Embodiments described herein relate generally to a sheet finishing apparatus configured to perform finishing of sheets supplied from an image forming apparatus such as a copying machine, a printer, and a multi functional peripheral.
There is a sheet finishing apparatus configured to apply finishing such as sorting and stapling to sheets supplied from an image forming apparatus and staple, with manual operation, a sheet bundle inserted from the outside by an operator.
In the sheet finishing apparatus having a manual stapling function in this way, since the operator manually inserts a sheet bundle into the sheet finishing apparatus, it is likely that deviation occurs in an inserting position of the sheet bundle inserted into the sheet finishing apparatus and a stapling position deviates.
Therefore, there is a demand for a sheet finishing apparatus configured to prevent a sheet position from deviating in the sheet finishing apparatus even when sheets are manually inserted.
According to an embodiment, a stapling apparatus includes: a processing tray; a paper discharge unit configured to discharge sheets on the processing tray; an aligning unit configured to align sheets manually inserted onto the processing tray from a paper discharge port of the paper discharge unit; and a stapler configured to staple the sheets manually inserted on the processing tray.
Embodiments are explained below.
(First Embodiment)
As shown in
The finisher 7 includes a paper discharge roller pair 14 configured to discharge, onto the fixed tray 12, the sheet P conveyed by the first conveying roller pair 11. The finisher 7 includes a processing mechanism 15 configured to discharge, onto the paper discharge tray 21, a sheet conveyed by the second conveying roller pair 13.
The processing mechanism 15 includes a waiting tray 22, a processing tray 17, lateral alignment plates 18, paddles 26, and a stapler 20. The processing mechanism 15 includes a conveying mechanism 24 that is a paper discharge unit configured to discharges sheets on the processing tray 17.
The waiting tray 22 temporarily waits the sheet P supplied from the second conveying roller pair 13 until finishing for the sheets on the processing tray 17 finishes. As shown in
As shown in
The lateral alignment plates 18 align the sheets P on the processing tray 17 to the front side or the rear side. The lateral alignment plates 18 include a front side alignment plate 18a that stops at a front reference fr and a rear side alignment plate 18b that stops at a rear reference rr. The lateral alignment plates 18 prevent the sheets P from being disarranged in the front side or rear side direction orthogonal to a supply direction of the sheets P. As shown in
The stapler 20 is located at the rear ends of the sheet supporting surfaces 17a in the conveying direction of the sheet bundle T. The stapler 20 staples one place at a front side corner, staples one place at a rear side corner, or staples two places in the center. An opening for nipping the sheet bundle T of the stapler 20 includes a light emitting element 44a and a light receiving element 44b and detects that the sheet bundle T is inserted into the stapler 20. The stapler 20 incorporates a stapler motor 43 for performing stapling operation.
As shown in
The conveying mechanism 24 includes a pair of ejectors 24a projecting from the rear end faces of the sheet supporting surfaces 17a, a conveyor belt 30 provided between the pair of ejectors 24a, and the outlet rollers 27. The ejectors 24a push out the sheet bundle T present on the sheet supporting surfaces 17a. The conveyor belt 30 includes a bundle pawl 31. When sorting or stapling of the sheet bundle T on the sheet supporting surfaces 17a is finished, the ejectors 24a and the outlet rollers 27 start discharge of the sheet bundle T in the direction of the paper discharge tray 21. Thereafter, the bundle pawl 31 of the conveyor belt 30 overtakes the ejectors 24a. The bundle pawl 31 and the outlet rollers 27 discharge the sheet bundle T from a paper discharge port 70 onto the paper discharge tray 21. When the bundle pawl 31 discharges the sheet bundle T, the ejectors 24a return in the rear end direction of the sheet supporting surfaces 17a with force of springs.
In performing stapling with manual operation in the finisher 7, an operator inserts bundle-like sheets manually inserted M from the paper discharge port 70 onto the processing tray 17. As shown in
The finisher 7 includes a panel 71 for manual operation on the upper surface thereof. As shown in
A control system 200 configured to mainly control manual operation of the finisher 7 is shown in
Actions are explained below.
(When Finishing is not Performed)
When neither sorting nor stapling of the sheet P supplied from the MFP 5 is performed, the finisher 7 directs, in the gate 16, the sheet P in the direction of the first conveying roller pair 11 and discharges the sheet P onto the fixed tray 12 with the paper discharge roller pair 14.
