the shift lever from drive to reverse or drive to second, for example, while driving at even a high speed. Even if the gear shifter is mistakenly operated such that it is placed from drive into reverse while diving at a high speed, the transmission installed in the automobile does not synchronize with the operation, so that a gearshift from the drive gear to the reverse gear does not occur. However, this may cause disagreement between the engagement status of the actual gears and the shift status of the shift lever. As a result, this arrangement makes it impossible for the gear shifter to operate the transmission in a correct manner. Furthermore, an unforeseen transmission shift could occur, which may cause an accidental operation such as a sudden stop or sudden deceleration.




This holds true to the case in which the manual input device is applied to a function adjusting device for vehicle-mounted electric equipment. This is because the known manual input device described above is configured to control the actuator


103


in accordance with the amount and direction of manipulation of the knob


101


, independently of the status of vehicle-mounted equipment whose functions are adjusted. The known manual input device, therefore, has problems of difficulty in appropriately adjusting the functions depending on the state of the vehicle-mounted electric equipment, thus resulting in a usability which cannot necessarily be called favorable.




SUMMARY




Accordingly, the present invention has been made to overcome the deficiencies of such known art, and an object of the present invention is to provide a manual input device having enhanced operability and reliability and being capable of providing an operation feeling that varies depending on the status of an exterior device to be operated.




To this end, according to a first aspect of the present invention, there is provided a manual input device, the manual input device includes: a knob for operating an external device; an actuator for applying an external force to the knob; a control portion for controlling the actuator; sensor for detecting the operation state of the knob; and an input/output portion for sending and receiving to send a first signal to the external device and to receive a second signal from the external device. The external device is connected to an external sensor that outputs an external signal. The control portion receives, at least, the external signal to generate a control signal for the actuator, the control signal corresponding to the external signal, thereby controlling the actuator.




In this arrangement, the actuator for applying an external force to the knob is controlled by the control signal generated in accordance with the external signal outputted from the external sensor. This allows fine-grained control of the actuator depending on the state of the external device. This arrangement, therefore, can prevent a disagreement between the driving state of the external device and the operation state of the knob, thereby enhancing the operability and reliability of the manual input device. In addition, the control portion is provided in the manual input device and all the detection signals and external signals are inputted to the control portion. This eliminates the need for making a change to the external device, thereby facilitating the application of the manual input device to the external device.




According to a second aspect of the present invention, there is provided a manual input device that includes: a knob for operating an external device; an actuator for applying an external force to the knob; a control portion for controlling the actuator; sensor for detecting the operation state of the knob; and an input/output portion to send a first signal to the external device and to receive a second signal from the external device. Upon receipt of both of a detection signal outputted from the sensor and an external signal outputted from an external sensor, the external device generates control information for the actuator, the control information corresponding to, at least, the external signal. The external device then transmits the control information to the control portion through the input/output portion, and the control portion generates a control signal for the actuator, the control signal corresponding to the control information, thereby controlling the actuator.




With this arrangement, the actuator is controlled by the control signal generated in accordance with, at least, the external signal outputted from the external sensor. This allows fine-grained control of the actuator depending on the state of the external device, thereby enhancing the operability and reliability of the manual input device. In addition, the external device generates the control information in accordance with the detection signal and external signal. This makes it possible to alleviate the burden on the control portion and also increase the speed in controlling the actuator.




According to a third aspect of the present invention, there is provided a manual input device that includes: a knob for operating an external device; an actuator for applying an external force to the knob; sensor for detecting the operation state of the knob; and an input/output portion to send a first signal to the external device and to receive a second signal the external device. Upon receipt of both of a detection signal outputted from the sensor and an external signal outputted from an external sensor, the external device generates control information for the actuator, the control information corresponding to, at least, the external signal, thereby controlling the actuator.




With this arrangement, the actuator is controlled by the control signal generated in accordance with the external signal outputted from the external sensor. This allows fine-grained control of the actuator depending on the state of the external device, thereby enhancing the operability and reliability of the manual input device. In addition, the external device generates the control signal for the actuator in accordance with the detection signal and external signal, thereby controlling the actuator included in the manual input device. It is therefore possible to eliminate the need for providing the control portion in the manual input device, thereby allowing for reductions in the size and cost of the manual input device.




According to a fourth aspect of the present invention, there is provided a manual input device that includes: a knob for operating an external device; an actuator for applying an external force to the knob; sensor for detecting the operation state of the knob; and an input/output portion to send a first signal to the external device and to receive a second signal from the external device. The external device is connected to an external sensor that outputs an external signal, and the actuator is controlled by a control signal generated in accordance with the external signal.




In this arrangement, the actuator for applying an external force to the knob is controlled by the control signal generated in accordance with the external signal outputted from the external sensor. This allows fine-grained control of the actuator depending on the state of the external device, thereby preventing a disagreement between the driving state of the external device and the operation state of the knob. This arrangement, therefore, can enhance the operability and reliability of the manual input device.




According to a fifth aspect of the present invention, there is provided a vehicle-mounted equipment controller. The vehicle-mounted equipment controller includes, at least one function selection switch for selecting a function from among a plurality of various functions to be adjusted, and a manual input device for adjusting the function selected with the function selection switch. The manual input device includes one of the manual input devices according to the first and fourth aspects.




In this arrangement, the manual input device to be installed in the vehicle-mounted equipment controller may be controlled by the control signal generated in accordance with, at least, the external signal outputted from the external sensor that is connected to the external signal. This arrangement allows fine-grained control of the actuator depending on the state of the electric equipment, thereby preventing a disagreement between the driving state of the external device and the operation state of the knob. This arrangement, therefore, can improve the operability and reliability of the vehicle-mounted equipment controller.




As described above, the vehicle-mounted equipment controller of the present invention includes, in a single housing, at least one function selection switch for selecting a function from among a plurality of various functions to be adjusted; and the manual input device for adjusting the function selected. This arrangement allows for central control of a plurality of types of vehicle-mounted electric equipment. This can facilitate the adjustment of functions of each type of the vehicle-mounted electric equipment, thus leading to enhanced safety during the operation of the automobile. In addition, the manual input device included in the vehicle-mounted equipment controller controls the control signal for the actuator in accordance with the detection signal outputted from the sensor and the external signal outputted from the external sensor. This arrangement can provide an operation feeling to the knob depending upon the state of the vehicle-mounted equipment to be adjusted, thereby improving the operability of the knob. Accordingly, the use of the vehicle-mounted equipment controller makes it possible to facilitate and secure the adjustment of functions of the electric equipment to be operated.




In the manual input device described above, the sensor is preferably coupled to an operation shaft of the knob, and the knob and the actuator are coupled via a power transmission portion. With this arrangement, because the sensing coupled to the operation shaft of the knob, it is possible to accurately detect the amount of manipulation of the knob during manipulation.




