Some applications of the present invention generally relate to medical apparatus. Specifically, some applications of the present invention relate to a ventricular assist device and methods of use thereof.
Ventricular assist devices are mechanical circulatory support devices designed to assist and unload cardiac chambers in order to maintain or augment cardiac output. They are used in patients suffering from a failing heart and in patients at risk for deterioration of cardiac function during percutaneous coronary interventions. Most commonly, a left-ventricular assist device is applied to a defective heart in order to assist left-ventricular functioning. In some cases, a right-ventricular assist device is used in order to assist right-ventricular functioning. Such assist devices are either designed to be permanently implanted or mounted on a catheter for temporary placement.
In accordance with some applications of the present invention, a blood pump includes an impeller. The impeller includes proximal and distal bushings, and two or more helical elongate elements (and typically three helical elongate elements) that extend from the proximal bushing to the distal bushing. An axial structure (e.g., a cylindrical axial structure, such as a spring) is disposed inside of the two or more helical elongate elements, and along an axis around which the helical elongate elements wind. A film of material is supported between the helical elongate elements and the axial structure such that each of the helical elongate elements with the film of material coupled thereto defines a respective blade of the impeller. An impeller-overexpansion-prevention element is disposed within the impeller. The impeller-overexpansion-prevention element is a single integrated structure comprising a ring disposed around the axial structure, and a plurality of elongate elements. Each of the elongate elements extends from the ring to a respective helical elongate element and is coupled to the respective helical elongate element so as to prevent radial expansion of the impeller. Typically, the elongate elements are configured to not resist compression, and the elongate elements are configured to prevent the impeller from radially expanding by applying tensile force to the helical elongate elements.
For some applications, along at least a portion of the length of the impeller, as the film of material transitions from one impeller blade to an adjacent blade, the film of material forms a continuous U-shaped curved surface, with the U-shaped curvature of the film of material being substantially unbroken at the axial structure. For some applications, when viewed from a distal end of the impeller, the pressure side of each of the blades of the impeller (i.e., the side that is configured to push the blood during operation of the impeller), is convex in a distal region of the impeller and is concave in a proximal region of the impeller. Typically, the pressure side of each of the blades of the impeller transforms to being substantially radially oriented in a region of the elongate element within the impeller blade.
For some applications, an impeller is manufactured by forming a structure having first and second bushings at proximal and distal ends of the structure, the first and second bushings being connected to one another by at least one elongate element. The at least one elongate element is made to radially expand and form at least one helical elongate element, at least partially by axially compressing the structure. The at least one helical elongate element is coated with a coupling agent, the coupling agent being configured to enhance bonding between the helical elongate element and an elastomeric layer. The coated helical elongate element is then coated with the elastomeric layer. Subsequently, an elastomeric film is coupled to the at least one helical elongate element, such that the at least one helical elongate element with the elastomeric film coupled thereto defines a blade of the impeller. For example, the helical elongate element may be dipped into an elastomeric material from which the elastomeric layer is made. For some applications, the elastomeric film comprises an elastic material having an ultimate elongation of more than 300 percent, having a melt flow index of at least 4, and/or having an ultimate tensile strength of more than 6000 psi.
For some applications, the impeller is driven to rotate by one or more drive magnets (which are coupled to a motor) driving one or more driven magnets to rotate, with the driven magnet being coupled to the impeller via a drive cable. In accordance with some applications of the invention, a magnetic phase difference between the driven magnet(s) and the drive magnet(s) is measured, and a physiological parameter of the subject is determined, at least partially in response thereto. For example, at least partially based upon variations in the phase difference, a computer processor may determine the difference between a subject's left-ventricular pressure and the subject's aortic pressure, the subject's left ventricular pressure, an event in the subject's cardiac cycle, the subject's cardiac afterload, and/or a different physiological parameter. For some applications, the physiological parameter is determined based upon the phase difference measurements in combination with one or more additional measurements, such as magnetic flux amplitude measurements, power consumed by the motor, and/or current consumed by the motor. Typically, such measurements are combined in a mathematical model, such as a linear regression model, and/or a space state model.
For some applications of the present invention, during operation of a ventricular assist device that functions as a blood pump, the subject's arterial pulsatility is measured and a parameter is derived from the subject's arterial pulsatility. Typically, as the rotation rate of the impeller increases, the flow rate that is generated by the blood pump increases. Typically, flow that is generated by the blood pump is non-pulsatile, since the blood pump is a continuous-flow blood pump rather than a pulsatile blood pump. As such, it is typically the case that are the rotation rate of the impeller increases and the flow rate that is generated by the blood pump increases, the subject's arterial pulsatility decreases. For some applications, the subject's arterial pulsatility is measured as the rotation rate of the impeller changes. Based upon the aforementioned measurements, a relationship between the arterial pulsatility and the impeller rotation rate and/or the pump flow rate is derived. For some applications, based upon the aforementioned relationship, the subject's native cardiac output is derived. For some such applications, the relationship between the subject's arterial pulsatility and the pump flow rate is extrapolated to determine what the pump flow rate would be when the subject's arterial pulsatility reaches zero. It is hypothesized that, at this value, the blood pump is replacing the native function of the heart and that the flow rate that is generated by the pump at this value provides an approximation of the subject's native cardiac output.
There is therefore provided, in accordance with some applications of the present invention, apparatus including:
In some applications, the impeller includes three helical elongate elements, such that the three helical elongate elements with the film of material coupled thereto defines three blades of the impeller, and a respective elongate element extends from the ring to each of the three helical elongate elements, such that there is a respective elongate element within each of the three blades of the impeller.
In some applications, the elongate elements are configured to not resist compression, and the elongate elements are configured to prevent the impeller from radially expanding by applying tensile force to the helical elongate elements.
In some applications, along at least a portion of the length of the impeller, as the film of material transitions from one impeller blade to an adjacent blade, the film of material forms a continuous U-shaped curved surface, with the U-shaped curvature of the film of material being substantially unbroken at the axial structure.
In some applications, when viewed from a distal end of the impeller, a pressure side of each of the blades of the impeller, which is configured to push the blood during operation of the impeller, is convex in a distal region of the impeller and is concave in a proximal region of the impeller. In some applications, the pressure side of each of the blades of the impeller transforms to being substantially radially oriented in a region of the elongate element within the impeller blade.
In some applications, the helical elongate elements are coated with a coupling agent that is configured to enhance bonding between the helical elongate element and the film of material. In some applications, the film of material includes an elastomeric material, and the coupling agent includes at least two functional groups that are configured to bond respectively with the helical elongate elements and with the elastomeric material. In some applications, the coupling agent includes a silane compound.
In some applications, the apparatus further includes a layer of an elastomer disposed between the film of material and the coupling agent. In some applications, the layer of the elastomer is configured to round the helical elongate elements. In some applications, the film of material is made of the elastomer. In some applications, the elastomer includes a polycarbonate-based thermoplastic polyurethane.
In some applications, the axial structure includes a spring. In some applications, the spring includes a tube at an intermediate location along a length of the spring and the ring is disposed around the tube.
There is therefore provided, in accordance with some applications of the present invention, a method, including:
In some applications, coupling the elastomeric film to the at least one helical elongate element, such that the at least one helical elongate element with the elastomeric film coupled thereto defines a blade of the impeller includes dipping the helical elongate element into an elastomeric material from which the elastomeric film is made.
In some applications, the elastomeric film includes an elastic material having an ultimate elongation of more than 300 percent. In some applications, the elastomeric film includes an elastic material having a melt flow index of at least 4. In some applications, the elastomeric film includes an elastic material having an ultimate tensile strength of more than 6000 psi.
In some applications, coating the at least one helical elongate element with the coupling agent includes coating the at least one helical elongate element with a silane compound containing a first functional group which is configured to bond with the helical elongate element, and a second functional group which is configured to bond with the elastomeric layer.
