The present disclosure is directed to a switch mechanism including one or more electrical switches that are adapted to be changed from a first state to a second state in response to a physical input, and in particular to a switch mechanism including a plurality of electrical switches that are adapted to be changed from their first states to their second states at substantially the same time in response to a single physical input.
The present disclosure relates to a switching device including a sensing mechanism and a switch mechanism, wherein the sensing mechanism provides a physical input, such as a force, to actuate the switch mechanism. An embodiment of the switching device is shown in the drawing figures as a pressure switch 10 including a pressure sensing mechanism 12 adapted to provide a physical input, such as a force, to a switch mechanism 14. The switching device may alternatively comprise, for example, a rotary position switching device wherein the sensing mechanism comprises a rotary position sensor, a linear level switching device wherein the sensing mechanism comprises a linear level sensor, or a fluid flow switching device wherein the sensing mechanism comprises a fluid flow sensor.
Pressure sensing mechanism 12 includes a housing 20. Housing 20 includes a top housing portion 22 having a generally circular peripheral flange 24 and a bottom housing portion 26 having a generally circular peripheral flange 28. A resiliently flexible diaphragm 30 having a generally circular peripheral edge 32 is located and sealed between top housing portion 22 and bottom housing portion 26 with edge 32 of diaphragm 30 located between flange 24 of top housing portion 22 and flange 28 of bottom housing portion 26. Pressure sensing mechanism 12 includes a first fluid chamber 34 formed between diaphragm 30 and top housing portion 22, and a second fluid chamber 36 formed between diaphragm 30 and bottom housing portion 26. As shown in
Pressure sensing mechanism 12 includes a stem 44 attached to bottom housing portion 26. Stem 44 extends along a generally linear central axis 46 of pressure sensing mechanism 12. Flanges 24 and 28 of top and bottom housing portions 22 and 26 extend generally concentrically about axis 46. Diaphragm 30 extends generally concentrically about axis 46 and generally perpendicular to axis 46. Stem 44 is externally threaded for coupling to a mounting member. Stem 44 includes an internal bore 45 extending along axis 46.
Pressure sensing mechanism 12 includes a calibration mechanism 47, as best shown in
The calibration mechanism 47 includes a guide member 58 threadably attached to shaft 54 of adjustment member 48. Guide member 58 includes an outwardly extending flange 59 having a generally polygonal-shaped peripheral edge, such as a hexagonal-shaped peripheral edge, adapted to mate with a generally polygonal-shaped wall portion, such as a hexagonal-shaped side wall portion, of bore 45 that extends from adjacent flange 52 of adjustment member 48 to the distal end of bore 45. The hexagonal-shaped side wall portion of bore 45 prevents guide member 58 from rotating with respect to stem 44 when adjustment member 48 is rotated about axis 46 with respect to stem 44. Adjustment member 48 is rotatable about axis 46 with respect to guide member 58 in either a clockwise or counter-clockwise direction. Adjustment member 48 may be selectively rotated about axis 46 to either advance guide member 58 toward diaphragm 30 and top housing portion 22, or retract guide member 58 away from diaphragm 30 and top housing portion 22, along axis 46. Head 57 of stop member 56 is adapted to engage guide member 58 when guide member 58 advances to the distal end of shaft 54 to prevent guide member 58 from advancing beyond the distal end of shaft 54.
A resilient biasing member 50, such as a helical coil spring, extends along axis 46 and at least partially within bore 45 between guide member 58 and diaphragm 30. Biasing member 50 includes a distal end adapted to engage the diaphragm 30 and a proximal end adapted to engage guide member 58. Biasing member 50 is adapted to resiliently bias diaphragm 30 along axis 46 toward first fluid chamber 34 and top housing portion 22 with a resilient biasing force. The biasing force with which biasing member 50 engages diaphragm 30 may be selectively adjusted by manually advancing guide member 58 along axis 46 to increase the biasing force, or by manually retracting guide member 58 along axis 46 to decrease the biasing force, provided by biasing member 50.