Preferably, the sensor is coupled to a drive shaft of the actuator, and the knob and the actuator are coupled via a power transmission portion. With this arrangement, because the sensing portion is coupled to the drive shaft of the actuator via the power transmission portion, the amount of manipulation of the knob during the manipulation can be detected as the amount of actuation of the actuator, thereby increasing the detection accuracy and facilitating the replacement of the knob.




Preferably, the sensor is coupled with the knob via a power transmission portion. With this arrangement, because the sensor is coupled with the knob via the power transmission portion, the versatility of connecting the sensor, actuator, and knob is enhanced.




Preferably, the knob is arranged so as to pivot in at least two directions, and the actuator comprises at least two actuators that are provided for each direction in which the knob is pivoted, via converters. With this arrangement, because the knob can pivot in at least two directions, it is possible to manipulate the knob in multi-directions.




Preferably, the knob extends in a direction perpendicular to the operation shaft of the knob, and the knob is rotated within a plane perpendicular to the operation shaft. Alternatively, the operation shaft of the knob is arranged in a horizontal direction, and the knob extends in a direction perpendicular to the operation shaft and is rotated within a plane perpendicular to the operation shaft. Optionally, the knob is a slide-type knob that is slidably operated, the power transmission portion may be integrally formed with the knob, and the sensing portion may be provided between the knob and the actuator. Preferably, the sensing portion is provided for each direction in which the knob is pivoted. With these arrangements, the knob, sensing portion, and actuator can be connected in various manners and thus can take various forms.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a block diagram of a manual input device according to a first embodiment of the present invention;





FIG. 2

is a block diagram of a manual input device according to a second embodiment of the present invention;





FIG. 3

is a block diagram of a manual input device according to a third embodiment of the present invention;





FIG. 4

is a block diagram of a manual input device according to a fourth embodiment of the present invention;





FIG. 5

is a block diagram of a manual input device according to a fifth embodiment of the present invention;





FIG. 6

is a block diagram of a manual input device according to a sixth embodiment of the present invention;





FIG. 7

is a block diagram of a manual input device according to a seventh embodiment of the present invention;





FIG. 8

is a block diagram of a manual input device according to an eighth embodiment of the present invention;





FIG. 9

is a block diagram of a first application example of the manual input device;





FIG. 10

is a block diagram of a second application example of the manual input device;





FIG. 11

is a block diagram of a third application example of the manual input device;





FIG. 12

is a block diagram of a forth application example of the manual input device;





FIG. 13

is a waveform diagram showing an example of an operation feeling that is applied to a knob of the manual input device according to the forth embodiment;





FIG. 14

is a perspective view showing a main portion of a dashboard in which a vehicle-mounted equipment controller according to an embodiment of the present invention is incorporated;





FIG. 15

is a plan view showing a main portion of the interior of an automobile in which the vehicle-mounted equipment controller according to the embodiment of the present invention is incorporated;





FIG. 16

is a functional block diagram of the vehicle-mounted equipment controller according to the embodiment of the present invention; and





FIG. 17

is a block diagram of a manual input device according to the known art.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Embodiments of a manual input device according to the present invention will now be described.




First Embodiment of Manual Input Device




Referring first to

FIG. 1

, a manual input device


1


A according to a first embodiment of the present invention is illustrated. The manual input device


1


A is a rotary-type manual input device and includes: a housing (not shown); an operation shaft


2


rotatably held within the housing; a knob


3


secured to one end of the operation shaft


2


; and a sensor (hereinafter referred to as a sensing means)


4


, such as a rotary encoder or potentiometer, for detecting the amount and direction of rotation of the operation shaft


2


. As used herein, the knob


3


may be of any shape, rounded or not, suitable for manipulation with a user's fingers or hands.




The manual input device


1


A further includes: a rotary drive actuator


5


, such as a DC motor or stepping motor, for applying an external force to the knob


3


; a power transmission portion


6


, such as gears and/or friction wheels, for transmitting power between the operation shaft


2


and the drive shaft


5




a


of the actuator


5


; an input/output portion


7


for sending and receiving a signal to and from an external device (not shown); a control portion


8


for generating a control signal c for the actuator


5


in accordance with an external signal b outputted from an external sensing means (or sensor) that is connected to the external device (not shown), or in accordance with control information e generated in accordance with, at least, the external signal b; a D/A converter


9


for converting the control signal c, outputted from the control portion


8


, from a digital signal to an analog signal; and a power amplifier


10


for amplifying the control signal c, converted to an analog signal by the D/A converter


9


, to thereby provide driving power for the actuator


5


. Although a D/A converter


9


is shown in

FIG. 1

, if a stepping motor is used as the actuator


5


the digital-analog converter


9


may be eliminated.




In

FIG. 1

, a rotary encoder is used as the sensing means


4


. The rotary encoder in this embodiment is provided with a cord plate


4




a


secured to the operation shaft


2


, and a light emitting element


4




b


and a light receiving element


4




c


arranged via the cord plate


4




a


at both surfaces thereof so as to oppose each other. Naturally, in place of the light emitting element


4




b


and the light receiving element


4




c


that are arranged individually, a photo interrupter integrating both elements


4




b


and


4




c


can be used.




The input/output portion


7


is provided with a sending interface


7




a


and a receiving interface


7




b


. The sending interface


7




a


sends a detection signal a, which is outputted from the sensing means


4


, to the external device (not shown).




The control portion


8


is provided with a CPU


8




a


and a memory


8




b


. The memory


8




b


stores data and a program for analyzing the external signal b or control information e generated in accordance with the external signal b, and also stores driving data and a driving program for the actuator


5


. The CPU


8




a


receives the external signal b or control information e and analyzes the external signal b or control information e in accordance with the data and program stored in the memory


8




b


. The CPU


8




a


then determines a control signal c corresponding to the external signal b or control information e, in accordance with the data or program stored in the memory


8




b


and outputs the control signal c to the D/A converter


9


.




The control signal c serves as a signal corresponding to an operation feeling provided to the knob


3


. Signal types include “generation of vibration”, “generation of an impulse force”, and “change of an applied force”. For the “generation of vibration” type signal, the CPU


8




a


forms a control signal c representing vibration intensity, vibration profile, load time, frequency, and the like. For the “generation of an impulse force” type signal, the CPU


8




a


forms a control signal c representing impulse intensity, impulse profile, load time, and the like. For the “change of an applied force” type signal, the CPU


8




a


forms a control signal c representing the intensity of an applied force, the direction of an applied force, load time, and the like. The control information e is information converted from the content of the control signal c into a command. In addition, when the “change of applied force” is performed by the use of patterns, the control information e can include a command representing a pattern. Besides, the control information e can include a value indicating the amount of a load, the detection signal a, and a signal transmitted from other external sensing means (not shown) to the external device.