In some applications, the elastomeric layer is made of a given elastomeric material and the elastomeric film is made of the given elastomeric material. In some applications, the elastomeric layer is made of a first elastomeric material and the elastomeric film is made of a second elastomeric material that is different from the first elastomeric material.
In some applications, coating the coated helical elongate element with the elastomeric layer includes spraying an elastomer onto the coated helical elongate element. In some applications, coating the coated helical elongate element with the elastomeric layer includes at least partially rounding the coated helical elongate element.
In some applications, coating the coated helical elongate element with the elastomeric layer includes coating the coated helical elongate element with the elastomeric layer within a given time period of coating the at least one helical elongate element with the coupling agent. In some applications, coating the coated helical elongate element with the elastomeric layer further includes spraying additional elastomeric material onto the coated helical elongate element subsequent to coating the coated helical elongate element with the elastomeric layer within the given time period of coating the at least one helical elongate element with the coupling agent.
There is further provided, in accordance with some applications of the present invention, apparatus including:
In some applications, the set of sensors is additionally configured to measure a magnetic flux amplitude signal, and computer processor is configured to determine the physiological parameter of the subject at least partially based upon a combination of the magnetic flux amplitude signal and the detected magnetic phase difference.
In some applications, the computer processor is configured to determine a pressure difference between the subject's left ventricle and an aorta of the subject at least partially in response to the magnetic phase difference between the driven magnet and the drive magnet. In some applications, the computer processor is configured to determine left ventricular pressure of the subject at least partially in response to the magnetic phase difference between the driven magnet and the drive magnet. In some applications, the computer processor is configured to determine an event in a cardiac cycle of the subject at least partially in response to the magnetic phase difference between the driven magnet and the drive magnet.
In some applications, the set of sensors includes a first magnetometer configured to measure magnetic phase of the driven magnet, and a second magnetometer configured to measure magnetic phase of the driven magnet. In some applications, the second magnetometer is configured to measure the magnetic phase of the driven magnet by measuring a magnetic phase of the motor.
In some applications, the computer processor is configured to receive a signal indicative of current consumption by the motor and is configured to determine the physiological parameter of the subject at least partially based upon a combination of the current consumption by the motor and the detected magnetic phase difference. In some applications, the set of sensors is additionally configured to measure a magnetic flux amplitude signal, and computer processor is configured to determine the physiological parameter of the subject at least partially based upon a combination of the current consumption by the motor, the magnetic flux amplitude signal, and the detected magnetic phase difference.
There is further provided, in accordance with some applications of the present invention, apparatus including:
There is further provided, in accordance with some applications of the present invention, apparatus including:
For some applications, the frame has a length of more than 25 mm.
There is further provided, in accordance with some applications of the present invention, apparatus including:
In some applications, the axial structure includes a cylindrical axial structure. In some applications, the cylindrical axial structure includes a spring.
There is further provided, in accordance with some applications of the present invention, a method including:
There is further provided, in accordance with some applications of the present invention, apparatus including:
There is further provided, in accordance with some applications of the present invention, apparatus including:
There is further provided, in accordance with some applications of the present invention, apparatus including:
There is further provided, in accordance with some applications of the present invention, apparatus including:
There is further provided, in accordance with some applications of the present invention, apparatus including:
In general, in the specification and in the claims of the present application, the term “proximal” and related terms, when used with reference to a device or a portion thereof, should be interpreted to mean an end of the device or the portion thereof that, when inserted into a subject's body, is typically closer to a location through which the device is inserted into the subject's body. The term “distal” and related terms, when used with reference to a device or a portion thereof, should be interpreted to mean an end of the device or the portion thereof that, when inserted into a subject's body, is typically further from the location through which the device is inserted into the subject's body.
The scope of the present invention includes using the apparatus and methods described herein in anatomical locations other than the left ventricle and the aorta. Therefore, the ventricular assist device and/or portions thereof are sometimes referred to herein (in the specification and the claims) as a blood pump.
The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:
Reference is now made to
For some applications, the ventricular assist device is used to assist the functioning of a subject's left ventricle during a percutaneous coronary intervention. In such cases, the ventricular assist device is typically used for a period of up to 10 hours (e.g., up to six hours), during a period in which there is risk of developing hemodynamic instability (e.g., during or immediately following the percutaneous coronary intervention). Alternatively or additionally, the ventricular assist device is used to assist the functioning of a subject's left ventricle for a longer period (e.g., for example, 2-20 days, e.g., 4-14 days) upon a patient suffering from cardiogenic shock, which may include any low-cardiac-output state (e.g., acute myocardial infarction, myocarditis, cardiomyopathy, post-partum, etc.). For some applications, the ventricular assist device is used to assist the functioning of a subject's left ventricle for yet a longer period (e.g., several weeks or months), e.g., in a “bridge to recovery” treatment. For some such applications, the ventricular assist device is permanently or semi-permanently implanted, and the impeller of the ventricular assist device is powered transcutaneously, e.g., using an external antenna that is magnetically coupled to the impeller.
As shown in
For some applications (not shown), the ventricular assist device and/or delivery catheter 143 includes an ultrasound transducer at its distal end and the ventricular assist device is advanced toward the subject's ventricle under ultrasound guidance.
Referring now to
For some applications, control console 21 (shown in
For some applications, a purging system 29 (shown in
Typically, along distal section 102 of pump-outlet tube 24, a frame 34 is disposed within the pump-outlet tube around impeller 50. The frame is typically made of a shape-memory alloy, such as nitinol. For some applications, the shape-memory alloy of the frame is shape set such that at least a portion of the frame (and thereby distal section 102 of tube 24) assumes a generally circular, elliptical, or polygonal cross-sectional shape in the absence of any forces being applied to distal section 102 of tube 24. By assuming its generally circular, elliptical, or polygonal cross-sectional shape, the frame is configured to hold the distal portion of the pump-outlet tube in an open state. Typically, during operation of the ventricular assist device, the distal portion of the pump-outlet tube is configured to be placed within the subject's body, such that the distal portion of the pump-outlet tube is disposed at least partially within the left ventricle.
For some applications, along proximal section 106 of pump-outlet tube 24, the frame is not disposed within the pump-outlet tube, and the pump-outlet tube is therefore not supported in an open state by frame 34. Pump-outlet tube 24 is typically made of a blood-impermeable collapsible material. For example, pump-outlet tube 24 may include polyurethane, polyester, and/or silicone. Alternatively or additionally, the pump-outlet tube is made of polyethylene terephthalate (PET) and/or polyether block amide (e.g., PEBAX®). For some applications (not shown), the pump-outlet tube is reinforced with a reinforcement structure, e.g., a braided reinforcement structure, such as a braided nitinol tube. Typically, the proximal portion of the pump-outlet tube is configured to be placed such that it is at least partially disposed within the subject's ascending aorta. For some applications, the proximal portion of the pump-outlet tube traverses the subject's aortic valve, passing from the subject's left ventricle into the subject's ascending aorta, as shown in
As described hereinabove, the pump-outlet tube typically defines one or more blood inlet openings 108 at the distal end of the pump-outlet tube, via which blood flows into the pump-outlet tube from the left ventricle, during operation of the impeller. For some applications, the proximal portion of the pump-outlet tube defines one or more blood outlet openings 109, via which blood flows from the pump-outlet tube into the ascending aorta, during operation of the impeller. Typically, the pump-outlet tube defines a plurality of blood outlet openings 109, for example, between two and eight blood outlet openings (e.g., between two and four blood outlet openings). During operation of the impeller, the pressure of the blood flow through the pump-outlet tube typically maintains the proximal portion of the tube in an open state. For some applications, in the event that, for example, the impeller malfunctions, the proximal portion of the pump-outlet tube is configured to collapse inwardly, in response to pressure outside of the proximal portion of the pump-outlet tube exceeding pressure inside the proximal portion of the pump-outlet tube. In this manner, the proximal portion of the pump-outlet tube acts as a safety valve, preventing retrograde blood flow into the left ventricle from the aorta.
