This invention relates to centrifugal clutches and more particularly relates to a novel and improved centrifugal clutch which is capable of manual and automatic control of the maximum pressure exerted on the clutch plates when moved into the engaged position as well as the amount of pressure required to disengage the clutch plates.
We have previously devised centrifugal clutches of the type having a plurality of cam members or balls which will move outwardly in response to rotation of a drive shaft to force a plurality of clutch plates into engagement with one another. In certain applications, such as, motorcycle clutches it is important to generate sufficient centrifugal force to clamp the clutch plates together without substantial slippage and without utilizing a larger sized case which exceeds the space allowances within a stock or standard engine case. Space is at a particular premium in motorcycle clutches incorporating a manual override mechanism, such as, set forth in hereinbefore referred to U.S. application Ser. No. 10/327,160 for MULTI-ROW CAM-ACTUATED CENTRIFUGAL CLUTCH. Further, it is desirable to incorporate into the end of the clutch case between the cover and pressure plate a pressure control mechanism which will combine the features of an automatic clutch with the performance of a traditional manual clutch so that the clutch can engage smoothly without the use of a clutch lever at low speeds but at the same time limit the axial force transmitted to the clutch plates by the cam members at higher speeds. In addition, it is highly desirable that the pressure control mechanism cooperate with the manual override lever in such a way as to minimize the hand pressure required to override the cam members and effectively operate as a conventional manual clutch with relatively light feel or manual pressure and yet be capable of operating within the same space limitations as the standard or stock motorcycle clutches.
It is therefore an object of the present invention to provide for a novel and improved clutch of a type which is capable of controlling the maximum pressure exerted on the clutch elements while assuring non-slipping clutch engagement up to a predetermined force or pressure level as well as being manually controllable to disengage independently of the pressure control mechanism.
It is another object of the present invention to provide, in a centrifugal clutch of the type having an internal manual disengagement mechanism, for an automatic pressure control mechanism which will limit the maximum pressure to which the clutch elements can be subjected and without expanding the size of clutch housing required.
A further object of the present invention is to provide, in a motorcycle clutch, for non-slipping engagement under normal operating conditions while limiting the maximum pressure to which the clutch elements can be subjected in order to permit controlled slippage of the clutch elements when subjected to shock loads imparted through the drive train of the vehicle on which the clutch is mounted.
It is a still further object of the present invention to provide in a motorcycle clutch for a maximum pressure spring control mechanism of the type employing multiple, circumferentially spaced springs between a cover and retainer plate for the centrifugal clutch-actuating mechanism to limit the maximum amount of pressure applied to the clutch members and to mount same within a standard or stock motorcycle case.
The present invention resides in a centrifugal clutch of the type having a plurality of cam members or balls interposed between a cover and pressure plate, the cam members being movable radially outwardly under centrifugal force to cause the pressure plate to move in a direction forcing the clutch members into clutching engagement, the improvement comprising cam retainer means between the pressure plate and cover for retaining the cam members in one or more concentric rows whereby to guide inward and outward radial movement of the cam members, first fastener means for maintaining a predetermined spacing between the cover and the retainer means, second fastener means for maintaining a predetermined spacing between the pressure plate and retainer means including means resiliently biasing the pressure plate and retainer means toward one another, and a series of circumferentially spaced resilient biasing members interposed between the cover and retainer means and wherein the resilient biasing members are operative to undergo compression in response to continued radially outward movement of the cam members once the force exerted on the friction plates equals the force exerted by the resilient biasing members on the pressure plate and retainer means.
There has been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto. In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Referring to the drawings, there is shown by way of illustrative example in FIGS. 1 to 14A a representative form of clutch 10 which is specifically adaptable for use in a motorcycle, not shown. In the standard motorcycle, a crankshaft from an engine imparts rotation to a power input side of the clutch through a shaft or pinion or a chain or other means. In the case shown, a chain is used to impart rotation to drive sprocket 13 on clutch housing 14. A transmission shaft 16 is mounted for rotation by a hub 26 when clutch plates 22 and 24 are engaged; and through a transmission, not shown, is operative to rotate a belt or chain drive, not shown, to the rear wheel of the motorcycle. A starter gear 12 can receive input power from a starter, not shown, to rotate the housing 14 and drive sprocket 13 which in turn rotates the crankshaft to start the engine. As illustrated in
As best seen from FIGS. 1 to 15, a cam-actuating mechanism 28 is mounted between a pressure plate 30 and a cover 32. The cover 32 comprises an annular stationary wall portion 34 having an outer peripheral edge 35 affixed to the housing 14 by suitable fasteners 36. In addition, the cover 32 includes an inner movable cover portion 38 made up of a relatively thick inner wall portion 39 and an outer relatively thin annular retainer portion 40 which extends directly behind the annular cover portion 34.