First port 38 may be coupled to a first fluid supply line for providing a first fluid to first fluid chamber 34 at a first pressure, and second port 40 may be coupled to a second fluid supply line for providing a second fluid to second fluid chamber 36 at a second pressure. Typically, the pressure of the fluid in the first fluid chamber 34 is greater than the pressure of the fluid in the second fluid chamber 36. To the extent the pressure of the first fluid in first fluid chamber 34 is greater than the pressure of the second fluid in second fluid chamber 36, the first fluid will exert a net fluid force on diaphragm 30 and will move diaphragm 30 along axis 46 toward second fluid chamber 36 and bottom housing portion 26 while compressing biasing member 50, until biasing member 50 is sufficiently compressed to exert a biasing force on diaphragm 30 that is equal to and opposite in direction to the net fluid force applied to diaphragm 30 by the first fluid in first fluid chamber 34. The greater the pressure differential there is between the first fluid of first fluid chamber 34 and the second fluid of second fluid chamber 36, the farther diaphragm 30 will move along axis 46 toward bottom housing portion 26 while compressing biasing member 50. Diaphragm 30 will thereby be located at a selected position along axis 46, and at a selected location between bottom housing portion 26 and top housing portion 22, when there is a particular pressure differential between the first fluid in first fluid chamber 34 and the second fluid in second fluid chamber 36.
Switch mechanism 14 includes a mounting base 60 coupled to top housing portion 22 of housing 20. Mounting base 60 as shown in
Switch mechanism 14 includes a linkage lever 76 pivotally coupled to first side wall 64 and second side wall 66 of mounting base 60 for pivotal movement about a pivot axis 78 with respect to mounting base 60 and housing 20. As shown in
As shown in
A resilient biasing member such as a torsion spring 102, as shown in
Switch mechanism 14 includes a circuit board 110 coupled to mounting base 60 with a bracket 112. One or more electrical switches 114 are electrically coupled to circuit board 110 in alignment with one another. Each switch 114 includes an actuation member, such as a button or plunger 116. One or more electrical wire terminal blocks 118 are electrically coupled to circuit board 110. Each terminal block 118 is electrically coupled to a respective electrical switch 114. Each terminal block 118 is electrically connectable to one or more operable devices or pieces of equipment, such as pumps, blowers, valves and the like, that are to be controlled by the pressure switch 10. Plunger 116 of each switch 114 is adapted to change the switch 114 from a normal state, when an activation force is not applied to plunger 116, to an actuated state, when an activation force is applied to plunger 116. Each switch 114 changes from the actuated state to the normal state when the activation force is removed from its plunger 116. Switch mechanism 14 may include a plurality of switches 114 electrically coupled to one or more operable devices or pieces of equipment, such as pumps, blowers, valves and the like, for controlling operation of one or more of the operable devices or pieces of equipment. The plurality of switches 114 may be aligned with one another such that all of the plungers 116 are linearly aligned with one another along a common axis. An isolation shield 120 may overlie a portion of circuit board 110 and may be attached to circuit board 110 to prevent a user from coming into physical contact with the covered portion of circuit board 110. Shield 120 may be formed as a thin flexible sheet of plastic or from other materials as desired.
Switch mechanism 14 includes an activation lever 130 pivotally coupled to bracket 112 for pivotal movement about a pivot axis 132. Activation lever 130 is coupled to bracket 112 by a shaft 131 including central pivot axis 132. Pivot axis 132 of activation lever 130 is located generally parallel to pivot axis 78 of linkage lever 76. Activation lever 130 is selectively pivotal about pivot axis 132 between a normal position as shown in
Activation lever 130 includes a first end 146, a second end 148 and a transverse bore 150 located between first end 146 and second end 148. Bore 150 is adapted to receive shaft 131. First end 146 of activation lever 130 includes a tab 152 adapted to be manually engaged. The rear side of activation lever 130 includes an open channel 154 adapted to receive first leg 138 of torsion spring 134. Second end 148 of activation lever 130 includes a detent member 160 projecting outwardly along the longitudinal axis of activation lever 130. Detent member 160 includes a tip 162, a notch 164 and a retention surface 166. Notch 164 is adapted to receive roller 98 of pawl 91 of linkage lever 76 when activation lever 130 is in the normal position, such that detent member 160 and pawl 91 prevent torsion spring 134 from pivoting activation lever 130 from the normal position toward the actuated position.
