The disclosure is directed to suction devices and more particularly to manual suction devices that can be used for capturing thrombi from a patient's vasculature while returning blood to the patient.
There are a variety of medical procedures and medical conditions that may result in unwanted material within a patient's bloodstream. A patient may have thrombolytic material within their bloodstream. There are medical devices intended for removal of thrombolytic material. Of the known medical devices and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices as well as alternative methods for manufacturing and using medical devices.
The disclosure is directed to several alternative designs, materials and methods of manually operated mechanical suction devices. An example of the disclosure may be found in a medical device that includes a housing and a pump secured within the housing. A fluid inlet is fluidly coupled with the pump and is adapted to receive fluid pulled towards the pump. A fluid outlet is fluidly coupled with the pump and is adapted to expel fluid away from the pump. A fluid path extends from the fluid inlet to the fluid outlet. As the pump is operated by the user, fluid is alternatively pulled into the fluid inlet and expelled through the fluid outlet.
Alternatively or additionally, the pump may include a manually operated pump.
Alternatively or additionally, the pump may include a cylinder formed within the housing, a piston slidingly disposed within the cylinder, a connecting rod pivotably secured to the piston and a rotating disk having a handle to rotate the disk, the connecting rod pivotably secured to the rotating disk at a position offset from a center of the rotating disk such that when the rotating disk is rotated, the connecting rod causes the piston to translate back and forth within the cylinder.
Alternatively or additionally, the pump may further include a handle adapted to be coupled with the rotating disk such that rotating the handle causes the rotating disk to rotate.
Alternatively or additionally, the handle may be adapted to be releasably coupled with the rotating disk.
Alternatively or additionally, the handle may be adapted to form an interference fit with the rotating disk.
Alternatively or additionally, the medical device may further include a one way inlet valve disposed within the fluid inlet such that fluid is allowed to flow into the fluid inlet when the piston is moved away from the fluid path but is prevented from flowing out of the fluid inlet when the piston is moved towards the fluid path and a one way outlet valve disposed within the fluid outlet such that fluid is allowed to flow out of the fluid outlet when the piston is moved towards the fluid path but is prevented from flowing into the fluid outlet when the piston is moved away from the fluid path.
Another example of the disclosure may be found in a medical device that is adapted to facilitate mechanical thrombectomy. The medical device includes a housing adapted to be held within a user's hand and a pump secured within the housing, the pump including a handle that is adapted to be engaged by a user's other hand. A fluid inlet is fluidly coupled with the pump and is adapted to accommodate a first fluid line bringing fluid to the fluid inlet. A fluid outlet is fluidly coupled with the pump and is adapted to accommodate a second fluid line taking fluid away from the fluid outlet. As the pump is operated by the user, fluid is alternatively pulled into the fluid inlet and expelled through the fluid outlet.
Alternatively or additionally, the pump may include a piston slidingly disposed relative to the housing, a connecting rod pivotably secured to the piston and a rotating disk having a handle to rotate the disk, the connecting rod pivotably secured to the rotating disk at a position offset from a center of the rotating disk such that when the rotating disk is rotated, the connecting rod causes the piston to translate back and forth relative to the housing.
Alternatively or additionally, the medical device may further include a handle that is adapted to be releasably coupled with the rotating disk.
Alternatively or additionally, the medical device may further include a handle that handle is adapted to form an interference fit with the rotating disk.
Alternatively or additionally, the medical device may further include a one way inlet valve that is disposed within the fluid inlet and is adapted to only allow fluid to flow into the fluid inlet and a one way outlet valve that is disposed within the fluid outlet and is adapted to only allow fluid to flow out of the fluid outlet.
Alternatively or additionally, the piston may include a rubber feature that seals against an interior of the housing.
Another example of the disclosure may be found in a system for capturing unwanted materials within blood flowing through a patient's vasculature. The system includes a blood filter adapted to capture the unwanted materials and a medical device that is adapted to facilitate mechanical thrombectomy. The medical device includes a housing adapted to be held within a user's hand and a pump secured within the housing, the pump including a handle that is adapted to be engaged by a user's other hand. A fluid inlet is fluidly coupled with the pump and is adapted to accommodate a first fluid line bringing fluid to the fluid inlet. A fluid outlet is fluidly coupled with the pump and is adapted to accommodate a second fluid line taking fluid away from the fluid outlet. As the pump is operated by the user, fluid is alternatively pulled into the fluid inlet and expelled through the fluid outlet. The blood filter is adapted to be fluidly coupled with the fluid inlet and blood exiting the fluid outlet is directed back to the patient.
Alternatively or additionally, the blood exiting the fluid outlet may be returned directly to the patient.
Alternatively or additionally, the blood exiting the fluid outlet may be captured and stored for subsequent return to the patient.
Alternatively or additionally, the unwanted materials may include embolic material.
Alternatively or additionally, the unwanted materials may include foreign matter not normally part of the patient's blood.
Another example of the disclosure may be found in a medical device adapted for removing unwanted materials within blood flowing through a patient's vasculature. The medical device includes a housing that is adapted to be held within a user's hand and a pump that is secured within the housing. The pump includes a cylinder formed within the housing, a piston slidingly disposed within the cylinder, a connecting rod pivotably secured to the piston and a rotating disk having a handle to rotate the disk, the connecting rod pivotably secured to the rotating disk at a position offset from a center of the rotating disk such that when the rotating disk is rotated, the connecting rod causes the piston to translate back and forth within the cylinder. A fluid inlet is fluidly coupled with the pump and is adapted to receive fluid pulled towards the pump. A fluid outlet is fluidly coupled with the pump and is adapted to expel fluid away from the pump. As the pump is operated by the user, fluid is alternatively pulled into the fluid inlet and expelled through the fluid outlet.