Referring again to
Typically, pump-outlet tube 24 includes a conical proximal portion 42 and a cylindrical central portion 44. (Typically, conical proximal portion 36 is disposed entirely within proximal section 106 described hereinabove, and the cylindrical central portion typically extends from within proximal section 106 to distal section 102.) The proximal conical portion is typically such that the narrow end of the cone is proximal with respect to the wide end of the cone. Typically, blood outlet openings 109 are defined by pump-outlet tube 24, such that the openings extend at least partially along proximal conical portion 42 of tube 24. For some such applications, the blood outlet openings are teardrop-shaped, as shown in
For some applications (not shown), the diameter of pump-outlet tube 24 changes along the length of the central portion of the pump-outlet tube, such that the central portion of the pump-outlet tube has a frustoconical shape. For example, the central portion of the pump-outlet tube may widen from its proximal end to is distal end, or may narrow from its proximal end to its distal end. For some applications, at its proximal end, the central portion of the pump-outlet tube has a diameter of between 5 and 7 mm, and at its distal end, the central portion of the pump-outlet tube has a diameter of between 8 and 12 mm.
Again referring to
Reference is now made to
Typically, distal conical portion 46 of the pump-outlet tube is configured to reduce a risk of structures from the left ventricle (such as chordae tendineae, trabeculae carneae, and/or papillary muscles) entering into the frame and potentially being damaged by the impeller and/or an axial shaft upon which the impeller is mounted, and/or causing damage to the left ventricular assist device. Therefore, for some applications, the small blood-inlet openings are shaped such that in at least one direction the widths (or spans) of the openings are less than 1 mm, e.g., 0.1-1 mm, or 0.3-0.8 mm. By defining such a small width (or span), it is typically the case that structures from the left ventricle (such as chordae tendineae, trabeculae carneae, and/or papillary muscles) are blocked from entering into the frame. For some applications, the small blood inlet openings define generally rectangular (or elliptical) shapes. For some such applications, the ratio of the lengths to the widths of the small blood inlet openings is between 1.1:1 and 4:1, e.g., between 3:2 and 5:2. For some applications, by having such shapes, the small blood-inlet openings are configured (a) to block structures from the left ventricle (such as chordae tendineae, trabeculae carneae, and/or papillary muscles) from entering into the frame, but (b) to provide the portion of the pump-outlet tube that defines the small blood inlet openings with a relatively high porosity. Typically, the portion of the pump-outlet tube that defines the small blood inlet openings has a porosity of more than 40 percent, e.g., more than 50 percent (where porosity is defined as the percentage of the area of this portion that is porous to blood flow).
Reference is now made to
Referring to
As shown in
Typically, braided structure 260 and/or mesh 282 separates the one or more blood inlet openings 108 from inner structures of the left ventricle in three dimensions. In this manner, braided structure 260 and/or mesh 282 separates one or more blood inlet openings 108 from the interventricular septum, chordae tendineae, papillary muscles, trabeculae carneae, and/or the apex of the left ventricle. As an alternative or in addition to the braided structure and/or the mesh being used to separate the one or more blood inlet openings 108 from inner structures of the left ventricle, cells of frame 34 in the vicinity of blood inlet openings 108 are configured to define openings that are smaller than those in other portions of the frame. For example, the cells in the distal conical portion of the frame may define openings that are smaller than openings defined by cells in the proximal conical portion of the frame. Alternatively or additionally, the cells in the distal conical portion of the frame may define openings that are smaller than openings defined by cells in the cylindrical portion of the frame.
Reference is now made to
Typically, the frame is a stent-like frame, in that it comprises struts that, in turn, define cells. Further typically, the frame is covered with pump-outlet tube 24, and/or covered with an inner lining 39, described hereinbelow, with reference to
Referring to
Still referring to
Still referring to
Typically, when disposed in its non-radially constrained configuration, frame 34 has a total length of more than 25 mm (e.g., more than 30 mm), and/or less than 50 mm (e.g., less than 45 mm), e.g., 25-50 mm, or 30-45 mm. Typically, when disposed in its radially-constrained configuration (within delivery catheter 143), the length of the frame increases by between 2 and 5 mm. Typically, when disposed in its non-radially constrained configuration, the cylindrical portion of frame 34 has a length of more than 10 mm (e.g., more than 12 mm), and/or less than 25 mm (e.g., less than 20 mm), e.g., 10-25 mm, or 12-20 mm. For some applications, a ratio of the length of the cylindrical portion of the frame to the total length of the frame is more than 1:4 and/or less than 1:2, e.g., between 1:4 and 1:2.
Reference is now made to
Each of the helical elongate elements, together with the film extending from the helical elongate element to the spring, defines a respective impeller blade, with the helical elongate elements defining the outer edges of the blades, and the axial spring defining the axis of the impeller. Typically, the film of material extends along and coats the spring. For some applications, sutures 53 (e.g., polyester sutures, shown in
Enlargements A and B of
Typically, proximal ends of spring 54 and helical elongate elements 52 extend from a proximal bushing (i.e., sleeve bearing) 64 of the impeller, such that the proximal ends of spring 54 and helical elongate elements 52 are disposed at approximately the same point and have a similar radial distance from the longitudinal axis of the impeller. Similarly, typically, distal ends of spring 54 and helical elongate elements 52 extend from a distal bushing 58 of the impeller, such that the distal ends of spring 54 and helical elongate elements 52 are disposed at approximately the same point and have a similar radial distance from the longitudinal axis of the impeller. Typically, spring 54, as well as proximal bushing 64 and distal bushing 58 of the impeller, define a lumen therethrough, such that the impeller defines a continuous lumen 62 therethrough (shown in
Reference is now made to
As shown in
For some applications, when the impeller and frame 34 are both disposed in non-radially-constrained configurations, gap G between the outer edge of the impeller and the inner lining 39, at the location at which the span of the impeller is at its maximum, is greater than 0.05 mm (e.g., greater than 0.1 mm), and/or less than 1 mm (e.g., less than 0.4 mm), e.g., 0.05-1 mm, or 0.1-0.4 mm. For some applications, when the impeller is disposed in its non-radially-constrained configurations, the outer diameter of the impeller at the location at which the outer diameter of the impeller is at its maximum is more than 7 mm (e.g., more than 8 mm), and/or less than 10 mm (e.g., less than 9 mm), e.g., 7-10 mm, or 8-9 mm. For some applications, when frame 34 is disposed in its non-radially-constrained configuration, the inner diameter of frame 34 (as measured from the inside of inner lining 39 on one side of the frame to the inside of inner lining on the opposite side of the frame) is greater than 7.5 mm (e.g., greater than 8.5 mm), and/or less than 10.5 mm (e.g., less than 9.5 mm), e.g., 7.5-10.5 mm, or 8.5-9.5 mm. For some applications, when the frame is disposed in its non-radially-constrained configuration, the outer diameter of frame 34 is greater than 8 mm (e.g., greater than 9 mm), and/or less than 13 mm (e.g., less than 12 mm), e.g., 8-13 mm, or 9-12 mm.