According to the manual input device of this embodiment, the control signal c for the actuator


5


is determined from the external signal b, which is transmitted from the external sensing means connected to the external device (not shown) to the CPU


8




a


, or is determined from the control information e generated in accordance with, at least, the external signal b. It is therefore possible to finely control the actuator


5


depending on the state of the external device. This allows the controlling of the actuator


5


so as to disable a certain operation of the knob


3


depending on the status of the external device, thereby preventing a disagreement between the driving state of the external device and the operation state of the knob


3


. Accordingly, this arrangement can enhance the operability and reliability of the manual input device


1


A.




Second Embodiment of Manual Input Device




Referring now to

FIG. 2

, a manual input device


1


B according to a second embodiment of the present invention is illustrated. The manual input device


1


B in this embodiment is characterized in that the sensing means


4


is secured to a drive shaft


5




a


of the actuator


5


. Since other configurations are analogous to those of the manual input device


1


A according to the first embodiment, corresponding portions and elements in

FIG. 2

are denoted by the same reference numerals shown in

FIG. 1

, and the description thereof will be omitted for simplicity. The manual input device


1


B of this embodiment provides similar advantages as with the manual input device


1


A according to the first embodiment.




Third Embodiment of Manual Input Device




Referring to

FIG. 3

, a manual input device


1


C according to a third embodiment of the present invention is illustrated. The manual input device


1


C of this embodiment is characterized in that a lever-type knob


3


that rotates within a horizontal plane is provided at one end of the operation shaft


2


. Since other configurations are analogous to those of the manual input device


1


A according to the first embodiment, corresponding portions and elements in

FIG. 3

are denoted by the same reference numerals shown in

FIG. 1

, and the description thereof will be omitted. The manual input device


1


C of this embodiment provides similar advantages as with the manual input device


1


A according to the first embodiment.




Fourth Embodiment of Manual Input Device




Referring to

FIG. 4

, a manual input device


1


D according to a forth embodiment of the present invention is illustrated. The manual input device


1


D of this embodiment is characterized in that the operation shaft


2


is disposed horizontally and is secured at one end thereof to a lever-type knob


3


that rotates within a vertical plane, and the linear drive actuator


5


such as a solenoid or linear motor is coupled to the knob


3


. Application of an external force (Provision of an operation feeling) to the knob


3


is performed by driving the actuator


5


. Since other configurations are analogous to those of the manual input device


1


A according to the first embodiment, corresponding portions and elements in

FIG. 4

are denoted by the same reference numerals shown in

FIG. 1

, and the description thereof will be omitted. The manual input device


1


D of this embodiment also provides similar advantages as with the manual input device


1


A according to the first embodiment.




Fifth Embodiment of Manual Input Device




Referring to

FIG. 5

, a manual input device


1


E according to a fifth embodiment of the present invention is illustrated. The manual input device


1


E of this embodiment is a slide-type manual input device. This manual input device


1


E is characterized in that the knob


3


is secured to the upper surface of a rack


11


(a power transmission portion) that is slidably held within a housing (not shown), and the rack


11


is engaged with a pinion


12


(a power transmission portion) that is secured to one end of the operation shaft


2


, such that the driving force of the knob


3


is transmitted to the operation shaft


2


via the rack


11


and the pinion


12


, and also such that the driving force from the actuator


5


is transmitted to the knob


3


via the gears


6


, the operation shaft


2


, the pinion


12


, and the rack


11


. Since other configurations are analogous to those of the manual input device


1


A according to the first embodiment, corresponding portions and elements in

FIG. 5

are denoted by the same reference numerals shown in

FIG. 1

, and the description thereof will be omitted. The manual input device


1


E of this embodiment provides similar advantages as with the manual input device


1


A according to the first embodiment. Besides, because the knob


3


is secured to the rack


11


that is slidably held within the housing, it is possible to apply the manual input device


1


E to a device in which the knob thereof is linearly operated, such as a gear shifter for an automatic transmission vehicle.




Sixth Embodiment of Manual Input Device




Referring to

FIG. 6

, a manual input device


1


F according to a sixth embodiment of the present invention is illustrated. The manual input device


1


F of this embodiment is also a slide-type manual input device and is characterized in that a linear drive actuator


5


, such as a solenoid or linear motor, is provided as the actuator for applying an external force to the knob


3


. Since other configurations are analogous to those of the manual input device


1


E according to the fifth embodiment, corresponding portions and elements in

FIG. 6

are denoted by the same reference numerals shown in

FIG. 5

, and the description thereof will be omitted. The manual, input device


1


F of this embodiment provides similar advantages as with the manual input device


1


E according to the fifth embodiment.




Seventh Embodiment of Manual Input Device




Referring to

FIG. 7

, a manual input device


1


G according to a seventh embodiment of the present invention is illustrated. The manual input device


1


G of this embodiment is a two-dimensionally operated manual input device. The manual input device


1


G includes: a housing (not shown); the operation shaft


2


which is held within the housing such that the operation shaft


2


can pivot and rotate; and the knob


3


secured to one end of the operation shaft


2


. The manual input device


1


G further includes: a converter


15


for converting the pivoting motion of the operation shaft


2


into the amount of rotation of an x-direction rotor


13


and the amount of rotation of a y-direction rotor


14


which are arranged orthogonal to each other; x-direction sensing means


4


A and y-direction sensing means


4


B which are directly connected to the center shafts


13




a


and


14




a


of the rotors


13


and


14


, respectively; and an x-direction rotary drive actuator


5


A and a y-direction rotary drive actuator


5


B, which are respectively connected to the center shafts


13




a


and


14




b


, for applying an external force to the knob


3


. In addition, the manual input device


1


G includes: the input/output portion


7


for sending and receiving a signal to and from an external device (not shown); a control portion


8


for generating a control signal c


1


for the x-direction actuator


5


A and a control signal c


2


for the y-direction actuator


5


B in accordance with an external signal b, which is outputted from an external sensing means connected to the external device (not shown), or in accordance with control information e generated in accordance with, at least, the external signal b, and for outputting the control signal c


1


and c


2


; an x-direction D/A converter


9


A and a y-direction D/A converter


9


B which respectively perform a digital-to-analog conversion of the control signals c


1


and c


2


outputted from the control portion


8


; and an x-direction power amplifier


10


A and a y-direction power amplifier


10


B for amplifying the control signal c


1


and c


2


, which are converted by the D/A converter


9


A and


9


B to analog signals, to thereby provide power supply for the actuator


5


A and


5


B, respectively.