Alternatively or additionally, the medical device may further include a handle that is releasably securable relative to the rotating disk.
The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify these embodiments.
The disclosure may be more completely understood in consideration of the following description of in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
Definitions of certain terms are provided below and shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about”, whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the term “about” may be indicative as including numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
Although some suitable dimensions, ranges and/or values pertaining to various components, features and/or specifications are disclosed, one of skill in the art, incited by the present disclosure, would understand desired dimensions, ranges and/or values may deviate from those expressly disclosed.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include or otherwise refer to singular as well as plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed to include “and/or,” unless the content clearly dictates otherwise.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The detailed description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure. The illustrative embodiments depicted are intended only as exemplary. Selected features of any illustrative embodiment may be incorporated into an additional embodiment unless clearly stated to the contrary.
The medical device 10, which may be considered as including or even being a fluid pump, includes a fluid inlet 16 and a fluid outlet 18. In some cases, as shown, the medical device 10 may include a one way inlet valve 20 that is disposed proximate the fluid inlet 16 and a one way outlet valve 22 that is disposed proximate the fluid outlet 18. A fluid path 24 may be considered as extending between the fluid inlet 16 and the fluid outlet 18. As shown, the fluid inlet 16, the fluid outlet 18 and the fluid path 24 extending therebetween is illustrated as being transparent. In some cases, the fluid inlet 16, the fluid outlet 18 and the fluid path 24 extending therebetween may be formed of a transparent or substantially transparent polymeric material in order to allow the user to visualize the flow of fluid through the medical device 10. As will be discussed with respect to
The one way inlet valve 20 may be adapted to permit fluids such as blood or other bodily fluids to flow into the fluid inlet 16 in a direction indicated by an arrow 26 but not allow fluids such as blood or other bodily fluids to flow in an opposite direction, opposing the arrow 26. The one way outlet valve 22 may be adapted to permit fluids such as blood or other bodily fluids to flow out of the fluid outlet 18 in a direction indicated by an arrow 28 but not allow fluids such as blood or other bodily fluids to flow in an opposite direction, opposing the arrow 28.
The housing 12 includes recessed areas 30 and 32 on either side of the housing 12 that facilitate the user easily holding the medical device 12 in their hand H. As can be seen, the recessed area 30 enables the user's finger F to fit into the recessed area 30 while the recessed area 32 enables the user's thumb T to fit into the recessed area 32. It will be appreciated that if the user was holding the medical device 10 in their left hand (not shown), the recessed area 30 would accommodate the user's thumb T while the recessed area 32 would accommodate the user's finger F.
A cylinder 50 is formed within the housing 12. The cylinder 50 may be a separate piece that is separately formed and then disposed within the housing 12. In some cases, the cylinder 50 may be integrally formed as part of the housing 12. A piston 52, which may include a rubber component such as an O ring in order to form a better seal against a wall of the cylinder 50, is slidingly disposed within the cylinder 50. A connecting rod 54 extends from the rotating disk 48 to the piston 52 in order to convert rotation of the rotating disk 48 into translation back and forth of the piston 52 within the cylinder 50. The connecting rod 54 may be considered as including several components. A first connecting rod portion 56 is pivotably coupled to the rotating disk 48 at a pivot point 58. A second connecting rod portion 60 extends up to the piston 52 and couples to the first connecting rod portion 56 at a pivot point 62. In some cases, the coupling between the second connecting rod portion 60 and the piston 52 may include another pivot mechanism.
As the handle 14 is rotated, causing the rotating disk 48 to rotate, it will be appreciated that the piston 52 translates back and forth (or up and down, in the illustrated orientation) within the cylinder 50. As the piston 52 moves downward, or away from the fluid path 24, a resulting suction causes fluids such as blood or other bodily fluids to enter the fluid inlet 16 in the direction indicated by the arrow 26. The one way outlet valve 22 prevents fluid from flowing in a direction opposite that of the arrow 28. As the piston 52 moves upward, or towards the fluid path 24, a resulting pressure causes fluids such as blood or other bodily fluids to exit the fluid outlet 18 in the direction indicated by the arrow 28. The one way inlet valve 20 prevents fluids such as blood or other bodily fluids from exiting the fluid inlet 16 in a direction opposing that of the arrow 26.
As the handle 14 is rotated, therefore, the medical device 10 will alternately pull fluids such as blood or other bodily fluids into the medical device 10 via the fluid inlet 16 and push fluids such as blood or other bodily fluids out of the medical device 10 via the fluid outlet 18. The medical device 10 is insensitive to orientation. The medical device 10 will work equally well whether held in the illustrated orientation, or upside down, or any other orientation. The medical device 10 can be stopped or started, meaning the user either stops rotating the handle 14 or starts rotating the handle 14, at any handle orientation.
It will be appreciated that a variety of different materials may be used in forming the medical device 10. In some cases, a variety of different metals may be used. Illustrative but non-limiting examples of suitable metals include titanium, stainless steel, magnesium, cobalt chromium and others. In some cases, some elements may be made of Nitinol. In some embodiments, for example, the devices described herein may include any suitable polymeric material, including biocompatible materials such as polyurethane or silicone. Suitable polymers include PEEK (polyetheretherketone) and Polycarbonate. Other suitable polymers include but are not limited to polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like.
Those skilled in the art will recognize that the present disclosure may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure as described in the appended claims.
This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application No. 63/231,919, filed Aug. 11, 2021, the entire disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63231919 | Aug 2021 | US |