Typically, an axial shaft 92 passes through the axis of impeller 50, via lumen 62 of the impeller. Further typically, the axial shaft is rigid, e.g., a rigid tube. (For some applications, a portion of the axial shaft is at least partially flexible, e.g., as described with reference to
Referring again to
For some applications, elongate elements 67 maintain helical elongate element 52 (which defines the outer edge of the impeller blade) within a given distance with respect to central axial spring 54. In this manner, elongate elements 67 are configured to prevent the outer edge of the impeller from being forced radially outward due to forces exerted upon the impeller during the rotation of the impeller. In other words, elongate elements 67 act as impeller-expansion-prevention elements. Elongate elements 67 are thereby configured to maintain the gap between the outer edge of the blade of the impeller and the inner surface of frame 34, during rotation of the impeller. Typically, more than one (e.g., more than two) and/or fewer than eight (e.g., fewer than four) elongate elements 67 are used in the impeller, with each of elongate elements 67 typically being doubled (i.e., extending radially from central axial spring 54 to an outer edge of helical elongate element 52, and then returning from the helical elongate element back to the central axial spring). For some applications, a plurality of elongate elements 67, each of which extends from the spring to a respective helical elongate element 52 and back to central axial spring 54, are formed from a single piece of string or a single wire.
For some applications, the impeller is manufactured in the following manner. Proximal bushing 64, distal bushing 58, and helical elongate elements 52 are cut from a tube of shape-memory material, such as nitinol. The cutting of the tube, as well as the shape setting of the shape-memory material, is typically performed such that the helical elongate elements and the bushings are defined by a tube of shape-memory material that is cut and shape set, e.g., using generally similar techniques to those described in U.S. Pat. No. 10,039,874 to Schwammenthal. Typically, spring 54 is inserted into the cut and shape-set tube, such that the spring extends along the length of the tube from at least the proximal bushing to the distal bushing. For some applications, the spring is inserted into the cut and shape-set tube while the spring is in an axially compressed state, and the spring is configured to be held in position with respect to the tube, by exerting a radial force upon the proximal and distal bushings. Alternatively or additionally, portions of the spring are welded to the proximal and distal bushings. For some applications, the spring is cut from a tube of a shape-memory material, such as nitinol. For some such applications, the spring is configured such that, when the spring is disposed in a non-radially-constrained configuration (in which the spring is typically disposed during operation of the impeller), there are substantially no gaps between windings of the spring and adjacent windings thereto.
For some applications, subsequent to spring 54 being inserted into the cut and shape-set tube, elongate elements 67, as described hereinabove, are placed such as to extend between the spring and one or more of helical elongate elements 52, for example, in the following manner. A mandrel (e.g., a polyether ether ketone (PEEK) and/or a polytetrafluoroethylene (PTFE) mandrel) is inserted through the lumen defined by the spring and the bushings. A string or a wire is then threaded such that it passes (a) from the mandrel to a first one of the helical elongate elements 52, (b) back from the first of the helical elongate elements 52 to the mandrel, (c) around the mandrel, and to a second one of the helical elongate elements 52, (d) back from the second one of the helical elongate elements 52 to the mandrel, etc. Once the string or the wire has been threaded from the mandrel to each of helical elongate elements 52 and back again, the ends of the string or the wire are coupled to each other, e.g., by tying them to each other. For some applications, a separate string or wire is used for each of the helical elongate elements 52. Typically, each string or wire passes from the helical elongate element around the mandrel and back to the helical elongate element, with the two ends of the string being tied to each other. For some applications, at a longitudinally-central location of spring 54, the spring is shaped to define a tube 70 (i.e., at this location the spring does not define windings), as shown, and the string or the wire is wound around the tube. For some applications, the string or the wire is not wound around the tube, and does not cross the longitudinal axis of the impeller. Rather, the string or the wire is secured with respect to tube 70 via a securing element 75 (such as a ring), as described in further detail hereinbelow with reference to
For some applications, at this stage, sutures 53 (e.g., polyester sutures) are wound around helical elongate elements 52, in order to facilitate bonding between the film of material (which is typically an elastomer, such as polyurethane, or silicone) and helical elongate elements 52 (which is typically a shape-memory alloy, such as nitinol), in a subsequent stage of the manufacture of the impeller. For some applications, sutures (e.g., polyester sutures, not shown) are wound around spring 54. Typically, the sutures are configured to facilitate bonding between the film of material (which is typically an elastomer, such as polyurethane, or silicone) and the spring (which is typically a shape-memory alloy, such as nitinol), in the subsequent stage of the manufacture of the impeller.
Typically, at this stage, a structure 59 has been assembled that is as shown in
The result of the process described above is typically that there is a continuous film of material extending between each of the helical elongate elements to the spring, and also extending along the length of the spring, such as to define a tube, with the spring embedded within the tube. The portions of the film that extend from each of the helical elongate elements to the spring define the impeller blades. For applications in which the impeller includes elongate elements 67, the elongate elements are typically embedded within these portions of film.
Typically, elongate elements 67 are configured to limit the radial expansion of the blades of the impeller, as described in detail hereinabove. For some applications, the span to which the elongate elements allow the impeller blades to expand is set using the following technique. As described in the above paragraph, the two ends of the string or the wire within respective blades are tied to each other. Typically, the ends of the string or the wire in each of the blade are tied such that the spans of the impeller blades are set to less than the span of the impeller that is desired, and such that there is some slack in the knots via which the two ends of the strings or the wires are tied to each other. Subsequently, the outer edges of the impeller blades are pulled apart from each other, such as to increase the spans of the impeller blades, by tightening the knots between the ends of the strings or the wires within the respective blades. The process is repeated and the spans of the impeller blades are measured, until the desired span of the impeller blades has been achieved. Subsequently, structure 59 with the string or wires tied thereto is dipped in an elastomeric material from which film 56 is made, and the elastomeric material is allowed to dry, such that the strings or the wires are maintained with the ends tied to each other at the desired span of the impeller blades.
Typically, impeller 50 is inserted into the left ventricle transcatheterally, while impeller 50 is in a radially-constrained configuration. In the radially-constrained configuration, both helical elongate elements 52 and central axial spring 54 become axially elongated, and radially constrained. Typically film 56 of the material (e.g., silicone and/or polyurethane) changes shape to conform to the shape changes of the helical elongate elements and the central axial spring, both of which support the film of material. Typically, using a spring to support the inner edge of the film allows the film to change shape without the film becoming broken or collapsing, due to the spring providing a large surface area to which the inner edge of the film bonds. For some applications, using a spring to support the inner edge of the film reduces a diameter to which the impeller can be radially constrained, relative to if, for example, a rigid shaft were to be used to support the inner edge of the film, since the diameter of the spring itself can be reduced by axially elongating the spring.
As described hereinabove, for some applications, proximal bushing 64 of impeller 50 is coupled to axial shaft 92 such that the axial position of the proximal bushing with respect to the shaft is fixed, and distal bushing 58 of the impeller is slidable with respect to the shaft. For some applications, when the impeller is radially constrained for the purpose of inserting the impeller into the ventricle or for the purpose of withdrawing the impeller from the subject's body, the impeller axially elongates by the distal bushing sliding along the axial shaft distally. Subsequent to being released inside the subject's body, the impeller assumes its non-radially-constrained configuration (in which the impeller is typically disposed during operation of the impeller), as shown in
It is noted that, for illustrative purposes, in some of the figures, impeller 50 is shown without including all of the features of the impeller as shown and described with respect to
For some applications, the following technique is used to enhance bonding of the elastomeric material to the at least one helical elongate element in a manner that does not cause a protrusion from the effective edge of the impeller blade. Prior to being dipped in the elastomeric material, the helical elongate elements are coated with a coupling agent. Typically, a coupling agent is selected that has at least two functional groups that are configured to bond respectively with the helical elongate elements and with the elastomeric material. For example, a silane compound, such as n-(2-aminoethyl)-3-aminopropyltrimethoxysilane, may be used, with the silane compound containing a first functional group (e.g., (OH)) which is configured to bond with the helical elongate elements (which are typically made of an alloy, such a nitinol), and the silane compound containing a second functional group (e.g., (NH2)) which is configured to bond with the elastomeric material. Typically, the functional groups in the coupling agent are only active for a given time period (e.g., approximately an hour or less). Therefore, during this time period, a coat of elastomeric material is applied around the helical elongate elements. Typically, the coat of elastomeric material is the same elastomeric material or a similar elastomeric material to that used in film 56. For example, a polycarbonate-based thermoplastic polyurethane, such as Aromatic Carbothane™ (e.g., Aromatic Carbothane™ 75A) may be used in film 56, and the coating may be the same polycarbonate-based thermoplastic polyurethane, or a similar polycarbonate-based thermoplastic polyurethane, such as Pellethane® (e.g., Pellethane® 90A).