(During Finishing in an Auto Mode)
When the sheet P supplied from the MFP 5 is subjected to finishing, the finisher 7 directs, with the gate 16, the sheet P in the direction of the second conveying roller pair 13 and supplies the sheet P to a directing processing mechanism 15. When there is no preceding sheet P on the processing tray 17, the finisher 7 directly supplies the sheet P from the second conveying roller pair 13 to the sheet supporting surfaces 17a. When a preceding sheet is being subjected to finishing on the processing tray 17, the finisher 7 supplies the sheet P from the second conveying roller pair 13 to the waiting tray 22. When the conveying mechanism 24 discharges the preceding sheet from the processing tray 17, the finisher 7 drops and supplies the sheet P on the waiting tray 22 to the sheet supporting surfaces 17a.
The lateral alignment plates 18 laterally align the sheets Pan the sheet supporting surface 17a. For example, during stapling at the front reference fr, the front side alignment plate 18a is stopped at the front reference fr. As indicated by an arrow f in
(During a Manual Stapling Mode)
As shown in
When the first rear sensor 83 does not detect the sheets manually inserted M (No in A302), the CPU 210 proceeds to A307. When the sheets manually inserted M are inserted closer to the front side as shown in
When the first front sensor 81 does not detect the sheets manually inserted M (No in A307), the CPU 210 proceeds to A317 and determines whether the second front sensor 82 and the second rear sensor 84 detect the sheets manually inserted M. When the second front sensor 82 and the second rear sensor 84 do not detect the sheets manually inserted M (No in A317), the CPU 210 cancels the manual stapling mode (A331). The CPU 210 finishes the manual operation and shifts to the auto mode.
When the second front sensor 82 and the second rear sensor 84 detect the sheets manually inserted M (Yes in A317), the CPU 210 determines that the sheets manually inserted M are sheets of a small size and laterally aligns the sheets manually inserted M in the center of the small size (CPU 210 laterally aligns the sheets manually inserted M of the small size by fit center position of the sheets manually inserted M of the small size and the center C). After sliding the front side alignment plate 18a and the rear side alignment plate 18b in the width direction to small size positions, the CPU 210 reciprocatingly moves the front side alignment plate 18a in the arrow g direction and reciprocatingly moves the rear side alignment plate 18b in the arrow f direction to laterally align the bundle-like sheets manually inserted M of the small size to a precise stapling position for the center alignment (A320). The operator presses the selection switch 72 of the panel 71 and selects a stapling position. According to the selection by the operator, the stapler 20 slides in the arrow s direction or the arrow u direction in
When the first front sensor 81 detects the sheets manually inserted M (No in A303), the CPU 210 determines that the sheets manually inserted M are sheets of a large size and laterally aligns the sheets manually inserted M in the center of the large size (CPU 210 laterally aligns the sheets manually inserted M of the large size by fit center position of the sheets manually inserted M of the large size and the center C). For example, the CPU 210 stops the front side alignment plate 18a at the front reference fr, stops the rear side alignment plate 18b at the rear reference rr, and reciprocatingly moves the front side alignment plate 18a and the rear side alignment plate 18b to laterally align the bundle-like sheets manually inserted M of the large size to a precise stapling position for the center alignment (A326). The operator presses the selection switch 72 of the panel 71 to select a stapling position. According to the selection by the operator, the stapler 20 slides in the arrow s direction or the arrow u direction in
When the sheets manually inserted M are discharged onto the paper discharge tray 21 (A330) and the sensors 81 to 84 confirm that the sheets manually inserted M are not inserted in the paper discharge port 70, the CPU 210 cancels the manual stapling mode (A331). The CPU 210 finishes the manual operation and shifts to the auto mode.
According to the first embodiment, the finisher 7 detects the sheets manually inserted M inserted into the paper discharge port 70 after the finish of the auto mode and shifts to the manual stapling mode. When any one of the sensors 81 to 84 detects the sheets manually inserted M, the finisher 7 automatically laterally aligns the bundle-like sheets manually inserted M to a precise stapling position. During the manual stapling mode, even if the operator does not align the sheets manually inserted M to the precise stapling position to insert the sheets manually inserted M, it is possible to prevent the stapling position from deviating. During the manual stapling mode, the operator can easily perform operation for inserting the sheets manually inserted M.
(Second Embodiment)
A second embodiment is different from the first embodiment in that, during the manual stapling mode, a line sensor detects sheets manually inserted and an operator always selects a stapling position of the stapler 20 to instruct stapling. Otherwise, the second embodiment is the same as the first embodiment. In the second embodiment, components same as the components explained in the first embodiment are denoted by the same reference numerals and signs and detailed explanation of the components is omitted.