Rotary encoders, potentiometers, or the like can be used for the x-direction sensing means


4


A and the y-direction sensing means


4


B. DC motors, stepping motors, or the like can be used for the x-direction actuator


5


A and the y-direction actuator


5


B. Other configurations, including the input/output device


7


and the control portion


8


as well as the control signals c


1


and c


2


outputted from the control portion


8


, are substantially analogous to those of the manual input device


1


A according to the first embodiment. Thus, corresponding portions and elements in

FIG. 7

are denoted by the same reference numerals shown in FIG.


1


and the description thereof will be omitted. The manual input device


1


G of this embodiment provides similar advantages as with the manual input device


1


A according to the first embodiment. The manual input device


1


G can be applied to devices in which a knob is pivoted in a two dimensional direction, such as remote controllers for various electric equipment.




Eighth Embodiment of Manual Input Device




Referring to

FIG. 8

, a manual input device


1


H according to an eighth embodiment of the present invention is illustrated. The manual input device


1


H of this embodiment is characterized in that the control portion


8


of the manual input device


1


A according to the first embodiment shown in

FIG. 1

is eliminated. Since other configurations are analogous to those of the manual input device


1


A according to the first embodiment, corresponding portions and elements in

FIG. 8

are denoted by the same reference numerals shown in

FIG. 1

, and the description thereof will be omitted. In the manual input device


1


H, control means provided in an external device (not shown) controls the actuator


5


(the x-direction actuator


5


A and the y-direction actuator


5


B for the manual input device


1


G according to the seventh embodiment). Thus, the manual input device


1


H provides similar advantages as with the manual input device


1


A according to the first embodiment. The control portions


8


of the manual input devices


1


B and


1


G according to the second and seventh embodiments can also be eliminated.




Modifications of Manual Input Device




1. Although, in each of the embodiments described above, the control signal c for the actuator


5


is generated in accordance with the external signal b, which is outputted from the external sensing means connected to the external device, or in accordance with the control information e generated in accordance with, at least, the external signal b, the present invention is not limited to that mode. For example, the control signal c for the actuator


5


can be generated in accordance with an external signal outputted from other external sensing means that is not connected to the external device in addition to the detection signal a and/or the external signal b.




2. While the control portion


8


of the manual input device


1


A according to the first embodiment is eliminated in the eighth embodiment, the control portion


8


of each of the manual input devices


1


B to


1


G according to the second to seventh embodiments can also be eliminated in the same manner.




3. The shape of the knob


3


, the arrangement of the operation shaft


2


relative to the housing, and the types of the sensing means


4


and the actuator


5


are not limited to the combination exemplified in each embodiment, and also can be any combination as required,




First Application Example of Manual Input Device




As a first application example of the manual input device, a variable speed controller for an automatic transmission vehicle to which the slide-type manual input device


1


E according to the fifth embodiment is applied will be described below with reference to FIG.


9


.




As shown in

FIG. 9

, a variable speed controller of this example includes an external device that is connected to the input/output portion


7


of the manual input device


1


E. This external device includes a transmission controller


21


, a fork driving portion


22


having an actuator such as a solenoid or linear motor which is controlled by the transmission controller


21


, and external device sensing means


23


such as an encoder or potentiometer for detecting the driving state of the driving portion


22


, and a fork switch


24


which is operated by the driving portion


22


. The external device further includes a transmission


25


having gears whose engagement is switched by the fork switch


24


, and a revolution sensor


26


for detecting the RPM of the output shaft of the transmission


25


. In this example, the knob


3


of the manual input device


1


E is installed in the cabin of a vehicle and is used as a shift knob for switching gears of the transmission


25


.




The transmission controller


21


includes; an input/output portion


27


that is connected to the input/output portion


7


of the manual input device


1


E; and an external device control portion


28


for generating a drive signal d for the fork driving portion


22


by using an external signal b


1


outputted from the external device sensing means


23


and an external signal b


2


outputted from the revolution sensor


26


, and for outputting the-drive signal d. The transmission controller


21


further includes: a D/A converter


29


for performing a digital-to-analog conversion of the drive signal d, which is outputted from the external device control portion


28


; and a power amplifier


30


for amplifying the drive signal d, which is converted into an analog signal by the D/A converter


29


, to provide driving power to the fork driving portion


22


. The use of a stepping motor for the fork driving portion


22


can eliminate the need for the D/A converter


29


.




The input/output portion


27


is provided with a receiving interface


27




b


that is connected to the sending interface


7




a


of the input/output portion


7


included in the manual input device


1


E. The input/output portion


27


is also provided with a sending interface


27




a


that is connected to the receiving interface


7




b


of the input/output portion


7


in the manual input device


1


E. The external device control portion


28


is configured with a CPU


28




a


and a memory


28




b


. The memory


28




b


stores data and a program for analyzing the external signals b


1


and b


2


, and driving data and a driving program for the fork driving portion


22


. The CPU


28




a


receives the external signals b


1


and b


2


, and analyzes the external signals b


1


and b


2


to determine a drive signal d corresponding to the external signal b


1


and b


2


, based on the data and program stored in the memory


28




b


. The CPU


28




a


sends the external signals b


1


and b


2


to the control portion


8


of the manual input device


1


E through the sending interface


27




a


and the receiving interface


7




b.






The operation of the variable speed controller configured as explained above will be described below.




When the knob


3


is manipulated, the sensing means


4


detects the amount and direction of manipulation of the knob


3


to output a detection signal a corresponding to the amount and direction of manipulation of the knob


3


. The detection signal a is sent to the external device control portion


28


through the sending interface


7




a


and the receiving interface


27




b


. On the other hand, the CPU


28




a


provided in the transmission controller


21


analyzes the detection signal a and the external signals b


1


and b


2


to determine the drive signal d corresponding to each of the signals a, b


1


, and b


2


, based on the data and program stored in the memory


28




b


, and outputs the drive signal d to the D/A converter


29


. The D/A converter


29


converts the drive signal d to an analog signal and outputs the signal to the power amplifier


30


. The power amplifier


30


amplifies the analog signal outputted from the D/A converter


29


and applies the resulting signal to the fork driving portion


22


. This causes the fork


24


to be driven, thereby switching the gear engagement of the transmission


25


based on the content of manipulation of the knob


3


. The external control portion


28


sends the external signal b


1


, which is outputted from the external device sensing means


23


, and the external signal b


2


, which is outputted from the revolution sensor


26


, to the control portion


8


of the manual input device


1


E through the sending interface


27




a


and the receiving interface


7




b


. The control portion


8


analyzes the sent external signals b


1


and b


2


to determine a control signal c corresponding to the external signals b


1


and b


2


, respectively, and outputs the control signal c to the D/A converter


9


. The D/A converter


9


converts the control signal c to an analog signal and outputs the analog signal to the power amplifier


10


. The power amplifier


10


amplifies the analog signal outputted from the D/A converter


9


and applies the resulting signal to the actuator


5


. As a result, a load based on the external signals b


1


and b


2


is applied to the knob


3


, so that a required operation feeling is provided to the knob


3


. Thus, for example, manipulating the knob


3


to switch from one shift position to another causes a light sense of resistance to be provided from the actuator


5


to the operation shaft


2


. This makes it possible to provide a notchy feeling when manipulating the knob


3


. Likewise, when the RPM of the output shaft of the transmission


25


is high, for example, manipulating the knob


3


to switch from drive to reverse causes a strong sense of resistance to be provided from the actuator


5


to the operation shaft


2


. This makes it possible to disable the operation of the knob


3


so that an improper operation of the knob


3


can be prevented.