For some applications, subsequent to the coating having been applied to the helical elongate elements, the coated helical elongate elements are sprayed with a further layer of an elastomeric material. Typically, the elastomeric material that is sprayed is the same elastomeric material or a similar elastomeric material to that used as film 56. For example, a polycarbonate-based thermoplastic polyurethane, such as Aromatic Carbothane™ (e.g., Aromatic Carbothane™ 75A) may be used as film 56, and the sprayed material may be the same polycarbonate-based thermoplastic polyurethane, or a similar polycarbonate-based thermoplastic polyurethane, such as Pellethane® (e.g., Pellethane® 90A). For some applications, applying the spray to the helical elongate elements rounds the helical elongate elements. Typically, when the helical elongate element has a rounded cross section, the elastomeric material forms a layer having a substantially uniform thickness at the interface with the helical elongate element. For some applications, the step of applying the coat of elastomeric material, as described in the previous paragraph, at least partially rounds the helical elongate elements.
For some applications, subsequent to the spray having been applied to the helical elongate elements, structure 59 is dipped in the elastomer from which film 56 is made, e.g., as described hereinabove. For some applications, the material from which the film is made is an elastic material having an ultimate elongation of more than 300 percent, e.g., more than 400 percent. Typically, the material has a relatively low molecular weight. For some applications, the material has a melt flow index (which is an indirect measure of molecular weight) of at least 4, e.g., at least 4.3. For some applications, the material has an ultimate tensile strength of more than 6000 psi, e.g., more than 7000 psi, or more than 7500 psi. For some applications, the material is a thermoplastic polyurethane, e.g., a Carbothane™. For some applications, Aromatic Carbothane™ 75 A is used. Typically, such materials combine one or more of the following properties: no outer diameter loss caused during the dip process, resistance to fatigue, resistance to becoming misshaped by being crimped, and low outer diameter loss during crimping.
In accordance with the above description of the application of film 56 to the helical elongate elements, the scope of the present invention includes any technique whereby, prior to the helical elongate elements being dipped into the elastomeric material from which film 56 is made, additional layers of the same elastomeric material, a different elastomeric material, and/or a mediating material are applied to the helical elongate elements, whether by spraying, dipping, or a different coating method. For some applications, additional layers of elastomeric material are configured to round the helical elongate elements, and/or to act as mediators to enhance bonding between the helical elongate elements and film 56 of material. For some applications, a mediating material (such as silane) is configured to act as a mediator to enhance bonding between the helical elongate elements and film 56 of material.
Reference is now made to
It is noted that the scope of the present application includes using single integrated impeller-overexpansion-prevention element 72 with an impeller having a different construction from that shown in
Reference is now made to
Reference is now made to
When viewed from the distal end of the impeller, the pressure side of each of the blades of the impeller (i.e., the side that pushes the blood during operation of the impeller) is convex in the distal region of the impeller, transforms to being substantially radially oriented in the region of the elongate elements 67, and then is concave in the proximal region of the impeller. (For illustrative purposes, the opposite side to the pressure side of the impeller blades (i.e., the “non-pressure side”) is indicated in FIG. 3Gii.) Thus, when in use, the blood that is pumped by the impeller is first pumped by a convex impeller surface and then pumped by a concave impeller surface. For some applications, elongate elements 67 are disposed approximately halfway along the length of the impeller blade and are configured to facilitate the transition of the film of material from having a convex curvature to having a concave curvature. Thus, typically, at the region of elongate element 67 within the impeller blade, the blade is substantially radially oriented. Typically, by defining a concave surface in the proximal region of the impeller, the pressure side of the blades of the impeller are configured to add flow and/or pressure to the blood even after blood has had flow and/or pressure applied to it within the distal region of the impeller. Alternatively (not shown), the pressure side of each of the blades of the impeller (i.e., the side that pushes the blood during operation of the impeller) is concave in the distal region of the impeller, transforms to being substantially radially oriented in the region of the elongate elements 67, and then is convex in the proximal region of the impeller.
Reference is now made to
As indicated in
As described hereinabove, typically, axial shaft 92 passes through the axis of impeller 50, via lumen 62 of the impeller (lumen 62 being shown in
Typically, coupling portion 31 of frame 34 is coupled to proximal radial bearing 116, for example, via snap-fit coupling, and/or via welding. Typically, at the distal end of frame 34 distal strut junctions 33 are placed into grooves defined by the outer surface of distal radial bearing 118, the grooves being shaped to conform with the shapes of the distal strut portions. The proximal end of distal-tip element 107 (which defines distal-tip portion 120) typically holds the distal strut portions in their closed configurations around the outside of distal radial bearing 118, as shown. For some applications, the device includes a distal extension 121 that extends distally from the distal radial bearing. Typically, the extension is configured to stiffen a region of the distal-tip element into which the distal end of shaft 92 moves (e.g., an axial-shaft-receiving tube 126, described hereinbelow, or a portion thereof).
As described above, axial shaft 92 is radially stabilized via proximal radial bearing 116 and distal radial bearing 118. In turn, the axial shaft, by passing through lumen 62 defined by the impeller, radially stabilizes the impeller with respect to the inner surface of frame 34, such that even a relatively small gap between the outer edge of the blade of the impeller and the inner surface of frame 34 (e.g., a gap that is as described above) is maintained, during rotation of the impeller, as described hereinabove. For some applications, axial shaft 92 is made of stainless steel, and proximal bearing 116 and/or distal bearing 118 are made of hardened steel. Typically, when crimping (i.e., radially constraining) the impeller and the frame for the purpose of inserting the impeller and the frame into the subject's body, distal bushing 58 of the impeller is configured to slide along the axial shaft in the distal direction, such that the impeller becomes axially elongated, while the proximal bushing remains in an axially fixed position with respect to the axial shaft. More generally, the impeller changes from its radially-constrained configuration to its non-radially-constrained configuration, and vice versa, by the distal bushing sliding over the axial shaft, while the proximal bushing remains in an axially fixed position with respect to the axial shaft.
Typically, the impeller itself is not directly disposed within any radial bearings or thrust bearings. Rather, bearings 116 and 118 act as radial bearings with respect to the axial shaft. Typically, pump portion 27 (and more generally ventricular assist device 20) does not include any thrust bearing that is configured to be disposed within the subject's body and that is configured to oppose thrust generated by the rotation of the impeller. For some applications, one or more thrust bearings are disposed outside the subject's body (e.g., within motor unit 23, shown in
Reference is now made to
For some applications, by moving in the axial back-and-forth motion, the portions of the axial shaft that are in contact with proximal bearing 116 and distal bearing 118 are constantly changing. For some such applications, in this manner, the frictional force that is exerted upon the axial shaft by the bearings is spread over a larger area of the axial shaft than if the axial shaft were not to move relative to the bearings, thereby reducing wear upon the axial shaft, ceteris paribus. Alternatively or additionally, by moving in the back-and-forth motion with respect to the bearing, the axial shaft cleans the interface between the axial shaft and the bearings from any residues, such as blood residues.