The cam-actuating mechanism 28 is comprised of radially inner and outer rows of circumferentially spaced cam members or balls 42 and 44 interposed between the pressure plate 30 and the retainer portion 40. The balls 42 and 44 are responsive to centrifugal force to roll outwardly along radial pockets or cam faces 46 and 48 in the pressure plate 30, shown in FIGS. 13 to 15, and aligned pockets or cam faces 50 and 52 in the retainer portion 40 of the cover 38, as shown in FIGS. 9 to 12, so as to cause the pressure plate 30 to axially displace the outer frictional clutch plates 22 into locking engagement with the inner clutch plates 24. The cam-actuating mechanism 28 is modified somewhat from that of hereinbefore referred to copending application for patent for MULTI-ROW CAM-ACTUATED CENTRIFUGAL CLUTCH by utilizing only one row of cam faces 46 and 50 in inner, staggered concentric relation to the outer row of cam faces 48 and 52, respectively, in the pressure plate 30 and cover portion 40. Nevertheless, it will be apparent that a third row of confronting cam faces in the pressure plate 30 and cover portion 40 may be utilized for a set of smaller balls, as shown and described in my hereinbefore referred to copending application for patent for MULTI-ROW CAM-ACTUATING CENTRIFUGAL CLUTCH to generate increased clamping force between the clutch plates 22 and 24.
In accordance with the present invention, the cam faces 50 and 52 are in the form of pockets of generally oval-shaped configuration indented in a flat surface of the movable cover portion 40 and are elongated in the radial direction. Similarly, the cam faces 46 and 48 in the pressure plate 30, as best seen from
A second series of circumferentially spaced bores 62 are formed in the cover 38 in the raised or center portion 39 of the cover 38 and are adapted to receive tubular posts 63 extending from the pressure plate 30 for insertion of threaded fasteners in the form of bolts 64. A spring retainer in the form of a washer 65 having an annular shoulder 66 is positioned at one end of each tubular post 63 to receive each bolt 64. The wall of each bore 62 is provided with an annular shoulder 68 in opposed facing relation to the external shoulder 66 so that the shoulders 66 and 68 define end stops for a spring 70 which is mounted under compression therebetween. The springs 70 pre-load the balls 42 and 44 under a predetermined amount of force to resist outward radial movement of the balls 42 and 44 until the engine reaches a predetermined speed imparting a sufficient degree of centrifugal force to the balls 42 and 44 to advance outwardly along their respective cam faces. The pre-compression or pre-loading of the springs 70 can be adjusted by shims 71 as well as the inward threading of each bolt 64 to vary the distance between the shoulders 66 and 68. Preferably, the springs 70 are SPIRAWAVE® wave springs which are flat wire compression springs, Model No. C075 manufactured and sold by Smalley Steel Ring Co. of Lake Zurich, Ill.