The arrangement of this example uses the manual input device


1


E that includes the control portion


8


, and also the external signals b


1


and b


2


are inputted in the control portion


8


. This arrangement, therefore, can eliminate the need for making a change to the external device control portion


28


, and thus can facilitate the application of the manual input device to the transmission controller


21


included in the external device.




The manual input device


1


E according to the fifth embodiment may be replaced with the manual input device


1


F according to the sixth embodiment. Such an arrangement can also provide the same advantages as described above.




Alternatively, rather than using the slide-type manual input device


1


E according to the fifth embodiment or the slide-type manual input device


1


F according to the sixth embodiment, the two-dimensionally operated manual input device


1


G according to the seventh embodiment can be used to provide a required operation feeling to the shift knob of an automatic transmission vehicle.




In the embodiment described above, the RPM, which is outputted from the revolution sensor


26


, of the output shaft of the transmission


25


is inputted in the CPU


28




a


; however, in conjunction with or in place of this arrangement, alternate external signal representing vehicle speed or engine RPM can be inputted. In this case, such signals representing vehicle speed or engine RPM can also be connected to the CPU


28




a


of the external device control portion


28


or the CPU


8




a


of the manual input device


1


E.




Second Application Example of Manual Input Device




The second application example of the manual input device will now be described with reference-to FIG.


10


. In this example, the slide-type manual input device


1


E according to the fifth embodiment is also applied to the variable speed controller of an automatic transmission vehicle. However, unlike the first application example in which the external signal b


1


and b


2


are transmitted from the external device control portion


28


to the control portion a, this second example is characterized in that the raw detection signal a and the external signals b


1


and b


2


, or the external signals b


1


and b


2


are converted to control information e that is simpler in data structure, and the control information e is sent to the control portion


8


.




Thus, the memory


28




b


of the external device control portion


28


contains a conversion program for converting the detection signal a and the external signals b


1


and b


2


, or the external signals b


1


and b


2


, which are inputted to the CPU


28




a


, into the control information e that has a simpler data structure. The CPU


28




a


repeatedly activates the conversion program to convert the received detection signal a and the external signals b


1


and b


2


, or the received external signals b


1


and b


2


, into the control information e. The CPU


28




a


then sends the control information e to the control portion


8


of the manual input device


1


E through the sending interface


27




a


and receiving interface


7




b


. When an alternate external signal representing vehicle speed, engine RPM, or the like is inputted, the external signal is connected to the CPU


28




a


of the external device control portion


28


.




The CPU


8




a


of the manual input device


1


E analyzes the control information e, determines the control signal c corresponding to the control information e in accordance with the data and program stored in the memory


8




b


, and outputs the control signal c to the D/A converter


9


. Since other configurations and operations are analogous to those of the first application example, corresponding portions and elements in

FIG. 10

are denoted by the same reference numerals shown in FIG.


9


and the description thereof will be omitted.




In this example, the control information e that is simpler in data structure than the raw detection signal a and the external signals b


1


and b


2


, or the external signals b


1


and b


2


is generated by the CPU


28




a


provided in the external device control portion


28


, and is analyzed by the control portion


8


included in the manual input device


1


E. This makes it possible to alleviate the burden on the control portion


8


and to increase the speed in controlling the actuator


5


.




Third Application Example of Manual Input Device




A third application example of the manual input device will now be described with reference to FIG.


11


. In this application example, the manual input device


1


H according to the eighth embodiment is applied to the variable speed controller of an automatic transmission vehicle, and is characterized in that the control signal c for the actuator


5


is transmitted from the external device control portion


28


to the manual input device


1


H.




Thus, the memory


28




b


of the external device control portion


28


stores the data and program for analyzing the detection signal a and the external signals b


1


and b


2


, or the external signals b


1


and b


2


, which are inputted to the CPU


28




a


, as well as the driving data and driving program for the actuator


5


. The CPU


28




a


repeatedly activates the driving program to generate the control signal c, corresponding to the inputted detection signal a and the external signals b


1


and b


2


, or the external signals b


1


and b


2


, for the actuator


5


, and then outputs the control signal c to the D/A converter


9


. Since other configurations and operations are analogous to those of the first application embodiment, corresponding portions and elements in

FIG. 10

are denoted by the same reference numerals shown in FIG.


9


and the description thereof will be omitted.




In this example, the CPU


28




a


of the external device control portion


28


controls the actuator


5


of the manual input device


1


H. This arrangement, therefore, can eliminate the need for providing the control portion in the manual input device


1


H, thereby allowing for reductions in the size and cost of the manual input device.




In this embodiment, the alternate external signal representing vehicle speed or engine RPM is also connected to the CPU


28




a


of the external device control portion


8


.




Forth Application Example of Manual Input Device




A radio to which the rotary-type manual input device


1


A according to the first embodiment is applied will be described below with reference to

FIGS. 12 and 13

.




As shown in

FIG. 12

, the radio of this embodiment includes an external device that is connected to the input/output portion


7


of the manual input device


1


A. This external device includes: a radio controller


31


; a tuner actuation portion


32


which has an actuator, such as a DC motor or stepping motor, and which is controlled by the radio controller


31


; external device sensing means


33


, such as an encoder or potentiometer, for detecting the actuation status of the tuner actuation portion


32


; a tuner


34


which is operated by the tuner actuation portion


32


; and a tuning detection portion


35


which detects when the tuner


34


is tuned into a station. In this example, the knob


3


of the manual input device


1


A is arranged in the cabin of a vehicle and is used as a tuner operation knob for operating the tuner


34


.




The radio controller


31


includes: an input/output portion


37


that is connected to the input/output portion


7


of the manual input device


1


A; and an external device control portion


38


for generating a drive signal d for the tuner actuation portion


32


in accordance with the detection signal a outputted from the sensing means


4


, an external signal b


3


outputted from the external device sensing means


33


, and an external signal b


4


outputted from the tuning detection portion


35


, and for outputting the drive signal d. The radio controller


31


further includes: a D/A converter


39


for performing a digital-to-analog conversion of the drive signal d, which is outputted from the external device control portion


38


; and a power amplifier


40


for amplifying the drive signal d, which is converted to an analog signal by the D/A converter


39


, to provide driving power to the tuner actuation portion


32


. The use of a stepping motor for the tuner actuation portion


32


can eliminate the need for the D/A converter


39


.