For some applications, when frame 34 and impeller 50 are in non-radially-constrained configurations thereof (e.g., when the frame and the impeller are deployed within the left ventricle), the length of the frame exceeds the length of the impeller by at least 2 mm (e.g., at least 4 mm, or at least 8 mm). Typically, the proximal bearing 116 and distal bearing 118 are each 2-4 mm (e.g., 2-3 mm) in length. Further typically, the impeller and the axial shaft are configured to move axially within the frame in the back-and-forth motion at least along the length of each of the proximal and distal bearings, or at least along twice the length of each of the bearings. Thus, during the back-and-forth axial movement of the axial shaft, the axial shaft is wiped clean on either side of each of the bearings.
For some applications, the range of the impeller motion is as indicated in
Reference is again made to
Typically, during the insertion of the ventricular assist device into the subject's ventricle, delivery catheter 143 is placed over impeller 50 and frame 34 and maintains the impeller and the frame in their radially-constrained configurations. For some applications, distal-tip element 107 extends distally from the delivery catheter during the insertion of the delivery catheter into the subject's ventricle. For some applications, at the proximal end of the distal-tip element, the distal-tip element has a flared portion 124 that acts as a stopper and prevents the delivery catheter from advancing beyond the flared portion.
It is noted that the external shape of distal-tip portion in
Reference is now made to
Reference is now made to
For some applications, computer processor 25 of control console 21 (
Typically, motor unit 23 includes a motor 74 that is configured to impart rotational motion to impeller 50, via drive cable 130. As described in further detail hereinbelow, typically, the motor is magnetically coupled to the drive cable. For some applications, an axial motion driver 76 is configured to drive the motor to move in an axial back-and-forth motion, as indicated by double-headed arrow 79. Typically, by virtue of the magnetic coupling of the motor to the drive cable, the motor imparts the back-and-forth motion to the drive cable, which it turn imparts this motion to the impeller. As described hereinabove and hereinbelow, for some applications, the drive cable, the impeller, and/or the axial shaft undergo axial back-and-forth motion in a passive manner, e.g., due to cyclical changes in the pressure gradient against which the impeller is pumping blood. Typically, for such applications, motor unit 23 does not include axial motion driver 76.
For some applications, the magnetic coupling of the motor to the drive cable is as shown in
It is noted that in the application shown in
As described hereinabove, typically purging system 29 (shown in
Typically, magnet 82 and pin 131 are held in axially relatively-fixed positions within motor unit 23. (For some applications, magnet 82 does have a small freedom of movement axially and/or rotationally relative to other components of the motor unit, such as the driving magnets 77. For some applications, such movement is measurable, as described in further detail hereinbelow.) The proximal end of the drive cable is typically coupled to pin 131 and is thereby held in an axially fixed position relative to the pin. Typically, drive cable 130 extends from pin 131 to axial shaft 92 and thereby at least partially fixes the axial position of the axial shaft, and in turn impeller 50. For some applications, the drive cable is somewhat stretchable. For example, the drive cable may be made of coiled wires that are stretchable, as described in further detail hereinbelow. The drive cable typically allows the axial shaft (and in turn the impeller) to assume a range of axial positions (by the drive cable becoming more or less stretched), but limits the axial motion of the axial shaft and the impeller to being within a certain range of motion (by virtue of the proximal end of the drive cable being held in an axially relatively-fixed position, and the stretchability of the drive cable being limited).
Reference is now made to
As described hereinabove, for some applications, impeller 50 and axial shaft 92 are configured to move axially back-and-forth within frame 34 in response to forces that act upon the impeller, and without requiring the axial shaft to be actively driven to move in the axial back-and-forth motion. Typically, over the course of the subject's cardiac cycle, the pressure difference between the left ventricle and the aorta varies from being approximately zero during systole to a relatively large pressure difference (e.g., 50-70 mmHg) during diastole. For some applications, due to the increased pressure difference that the impeller is pumping against during diastole (and due to the drive cable being stretchable), the impeller is pushed distally with respect to frame 34 during diastole, relative to the location of the impeller with respect to frame 34 during systole. In turn, since the impeller is connected to the axial shaft, the axial shaft is moved forward. During systole, the impeller (and, in turn, the axial shaft) move back to their systolic positions. In this manner, the axial back-and-forth motion of the impeller and the axial shaft is generated in a passive manner, i.e., without requiring active driving of the axial shaft and the impeller, in order to cause them to undergo this motion.
Reference is now made to
For some applications, during operation of the ventricular assist device, computer processor 25 of control console 21 (
Referring again to
For some applications, the magnetometer measurements are initially calibrated, such that the change in magnetic flux per unit change in pressure against which the impeller is pumping (i.e., per unit change in the pressure difference between the left ventricle and the aorta, or per unit change in the pressure gradient) is known. It is known that, in most subjects, at systole, the left-ventricular pressure is equal to the aortic pressure. Therefore, for some applications, the subject's aortic pressure is measured, and the subject's left-ventricular pressure at a given time is then calculated by the computer processor, based upon (a) the measured aortic pressure, and (b) the difference between the magnetic flux measured by the magnetometer at that time, and the magnetic flux measured by the magnetometer during systole (when the pressure in the left ventricle is assumed to be equal to that of the aorta). For example, the subject's aortic pressure may be measured by measuring pressure in a channel 224 defined by delivery catheter 143, as described in further detail hereinbelow. For some applications, alternative or additional physiological parameters are determined using the above-described technique. For example, events in the subject's cardiac cycle and/or the subject's cardiac afterload may be determined.
For some applications, generally similar techniques to those described in the above paragraph are used, but as an alternative to or in addition to utilizing magnetometer measurements, a different parameter is measured in order to determine left ventricular blood pressure (and/or a different physiological parameter, e.g., events in the subject's cardiac cycle and/or the subject's cardiac afterload) at a given time. For example, it is typically the case that there is a relationship between the amount of power (and/or current) that is required to power the rotation of the impeller at a given rotation rate and the pressure difference that is generated by the impeller. (It is noted that some of the pressure difference that is generated by the impeller is used to overcome the pressure gradient against which the impeller is pumping, and some of the pressure difference that is generated by the impeller is used to actively pump the blood from the left ventricle to the aorta, by generating a positive pressure difference between the left ventricle and the aorta. Moreover, the relationship between the aforementioned components typically varies over the course of the cardiac cycle.) For some applications, calibration measurements are performed, such that the relationship between (a) power (and/or current) consumption by the motor that is required to rotate the impeller at a given rotation rate and (b) the pressure difference that is generated by the impeller, is known. For some applications, the subject's aortic pressure is measured, and the subject's left-ventricular pressure at a given time is then calculated by the computer processor, based upon (a) the measured aortic pressure, (b) the power (and/or current) consumption by the motor that is required to rotate the impeller at a given rotation rate at that time, and (c) the predetermined relationship between power (and/or current) consumption by the motor that is required to rotate the impeller at a given rotation rate and the pressure difference that is generated by the impeller. For some applications, the above-described technique is performed while maintaining the rotation rate of the impeller at a constant rate. Alternatively or additionally, the rotation rate of the impeller is varied, and the variation of the rotation rate of the impeller is accounted for in the above-described calculations. For some applications, alternative or additional physiological parameters are determined using the above-described technique. For example, events in the subject's cardiac cycle and/or the subject's cardiac afterload may be determined.
Typically, tube 24 has a known cross-sectional area (when the tube is in an open state due to blood flow through the tube). For some applications, the flow through tube 24 that is generated by the impeller is determined based on the determined pressure difference that is generated by the impeller, and the known cross-sectional area of the tube. For some applications, such flow calculations incorporate calibration parameters in order to account for factors such as flow resistance that are specific to the ventricular assist device (or type of ventricular assist device) upon which the calculations are performed. For some applications, the ventricular pressure-volume loop is derived, based upon the determined ventricular pressure.