As shown in
(During the Manual Stapling Mode)
As shown in
When the line sensor 87 does not detect that the sheets manually inserted M are closer to the rear side (No in A402), the CPU 210 proceeds to A407. When the sheets manually inserted M are inserted closer to the front side as shown in
When the line sensor 87 does not detect that the sheets manually inserted M are closer to the front side (No in A407), the CPU 210 proceeds to A417 and determines whether the line sensor 87 detects the sheets manually inserted M of a small size. When the line sensor 87 detects the sheets manually inserted M of the small size (Yes in A417), the CPU 210 determines that the sheets manually inserted M are sheets of the small size and laterally aligns the sheets manually inserted M to the center of the small size. After sliding the front side alignment plate 18a and the rear side alignment plate 18b in the width direction to small size positions, the CPU 210 reciprocatingly moves the front side alignment plate 18a in the arrow g direction and reciprocatingly moves the rear side alignment plate 18b in the arrow f direction to laterally align the bundle-like sheets manually inserted M of the small size to a precise stapling position for the center alignment (A420). The CPU 210 proceeds to A421, stores, in the memory 86, indication that the sheets manually inserted M are aligned in the center of the small size, and proceeds to A440.
When the line sensor 87 does not detects the sheets manually inserted M of the small size (No in A417), the CPU 210 proceeds to A418 and determines whether the line sensor 87 detects the sheets manually inserted M of a large size. When the line sensor 87 detects the sheets manually inserted M of the large size (Yes in A418), the CPU 210 determines that the sheets manually inserted M are sheets manually inserted of the large size and laterally aligns the sheets manually inserted M to the center of the large size. For example, the CPU 210 stops the front side alignment plate 18a at the front reference fr, stops the rear side alignment plate 18b at the rear reference rr, and reciprocatingly moves the front side alignment plate 18a and the rear side alignment plate 18b to laterally align the bundle-like sheets manually inserted M of the large size to a precise stapling position for the center alignment (A426). The CPU 210 proceeds to A427, stores, in the memory 86, indication that the sheets manually inserted M is aligned to the center of the large size, and proceeds to A440.
When the line sensor 87 does not detect the sheets manually inserted M of the large size (No in A418), the CPU 210 cancels the manual stapling mode (A461). The CPU 210 finishes the manual operation and shifts to the auto mode.
When the operator turns on the start switch 73 in A440, the CPU 210 checks storage content of the memory 86. When the sheets manually inserted M are closer to the rear side (Yes in A441), the CPU 210 slides the stapler 20 in the arrow u direction in
When the sheets manually inserted M are closer to the front side (Yes in A442), the CPU 210 slides the stapler 20 in the arrows direction in
When the sheets manually inserted M are aligned to the center of the small size (Yes in A423), the operator presses the selection switch 72 of the panel 71 and selects a stapling position for the small size. According to the selection by the operator, the stapler 20 slides in the arrow s direction or the arrow u direction in
When the sheets manually inserted M are aligned to the center of the large size (No in A423), the operator presses the selection switch 72 of the panel 71 and selects a stapling position for the large size. According to the selection by the operator, the stapler 20 slides in the arrow s direction or the arrow u direction in
When the line sensor 87 confirms that the sheets manually inserted M are not inserted in the paper discharge port 70, the CPU 210 cancels the manual stapling mode (A461). The CPU 210 finishes the manual operation and shifts to the auto mode.
According to the second embodiment, as in the first embodiment, the finisher 7 detects the sheets manually inserted M inserted in the paper discharge port 70 after the finish of the auto mode and shifts to the manual stapling mode. When the finisher 7 detects the sheets manually inserted M with the line sensor 87, the finisher 7 automatically laterally aligns the bundle-like sheets manually inserted M to a precise stapling position. During the manual stapling mode, even if the operator does not align the sheets manually inserted M to the precise stapling position to insert the sheets manually inserted M, it is possible to prevent the stapling position from deviating. During the manual stapling mode, the operator can easily perform operation for inserting the sheets manually inserted M.
While certain embodiments have been described these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel apparatus and methods described herein may be embodied in a variety of other forms: furthermore various omissions, substitutions and changes in the form of the apparatus and methods described herein may be made without departing from the spirit of the inventions. The accompanying claims and there equivalents are intended to cover such forms of modifications as would fall within the scope and spirit of the invention.
This application is based upon and claims the benefit of priority from provisional U.S. Application 61/231,196 filed on Aug. 4, 2009, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4878656 | Honjo et al. | Nov 1989 | A |
4917366 | Murakami et al. | Apr 1990 | A |
5031890 | Hosoi et al. | Jul 1991 | A |
5060922 | Shibusawa et al. | Oct 1991 | A |
5139249 | Hosoi et al. | Aug 1992 | A |
7300045 | Terao et al. | Nov 2007 | B2 |
7648136 | Terao et al. | Jan 2010 | B2 |
20070063411 | Hirano | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
2002104720 | Apr 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20110031677 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
61231196 | Aug 2009 | US |