The input/output portion


37


is provided with a receiving interface


37




b


that is connected to the sending interface


7




a


of the input/output portion


7


included in the manual input device


1


A. The input/output portion


37


is also provided with a sending interface


37




a


that is connected to the receiving interface


7




b


of the input/output portion


7


in the manual input device


1


A. The external device control portion


38


is configured with a CPU


38




a


and a memory


38




b


. The memory


38




b


stores data and a program for analyzing the detection signal a and the detection signals b


3


and b


4


, and a driving data and driving program for the tuner actuation portion


32


. The CPU


38




a


receives the detection signal a and the external signals b


3


and b


4


, and analyzes the detection signal a and the external signals b


3


and b


4


to determine a drive signal d corresponding to the detection signal a and external signals b


3


and b


4


, in accordance with the data and program stored in the memory


38




b


. The CPU


38




a


also sends the external signals b


3


and b


4


to the control portion


8


of the manual input device


1


A through the sending interface


37




a


and the receiving interface


7




b.






The operation of the radio controller configured as explained above will be described below.




When the knob


3


is manipulated, the amount and direction of manipulation of the knob


3


are detected by the sensing means


4


which in turn outputs the detection signal a corresponding to the amount and direction of manipulation of the knob


3


. The detection signal a is sent to the external device control portion


38


through the sending interface


7




a


and the receiving interface


37




b


. The CPU


38




a


included in the radio controller


31


analyzes the detection signal a and the external signals b


3


and b


4


. The CPU


38




a


then determines the drive signal d corresponding to each of the signals a, b


3


, and b


4


, based on the data and program stored in the memory


38




b


, and outputs the drive signal d to the D/A converter


39


. The D/A converter


39


converts the drive signal d to an analog signal and outputs the signal to the power amplifier


40


. The power amplifier


40


amplifies the analog signal, which is outputted from the D/A converter


39


, and applies the resulting signal to the tuner actuation portion


32


. This causes the actuation of the tuner


34


, so that a desired station can be tuned into. The external device control portion


38


sends the external signal b


3


, which is outputted from the external device sensing means


33


, and the external signal b


4


, which is outputted from the tuning detection portion


35


, to the-control portion


8


of the manual input device


1


A through the sending interface


37




a


and the receiving interface


7




b


. The control portion


8


analyzes the transmitted external signal b


3


and b


4


, determines a control signal c corresponding to each of the signals b


3


and b


4


based on the data and program stored in the memory


8




b


, and outputs the control signal c to the D/A converter


9


. The D/A converter


9


converts the control signal c to an analog signal and outputs the analog signal to the power amplifier


10


. The power amplifier


10


amplifies the analog signal, which is outputted from the D/A converter


9


, and applies the resulting analog signal to the actuator


5


. This causes an external force corresponding to the external signal b


3


and b


4


to be applied to the knob


3


, thereby providing a desired operation feeling to the knob


3


. Thus, as shown in

FIG. 13

, each time the tuner


34


tunes into a station, a light sense of resistance is provided from the actuator


5


to the operation shaft


2


, so that whether it is tuned into or not can be accurately communicated to the operator. When a station which is tuned with the operator receiving a light sense of resistance is not a desired one, applying a force equal to or greater than the sense of resistance to the knob


3


can facilitate the rotation of the knob


3


. As a result, this arrangement allows for prompt tuning into a desired station, as compared to a tuner of an automatic scanning method in which the tuner makes a stop for each station. The radio controller


31


according to this example, therefore, can facilitate and prompt tuning of the tuner


34


to a desired station.




While the above description has been given in connection with an example for the manual input device


1


A according to the first embodiment, the use of one of the manual input devices


1


B to


1


D according to the second to fourth embodiments can also provide the same advantages as described above.




Embodiment of Vehicle-Mounted Equipment Controller




An embodiment of the vehicle-mounted equipment controller according to the present invention will now be described with reference to

FIGS. 14

to


16


.

FIG. 14

is a perspective view showing the main portion of a dashboard in which a vehicle-mounted equipment controller


51


according to this embodiment is incorporated.

FIG. 15

is a plan view showing the main portion of the interior of a vehicle in which the vehicle-mounted equipment controller


51


according to this embodiment is incorporated.

FIG. 16

is a functional block diagram of the vehicle-mounted equipment controller


51


according to this embodiment.




Referring now to

FIG. 14

, The vehicle-mounted equipment controller


51


according to this embodiment includes a housing


52


formed into a box-like container in a required size. One of the manual input devices


1


A to


1


H according to the first to eighth embodiments is incorporated in the housing


52


. The knob


3


of one of the manual input devices


1


A to


1


H is provided at the upper part of the housing


52


. On the upper surface of the housing


52


, six push-button switches


54




a


,


54




b


,


54




c


,


54




d


,


54




e


, and


54




f


are arranged substantially in an arc form about the center of the knob


3


. At the outer peripheral of the portion where the group of six push-button switches is arranged, three push-button switches


55




a


,


55




b


, and


55




c


substantially coaxial with the six push-button switches are also arranged in conjunction with a volume control


56


. In the front surface of the housing


52


, a card slot


57


and a disk slot


58


are provided.




The vehicle-mounted equipment controller is arranged, as shown in

FIG. 15

, between the driver's seat B and the passenger's seat C in a dashboard A.




The six push-button switches


54




a


to


54




f


arranged in the arc form is electric equipment selection switches for selecting vehicle-mounted equipment to be controlled by the vehicle-mounted equipment controller


51


of this embodiment. The vehicle-mounted equipment may include a radio, air-conditioner, TV, CD player, car navigation system, steering wheel tilt, seat positioning device, and telephone. The push-button switches


54




a


to


54




f


are independently connected to each type of the vehicle-mounted equipment. In this vehicle-mounted equipment controller


51


of this embodiment, as shown in

FIG. 16

, the push-button switch


54




a


is connected to a radio


54




a


, the push-button switch


54




b


to an air-conditioner


54




b


, the push-button switch


54




c


to a TV


54




c


, the push-button switch


54




d


to a CD player


54




d


, the push-button switch


54




e


to a car navigation system


54




e


, and the push-button switch


54




f


to a steering wheel tilt


54




f


. Thus, pressing a desired push-button switch allows selection of one type of the vehicle-mounted electric equipment connected to the push-button switches


54




a


to


54




f.