Referring again to
The torque that is transmitted to the driven magnet typically gives rise to a phase difference between the signal that is measured by magnetometer 84 (which measures magnetic flux density of the driven magnet) and the signal that is measured by second magnetometer 84A (which measures magnetic flux density of the motor and/or the driving magnet). For some applications, as the torque upon the impeller varies, this gives rise to a variation in the phase difference between the signal that is measured by magnetometer 84 and the signal that is measured by second magnetometer 84A. For some applications, the computer processor detects the variation in the aforementioned phase difference, and determines a physiological parameter of the subject, at least partially in response thereto. For example, at least partially based upon variations in the phase difference, the computer processor may determine the difference between the subject's left-ventricular pressure and the subject's aortic pressure, the subject's left ventricular pressure, an event in the subject's cardiac cycle, the subject's cardiac afterload, and/or a different physiological parameter. For some applications, the technique described in the present paragraph is used as an alternative to the above-described technique for using magnetic flux density measurements and/or power consumption measurements to determine physiological parameters. Alternatively, two or more of these techniques are used in combination with each other. For example, the subject's physiological parameters may be determined based upon a mathematical model that incorporates two or more measurements, and/or one of the techniques may be used to validate estimations of the subject's physiological parameters that are made using another one of the techniques.
Reference is now made to
The graph shown in
The graph shown in
In accordance with the above, and in accordance with some applications of the invention, a magnetic phase difference between the one or more driven magnets and the one or more drive magnets is measured, and a physiological parameter of the subject is determined, at least partially in response thereto. For example, at least partially based upon variations in the phase difference, the computer processor may determine the difference between the subject's left-ventricular pressure and the subject's aortic pressure, the subject's left ventricular pressure, an event in the subject's cardiac cycle, the subject's cardiac afterload, and/or a different physiological parameter. For some applications, the physiological parameter is determined based upon the phase difference measurements in combination with one or more additional measurements, such as magnetic flux amplitude measurements, power consumed by the motor, and/or current consumed by the motor. Typically, such measurements are combined into a mathematical model, such as a linear regression model, and/or a space state model.
Reference is now made to
For some applications, the motor-unit support comprises a curved base 176, which is configured to be placed on the patient's upper leg, as well as a motor-unit dock 178, upon which the motor unit is docked. Typically, there is a gap 179 between the motor-unit dock and the curved base of the motor-unit support, such that the patient's leg is separated from the motor unit by the gap, with the gap serving to at least partially isolate the patient's leg from vibrations and/or heat that is generated by the motor unit, during operation of the motor unit. For some applications, the motor-unit support is configured to receive a strap 174 through the gap, the strap being used to strap the motor-unit support to the patient leg. Typically the strap is elasticated and/or is adjustable to fit the patient's leg.
Typically, the motor-unit support includes coupling elements 180 for coupling the motor-unit dock to the motor unit (shown in
Reference is now made to
The drive cable is typically disposed within a first outer tube 140, which is configured to remain stationary while the drive cable undergoes rotational and/or axial back-and-forth motion. The first outer tube is configured to effectively act as a bearing tube for the drive cable, along the length of the drive cable. As such, first outer tube is also referred to herein as the drive-cable bearing tube. The drive-cable bearing tube is described in further detail hereinbelow with reference to
Typically, during insertion of the impeller and the frame into the left ventricle, impeller 50 and frame 34 are maintained in a radially-constrained configuration by delivery catheter 143. As described hereinabove, in order for the impeller and the frame to assume non-radially-constrained configurations, the delivery catheter is retracted. For some applications, as shown in
For some applications, drive cable 130 is made up of a plurality of coaxial layers each of which comprises plurality of coiled wires 134. For example, as shown in
Reference is again made to
Referring again to
For some applications, in addition to configuring the directions of the coiled wires within the drive cable in the above-described manner, the drive cable is initially held within frame 34 in a preloaded (i.e., pretensioned) state, such that even before the drive cable and the impeller start to rotate, it is already stretched. That is to say that, even before the drive cable and the impeller start to rotate, the drive cable is in a stretched state relative to the drive cable rest state (i.e., the state of the drive cable in the absence of any external forces acting upon the drive cable.) For example, coupling element 65 (which in some applications is proximally-extended, as described hereinabove with reference to
For some applications, ventricular assist device is configured such that, even during diastole, even when the impeller is rotating at more than 20,000 RPM, there is an axial distance between the location of the impeller at which the impeller is at its maximum diameter and the blood inlet opening. For example, the ventricular assist device is configured such that, during diastole, even when the impeller is rotating at more than 20,000 RPM, there is an axial distance of more than 3 mm (e.g., more than 5 mm) between the location of the impeller at which the impeller is at its maximum diameter and the blood inlet opening. For some such applications, this reduces hemolysis (relative to if there were a smaller axial distance or no axial distance between the location of the impeller at which the impeller is at its maximum diameter and the blood inlet opening) and/or enhances the efficacy of the impeller by reducing turbulence, by allowing flow lines of the blood that enters the blood inlet opening to become at least partially aligned with the longitudinal axis of the impeller prior to being pumped by the impeller.
Typically, within outer layer 136 of the drive cable, there are fewer coiled wires than within inner layer 138, and each of the wires is wider than in those within the inner layer. For example, the ratio of the number of wires within the outer layer to those within the inner layer may be between 2:3 and 2:5. For some application, the outer layer contains 4-8 wires, and the inner layer contains 10-14 wires. For some applications, the ratio of the diameter of the wires within the outer layer to the diameter of the wires within the inner layer is between 3:2 and 5:2. For some applications, the diameters of the wires within the outer layer are between 0.15 mm and 0.2 mm, and the diameters of the wires within the outer layer are between 0.075 mm and 0.125 mm. Typically, the coiled wires of both layers are made of an alloy. For some applications, the inner diameter of the drive cable (i.e., the diameter of lumen 132) is between 0.4 mm and 0.7 mm. Further typically, the outer diameter of the drive cable (defined by outer layer 138) is between 1 mm and 1.2 mm. For some applications, drive cable 130 has a total length of more than 1 m (e.g., more than 1.1 m), and/or less than 1.4 m (e.g., less than 1.3 m), e.g., 1-1.4 m, or 1.1-1.3 m. Typically, the diameters of lumen 122 and lumen 133 are generally similar to that of lumen 132.
For some applications, the drive cable includes first (distal) and second (proximal) portions. Typically, the first portion is configured to be disposed in the subject's aortic arch, and the second portion is configured to be disposed along the descending aorta, and typically to extend until motor unit 23, outside the subject's body. Typically, at locations at which drive cable 130 undergoes substantial curvature, such as the aortic arch, it is desirable for the drive cable to be relatively flexible. However, a drive cable having greater flexibility is typically also more axially stretchable than a drive cable having less flexibility. Therefore, for some applications, there is a tradeoff between wanting the drive cable being flexible enough to conform to the curvature of the aortic arch, but on the other hand not wanting the drive cable to undergo substantial axial stretching (which may result in a loss of control over the axial positions of the impeller). For some applications, the respective portions of the drive cable have respective levels of flexibility. For example, the first portion of the drive cable that is configured to be disposed in the aortic arch may have a first flexibility, while the second portion of the drive cable that is configured to be disposed in the descending aorta may have a second flexibility, the first flexibility being greater than the second flexibility.