A series of maximum pressure spring pairs 72, 72A are mounted between counterbored seats 74 in circumferentially spaced relation to one another around the outer periphery of the cover portion 40 and aligned bores or spring seats 75 in the confronting surface of the cover 32. Preferably, the spring pairs 72, 72A are made up of inner and outer concentric SPIRAWAVE® wave springs as illustrated in the detail view of
An important characteristic of the SPIRAWAVE® wave springs 72 and 72A is their greatly reduced height or travel for a given amount of resistance as compared to standard coil springs and therefore occupy much less space in an axial direction. In this way, the cam-actuating mechanism 28 together with the spring force-limiting mechanism as described will fit into existing clutch housings, such as, the twin cam 88 of Harley-Davidson Motor Company of Milwaukee, Wis. and other makes of motorcycles. The spring force of the springs 72, 72A is such as to resist opening or spreading of the pressure plate 30 and cover portion 40 beyond a predetermined limit. That limit is the maximum clamping force that can be safely exerted on the clutch plates 22 and 24 to assure non-slipping engagement under normal operating conditions but which will permit the clutch plates 22 and 24 to slip in the event that extreme shock loads are transmitted through the drive train. For example, the clutch plates will permit slight or instantaneous slippage so as to absorb any shock loading when the rear wheel of the motorcycle is off the ground and spinning then suddenly hits the ground and is stopped while the engine continues to run. When extreme clamping forces of that nature are applied, the cam-actuating mechanism 28 will overcome the force or bias of the springs 72, 72A to shift away from the clutch plates 22 and 24, as best seen from
Sufficient clearance is provided, also, between the clutch plates 22 and 24 and pressure plate 30 as generally designated at 61 to adjust for any wear in the clutch plates 22 and 24. For example, as the clutch plates 22 and 24 undergo wear, they will create a greater clearance space 61, but the cam-actuating mechanism is capable of undergoing greater spreading before the maximum pressure springs 72, 72A will exert a counteracting force on the cam-actuating mechanism 28.
As illustrated in
There are certain conditions under which it is desirable to be able to control the clutch manually and to override the automatic clutch. As illustrated in FIGS. 1 to 4, the push rod 18 extends through the transmission shaft 16 from the manual control lever L which operates the push rod 18 through the control cable C as shown in
The following are representative of different situations in which it is desirable to manually disengage the clutch:
1. Manually disengage at start of a race and rev up the engine to create a sufficiently high torque that a fast start can be initiated.
2. In traversing a curve or corner, to disengage the clutch to cut speed but rev up the engine and engage it to accelerate quickly.
3. When starting the engine with transmission in gear, manually disengage the clutch to keep the motorcycle at rest.
4. In climbing a hill, slipping the clutch manually makes it easier to generate higher engine speed in order to get more power to get up the hill.
5. To lift the front wheel over an obstacle, manually disengage the clutch, increase engine speed and re-engage the clutch for rapid acceleration.
As shown in
It will be evident that other spring types may be utilized in place of the SPIRAWAVE® wave springs 70 depending upon the spring force required to counteract the centrifugal force of the cam-actuating mechanism 28 as well as the space available for a given amount of counteracting spring force required. Other factors to be considered are the amount of torque that the clutch is required to transmit, the size of the clutch plates 22 and 24, and the hand pressure required to disengage the clutch manually. Accordingly, other types of springs may be utilized, such as, coil springs and Belleville washer springs, the latter extending through a circumferential groove in the inner surface of the cover; however, for a given size or thickness of cover will be substantially weakened by a continuous circumferential groove, and a continuous spring element ordinarily will not achieve the same spring force for a given distance of travel.
A modified form of invention is illustrated in
Both with respect to the preferred and modified forms of invention, it will be appreciated that they are readily conformable for use in other applications than motorcycles and are adaptable for use in any application which employs an internal combustion engine, such as, for instance drag racing, cars, trucks, tractors, go-carts, cement mixers, all terrain vehicles, power tools including but not limited to chain saws and weed eaters and virtually any application in which an automatic clutch can be utilized.
It is therefore to be understood that while preferred and modified forms of invention are herein set forth and described, the above and other modifications may be made therein without departing from the spirit and scope of the invention as defined by the appended claims and reasonable equivalents thereof.
This application is a continuation-in-part of patent application Ser. No. 09/877,518, filed 7 Jun. 2001 for AUTOMATIC CLUTCH WITH MANUAL OVERRIDE CONTROL MECHANISM and application Ser. No. 10/327,160, filed 20 Dec. 2002 for MULTI-ROW CAM-ACTUATED CENTRIFUGAL CLUTCH, both applications by Douglas W. Drussel and George Michael Wilfley, both being applications assigned to the assignee of this invention and incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 09877518 | Jun 2001 | US |
Child | 10791949 | Mar 2004 | US |
Parent | 10327160 | Dec 2002 | US |
Child | 10791949 | Mar 2004 | US |