The three push-button switches


55




a


to


55




c


arranged at the peripheral of the six push-button switches


54




a


to


54




f


are function selection switches for selecting functions of the vehicle-mounted equipment that is selected by the operation of the six push-button switches


54




a


to


54




f


. For example, as shown in

FIG. 16

, when the radio is selected with a push-button switch


54




a


, the three push-button switches


55




a


to


55




c


function as a tuner selection switch, volume selection switch, and tone selection switch, respectively. Naturally, depending upon the types of vehicle-mounted electric equipment selected with the push-button switches


54




a


to


54




f


, the types of functions that are selectable with the push-button switches


55




a


to


55




c


vary. The manual input device


1


A (to


1


H) incorporated in the housing


52


is used as means for adjusting functions selected with the push-button switches


55




a


to


55




c


. For example, when the tuner of the radio is selected with the push-button switch


55




a


, manipulating the knob


3


allows for tuning into radio stations. Since the operation of tuning into a radio station and force feedback control effected during the operation are analogous to those explained in the previous column (the forth application embodiment of the manual input device), the description thereof will be omitted.




Accordingly, the vehicle-mounted equipment controller of this embodiment allows for central control of a plurality of types of vehicle-mounted electric equipment. This can facilitate the adjustment of functions of each type of the vehicle-mounted electric equipment, thus leading to enhanced safety during the operation of the automobile. In addition, the vehicle-mounted equipment controller is configured such that the operation feeling of the knob


3


is controlled depending on the status of the vehicle-mounted electric equipment to be adjusted, thereby making it possible to provide improved operability of the knob


3


. The vehicle-mounted equipment controller, therefore, can be used to facilitate and secure the adjustment of functions of electric equipment to be operated.