Second end 148 of activation lever 130 includes an engagement member 170 that projects outwardly at generally a right angle to the longitudinal axis of activation lever 130. Engagement member 170 includes an elongate generally linear tip 172 adapted to substantially simultaneously engage all of the plungers 116 of the switches 114 when activation lever 130 is in the actuated position. Tip 172 extends generally linearly along an axis that is substantially parallel to the linear axis containing the distal ends of the plungers 116 of the switches 114, and that is generally parallel to pivot axis 132. Engagement member 170 extends between a first end 174 and a second end 176 such that engagement member 170 extends from plunger 116 of the first switch 114 to plunger 116 of the last switch 114. A single activation lever 130 may thereby simultaneously change all of the electrical switches 114 from the normal state to the actuated state when activation lever 130 pivots to the actuated position. Activation lever 130 similarly disengages from said plungers 116 of said switches 114 substantially simultaneously when activation lever 130 pivots from the actuated position toward the normal position to substantially simultaneously change all of the switches 114 from the actuated state to the normal state. Alternatively, engagement member 170 may be divided into a plurality of adjacent fingers 178 with a notch 180 between each finger 178, such that each finger 178 is adapted to engage one or more plungers 116.
As shown in
When the pressure of the fluid in first fluid chamber 34 is greater than the pressure of the fluid in second fluid chamber 36 by less than a pre-selected pressure differential, diaphragm 30 will be located along axis 46 in a position such that finger 94 and roller 98 of pawl 91 of linkage lever 76 will be retained within notch 164 of detent member 160 of activation lever 130, such that activation lever 130 is retained in the normal position and is prevented from pivoting to the actuated position. Switches 114 are thereby in their normal states.
When the pressure of fluid in first fluid chamber 34 is greater than the pressure of the fluid in second fluid chamber 36 by more than a selected pressure differential, diaphragm 30 will have moved along axis 46 toward second fluid chamber 36 and bottom housing portion 26. Tip 82 of linkage lever 76 will remain in engagement with diaphragm 30 when linkage lever 76 pivots in a generally counterclockwise direction as shown in
When the pressure differential between the first fluid chamber 34 and second fluid chamber 36 returns to a pressure differential that is less than the actuation pressure differential, and when the activation lever 130 is in the actuated position, finger 94 and roller 98 of pawl 91 will be pressed into engagement with retention surface 166 of activation lever 130 due to the movement of diaphragm 30 along axis 46 toward first fluid chamber 34, such that activation lever 130 remains in the actuated position, until activation lever 130 is manually pivoted to the normal position to reset the switches 114 to their normal states.
Various features of the invention have been particularly shown and described in connection with the illustrated embodiment of the invention, however, it must be understood that these particular arrangements merely illustrate, and that the invention is to be given its fullest interpretation within the terms of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/297,012, filed Jan. 21, 2010.
Number | Name | Date | Kind |
---|---|---|---|
2381835 | Moorehead | Aug 1945 | A |
3760138 | Reis | Sep 1973 | A |
3760139 | Porter, Jr. | Sep 1973 | A |
4631374 | Zoludow | Dec 1986 | A |
4709126 | Miller et al. | Nov 1987 | A |
4725700 | Zoludow | Feb 1988 | A |
4827095 | Clark et al. | May 1989 | A |
5047601 | Edwards et al. | Sep 1991 | A |
5061832 | Squires | Oct 1991 | A |
5183983 | Knop | Feb 1993 | A |
5352858 | Keck | Oct 1994 | A |
6089098 | Tylisz et al. | Jul 2000 | A |
6452122 | LeRoy | Sep 2002 | B1 |
6981421 | Palmer et al. | Jan 2006 | B2 |
Number | Date | Country |
---|---|---|
860759 | Feb 1961 | GB |
1350488 | Apr 1974 | GB |
1477892 | Jun 1977 | GB |
Number | Date | Country | |
---|---|---|---|
20110174602 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
61297012 | Jan 2010 | US |