Claims
  • 1. A manual input device, comprising:a knob to operate an external device; an actuator to apply force to said knob; a control portion to control said actuator, a sensor to detect an operation state of said knob; and an input/output portion to send a first signal to the external device and to receive a second signal from the external device, wherein the external device is connected to an external sensor that outputs an external signal, and said control portion receives, at least, the external signal to generate a control signal for said actuator, the control signal corresponding to the external signal, thereby controlling said actuator.
  • 2. A manual input device, comprising:a knob to operate an external device; an actuator to apply force to said knob; a control portion to control said actuator; a sensor to detect an operation state of said knob; and an input/output portion to send a first signal to the external device and to receive a second signal from the external device, wherein, upon receipt of both of a detection signal outputted from said sensor and an external signal outputted from an external sensor, the external device generates control information for said actuator, the control information corresponding to, at least, the external signal, and transmits the control information to said control portion through said input/output portion, and said control portion generates a control signal for said actuator, the control signal corresponding to the control information, thereby controlling said actuator.
  • 3. A manual input device, comprising:a knob to operate an external device; an actuator to apply force to said knob; a sensor to detect an operation state of said knob; and an input/output portion to send a first signal to the external device and to receive a second signal from the external device, wherein, upon receipt of both of a detection signal outputted from the sensor and an external signal outputted from an external sensor, the external device generates control information for said actuator, the control information corresponding to, at least, the external signal, thereby controlling said actuator.
  • 4. A manual input device, comprising:a knob to operate an external device; an actuator to apply force to said knob; a sensor to detect an operation state of said knob; and an input/output portion to send a first signal to the external device and to receive a second signal from the external device, wherein the external device is connected to an external sensor that outputs an external signal, and said actuator is controlled by a control signal generated in accordance with the external signal.
  • 5. A vehicle-mounted equipment controller, comprising;at least one function selection switch to select a function from among a plurality of various functions to be adjusted; and a manual input device to adjust the function selected with said function selection switch, said manual input device comprising: a knob to operate an external device; an actuator to apply force to said knob; a control portion to control said actuator; a sensor to detect an operation state of said knob; and an input/output portion to send a first signal to the external device and to receive a second signal from the external device, wherein the external device is connected to an external sensor that outputs an external signal, and said control portion receives, at least, the external signal to generate a control signal for said actuator, the control signal corresponding to the external signal, thereby controlling said actuator.
  • 6. A vehicle-mounted equipment controller, comprising:at least one function selection switch to select a function from among a plurality of various functions to be adjusted; and a manual input device to adjust the function selected with said function selection switch, said manual input device comprising: a knob to operate an external device; an actuator to apply force to said knob; a control portion to control said actuator; a sensor to detect an operation state of said knob; and an input/output portion to send a first signal to the external device and to receive a second signal from the external device, wherein, upon receipt of both of a detection signal outputted from said sensor and an external signal outputted from an external sensor, the external device generates control information for said actuator, the control information corresponding to, at least, the external signal, and transmits the control information to said control portion through said input/output portion, and said control portion generates a control signal for said actuator, the control signal corresponding to the control information, thereby controlling said actuator.
  • 7. A vehicle-mounted equipment controller, comprising:at least one function selection switch to select a function from among a plurality of various functions to be adjusted; and a manual input device to adjust the function selected with said function selection switch, said manual input device comprising: a knob to operate an external device; an actuator to apply force to said knob; a sensor to detect an operation state of said knob; and an input/output portion to send a first signal to the external device and to receive a second signal from the external device, wherein, upon receipt of both of a detection signal outputted from said sensor and an external signal outputted from an external sensor, the external device generates control information for said actuator, the control information corresponding to, at least, the external signal, thereby controlling said actuator.
  • 8. A vehicle-mounted equipment controller, comprising:at least one function selection switch to select a function from among a plurality of various functions to be adjusted; and a manual input device to adjust the function selected with said function selection switch, said manual input device comprising: a knob to operate an external device; an actuator to apply force to said knob; a sensor to detect an operation state of said knob; and an input/output portion to send a first signal to the external device and to receive a second signal from the external device, wherein the external device is connected to an external sensor that outputs an external signal, and said actuator is controlled by a control signal generated in accordance with the external signal.
  • 9. A manual input device according to claim 1, wherein said sensor is coupled to an operation shaft of said knob, and said knob and said actuator are coupled via a power transmission portion.
  • 10. A manual input device according to claim 1, wherein said sensor is coupled to a drive shaft of said actuator, and said knob and said actuator are coupled via a power transmission portion.
  • 11. A manual input device according to claim 1, wherein said sensor is coupled with said knob via a power transmission portion.
  • 12. A manual input device according to claim 1, wherein said knob is arranged so as to pivot in at least two directions, and said actuator comprises at least one actuator for each direction in which said knob is pivoted.
  • 13. A manual input device according to claim 9, wherein said knob extends in a direction perpendicular to the operation shaft of said knob, and said knob is rotated within a plane perpendicular to the operation shaft.
  • 14. A manual input device according to claim 9, wherein the operation shaft of said knob is arranged in a horizontal direction, and said knob extends in a direction perpendicular to the operation shaft and is rotated within a plane perpendicular to the operation shaft.
  • 15. A manual input device according to claim 11, wherein said knob is a slide-type knob that is slidably operated, and the power transmission portion is integrally formed with said knob.
  • 16. A manual input device according to claim 11, wherein said knob is a slide-type knob that is slidably operated, the power transmission portion is integrally formed with said knob, and the sensor is provided between said knob and said actuator.
  • 17. A manual input device according to claim 12, wherein a sensor is provided for each direction in which said knob is pivoted.
  • 18. A manual input device, comprising:a knob to operate an external device; a sensor to detect an operation state of the knob and output a sensor signal in accordance with the operation state of the knob; an actuator to apply force to the knob, the actuator controlled by a control signal that is dependent on both the operation state of the knob and a status of the external device; and an input/output portion to transmit and receive signals between the manual input device and the external device.
  • 19. The manual input device of claim 18, further comprising a control portion to supply the control signal.
  • 20. The manual input device of claim 19, wherein the external device comprises an external sensor, and an output of the external sensor is transmitted to the input/output portion as the status of the external device.
  • 21. The manual input device of claim 19, wherein the external device comprises an external sensor, control information is based on an output of the external sensor and has a simpler data structure than that of the output of the external sensor, and the control information is transmitted to the input/output portion as the status of the external device.
  • 22. The manual input device of claim 18, wherein the control signal is transmitted from the external device.
  • 23. The manual input device of claim 19, wherein the external device comprises a plurality of external sensors having outputs that are received by the input/output portion as the status of the external device.
  • 24. The manual input device of claim 19, wherein the external device comprises a plurality of external sensors, control information is based on outputs of the external sensors, the control information has a simpler data structure than that of the outputs of the external sensors, and the control information is received by the input/output portion as the status of the external device.
  • 25. The manual input device of claim 22, wherein the external device comprises a plurality of external sensors and a control portion that receives outputs of the external sensors and transmits the control signal.
  • 26. The manual input device of claim 22, wherein the external device comprises a control portion to supply the control signal.
  • 27. The manual input device of claim 20, wherein the external device comprises a control portion that receives the output of the external sensor and transmits the output of the external sensor to the input/output portion.
  • 28. The manual input device of claim 21, wherein the external device comprises a control portion to supply the control information.
  • 29. The manual input device of claim 23, wherein the external device comprises a control portion that receives the outputs of the external sensors and transmits the outputs of the external sensors to the input/output portion.
  • 30. The manual input device of claim 24, wherein the external device comprises a control portion to supply the control information.
  • 31. The manual input device of claim 18, wherein the input/output portion receives only one signal from the external device as the status of the external device.
  • 32. The manual input device of claim 19, wherein the input/output portion receives only one signal from the external device as the status of the external device.
  • 33. The manual input device of claim 18, wherein the input/output portion receives a plurality of signals from the external device as the status of the external device.
  • 34. The manual input device of claim 19, wherein the input/output portion receives a plurality of signals from the external device as the status of the external device.
  • 35. The manual input device of claim 18, wherein the external device comprises a transmission, an external actuator to drive the transmission, a first external sensor to detect a driving state of the external actuator and supply a driving state output, and a second external sensor to detect revolutions per minute (RPM) of the transmission and supply a RPM output, and the driving state output and RPM output are received by the input/output portion as the status of the external device.
  • 36. The manual input device of claim 19, wherein the external device comprises a transmission, an external actuator to drive the transmission, a first external sensor to detect a driving state of the external actuator and supply a driving state output, and a second external sensor to detect revolutions per minute (RPM) of the transmission and supply a RPM output, and the driving state output and RPM output are received by the input/output portion as the status of the external device.
  • 37. The manual input device of claim 18, wherein the external device comprises a transmission, an external actuator to drive the transmission, an external control portion, a first external sensor to detect a driving state of the external actuator and supply a driving state output, and a second external sensor to detect revolutions per minute (RPM) of the transmission and supply a RPM output, and the control portion receives and transforms the driving state output and RPM output into the control signal.
  • 38. The manual input device of claim 18, wherein the external device comprises a tuner, an external actuator to drive the tuner, a first external sensor to detect an actuation status of the external actuator and supply an actuation status output, and a second external sensor to detect when the tuner is tuned to a station and supply tuning output, and the actuation status output and tuning output are received by the input/output portion as the status of the external device.
  • 39. The manual input device of claim 19, wherein the external device comprises a tuner, an external actuator to drive the tuner, a first external sensor to detect an actuation status of the external actuator and supply an actuation status output, and a second external sensor to detect when the tuner is tuned to a station and supply tuning output, and the actuation status output and tuning output are received by the input/output portion as the status of the external device.
  • 40. The manual input device of claim 18, wherein the external device comprises a tuner, an external control portion, an external actuator to drive the tuner, a first external sensor to detect an actuation status of the external actuator and supply an actuation status output, and a second external sensor to detect when the tuner is tuned to a station and supply tuning output, the external control portion receives and transforms the actuation status output and tuning output into control information received by the input/output portion as the status of the external device, and the control information has a simpler data structure than that of the actuation status output and tuning output.
  • 41. The manual input device of claim 19, wherein the external device comprises a tuner, an external actuator to drive the tuner, an external control portion, a first external sensor to detect an actuation status of the external actuator and supply an actuation status output, and a second external sensor to detect when the tuner is tuned to a station and supply tuning output, the external control portion receives and transforms the actuation status output and tuning output into control information received by the input/output portion as the status of the external device, and the control information has a simpler data structure than that of the actuation status output and tuning output.
  • 42. The manual input device of claim 18, wherein the external device comprises a tuner, an external control portion, an external actuator to drive the tuner, a first external sensor to detect an actuation status of the external actuator and supply an actuation status output, and a second external sensor to detect when the tuner is tuned to a station and supply tuning output, the external control portion receives and transforms the actuation status output and tuning output into the control signal.
  • 43. The manual input device of claim 38, wherein the actuator applies force to the knob when the tuner is tuned to a station.
  • 44. The manual input device of claim 39, wherein the actuator applies force to the knob when the tuner is tuned to a station.
  • 45. The manual input device of claim 40, wherein the actuator applies force to the knob when the tuner is tuned to a station.
  • 46. The manual input device of claim 41, wherein the actuator applies force to the knob when the tuner is tuned to a station.
  • 47. The manual input device of claim 42, wherein the actuator applies force to the knob when the tuner is tuned to a station.
Priority Claims (2)
Number Date Country Kind
2000-390807 Dec 2000 JP
2000-390848 Dec 2000 JP
US Referenced Citations (1)
Number Name Date Kind
5959613 Rosenberg et al. Sep 1999 A
Foreign Referenced Citations (2)
Number Date Country
2002-189556 Dec 2000 JP
2002-189557 Dec 2000 JP