For some applications, the distal portion of the drive cable is configured to have greater flexibility than the proximal portion, by virtue of the coils of wires 134 in the distal portion having different parameters than those that are used in the proximal portion. For some applications, the distal portion has generally similar parameters to those described hereinabove (i.e., with inner and outer layers). For some applications, the proximal portion of the guidewire comprises a single layer of coiled wires. Typically, there are fewer coiled wires within the proximal portion of the drive cable than within even the outer layer of the distal portion of the drive cable. Typically, the ratio of the number of the wires within the outer layer of the distal portion of the drive cable to those within the proximal portion of the drive cable is between 3:2 and 5:2. For some application, there are between 3 and 6 wires in the proximal portion of the drive cable. Typically, the diameter of the coiled wires within the proximal portion of the drive cable is greater than that of the coiled wires within even the outer layer of the distal portion of the drive cable. For some applications, the ratio of the diameter of the wires within the proximal portion to the diameter of the wires within the outer layer of the distal portion is between 3:2 and 5:2. For some applications, the diameters of the wires within the distal portion of the drive cable are between 0.2 mm and 0.35 mm. Typically, the inner and outer diameters of both the distal and proximal portions of the drive cable are similar (or identical) to each other, and are typically as described hereinabove.
Reference is now made to
Reference is now made to
First, referring to
For some applications, lumen 132 is additionally used by purging system 29 (shown in
Referring again to
As described hereinabove (with reference to
As described above, once the purging fluid is disposed within lumen 132 it flows in both proximal and distal directions, as indicated by arrow 151 of
With reference to the above description of the purging procedure that is typically used with ventricular assist device 20, it is noted that lumens 122, 132, and 133 (which were previously used to facilitate insertion of the device over guidewire 10, as described hereinabove), are typically used as flow channels for purging fluid, during use of the ventricular assist device.
Referring now to
Referring to
Reference is now made to
Typically, the inner lining is disposed over at least the inner surface of the cylindrical portion of frame 34 (the cylindrical portion being indicated in
Typically, over any area of overlap between inner lining 39 and pump-outlet tube 24, the inner lining is shaped to form a smooth surface (e.g., in order to reduce hemolysis, as described hereinabove), and pump-outlet tube 24 is shaped to conform with the struts of frame 34 (e.g., as shown in the cross-section in
For some applications, inner lining 39 and pump-outlet tube 24 are made of different materials. For example, the inner lining may be made of polyurethane, and the pump-outlet tube may be made of polyether block amide (PEBAX®). Typically, the material from which the inner lining is made has a higher thermoforming temperature than that of the material from which the pump-outlet tube is made. For some applications in which the inner lining and the pump-outlet tube overlap along at least a portion of frame 34 (e.g., along the cylindrical portion of frame 34), the pump-outlet tube and the inner lining are bonded to each other and/or the frame in the following manner. Initially, the inner lining is placed over a mandrel. The frame is then placed over the inner lining. Subsequently, pump-outlet tube 24 is placed around the outside of the frame. For some applications, in order to mold pump-outlet tube 24 to conform with the struts of frame 34, without causing the inner lining to deform, the frame is heated to a temperature that is above the thermoforming temperature of pump-outlet tube 24 but below the thermoforming temperature of inner lining 39. Typically, the frame is heated from inside the frame, using the mandrel. Typically, while the frame is heated to the aforementioned temperature, an outer tube (which is typically made from silicone) applies pressure to pump-outlet tube 24 that causes pump-outlet tube 24 to be pushed radially inwardly, in order to cause the pump-outlet tube to conform with the shapes of the struts of the frame, as shown in the cross-section of
For some applications (not shown), a density of struts of the frame at the distal end of the cylindrical portion of the frame is greater than the density of the struts within other parts of the cylindrical portion of the frame. For some such applications, the increased density of the struts of the frame at the distal end of the cylindrical portion of the frame facilitates bonding of the inner lining and/or the pump-outlet tube to the frame. For some applications, the inner lining and/or the pump-outlet tube does not extend all the way to the end of the cylindrical portion of the frame, e.g., as described with reference to
Reference is now made to
For some applications, the uncovered distal part of the cylindrical portion of the frame functions as a virtual widened inlet, since (as indicated by the blood flow arrows in
For some applications, ventricular assist device is configured such that, even during diastole, there is an axial distance between the location of the impeller at which the impeller is at its maximum diameter and the blood inlet opening. For example, the ventricular assist device is configured such that, during diastole, there is an axial distance of more than 3 mm (e.g., more than 5 mm) between the location of the impeller at which the impeller is at its maximum diameter and the blood inlet opening (e.g., as described hereinabove with reference to
Reference is now made to
For some applications, the ventricular assist device is guided by the guidewire over which it is inserted toward apex 342 of the left ventricle. The walls of the left ventricle may be thought of as being made up of the septal wall 338 (which separates the left ventricle from the right ventricle 340), the posterior wall 336 (from which the papillary muscles 341 protrude, and above which the mitral apparatus is disposed), and the free wall 334, each of these three walls occupying approximately one third of the circumference of the left ventricle (as illustrated by the dashed lines, which trisect the left ventricle in
Typically, the ventricular assist device is introduced into the subject's ventricle over a guidewire, as described hereinabove. Distal-tip portion 120 defines lumen 122, such that the distal-tip portion is held in a straightened configuration during the introduction of the ventricular assist device into the subject's ventricle. For some applications, upon the guidewire being removed, distal-tip portion is configured to assume its curved shape. It is noted that
As described hereinabove, distal-tip portion 120 typically forms a portion of distal-tip element 107 which also includes axial-shaft receiving tube 126. Typically, distal-tip element 107 is configured such that in its non-constrained configuration (i.e., in the absence of any forces acting upon the distal-tip portion), the distal-tip element is at least partially curved. For some applications, within a given plane, distal-tip element 107 has a proximal, straight portion 346 (at least a portion of which typically comprises axial-shaft-receiving tube 126). The proximal straight portion of distal-tip element 107 defines a longitudinal axis 348. The curved portion of distal-tip element 107 curves away from longitudinal axis 348 in a first direction, and then passes through an inflection point and curves in the opposite direction with respect to longitudinal axis 348. For example, as shown in
As shown in
Referring to
Referring now to
For some applications, distal-tip element 107 is configured to separate the blood inlet opening from a posterior wall of the subject's left ventricle when the distal-tip element is placed against the apex of the subject's left ventricle. Typically, the distal-tip element is configured to separate the blood-inlet opening from a septal wall of the subject's left ventricle as the distal-tip element contacts the apex of the subject's left ventricle.
Typically, distal-tip element 107 is inserted into the left ventricle, such that bulge 351 bulges toward the septal wall 338. When disposed in this configuration, in response to distal-tip element 107 being pushed against the apex (e.g., due to a physician advancing the device or in response to movement of the left ventricle), blood inlet opening 108 typically gets pushed in the direction of free wall 334 and away from the septal wall 338 (in the direction of the arrows shown in
With reference to all of
Reference is now made to
As described hereinabove, axial shaft 92 typically passes through the axis of impeller 50, via lumen 62 of the impeller. Further typically, the axial shaft is rigid, e.g., a rigid tube. The axial shaft itself is radially stabilized via proximal radial bearing 116 and distal radial bearing 118. In turn, the axial shaft, by passing through lumen 62 defined by the impeller, radially stabilizes the impeller with respect to the inner surface of frame 34. For some applications, the axial shaft passes into axial-shaft-receiving tube 126 of distal-tip element 107. Typically, friction between the axial shaft and the distal and radial bearings is increased if the axial shaft is bent. Therefore, it is typically desirable for the axial shaft to be maintained in a straight configuration. For some applications, balloon 220 provides the distal end of the distal-tip element with freedom of movement with respect to the walls of the left ventricle is a manner that does not cause the proximal end of the distal tip portion (which defines the axial-shaft-receiving tube) to undergo substantial movement. For example, as indicated by the arrows in the vicinity of apex 342 in
Reference is now made to
Reference is now made to
As described hereinabove with reference to
Reference is now made to
Reference is now made to
Referring to
Referring now to
Referring to
For some applications, the lengths of the radial bearings are such as to allow movement of the rigid axial shaft with respect to frame 34, such that the axial shaft is permitted to become slightly misaligned with the longitudinal axis of the frame. For example, the lengths of each of the proximal and distal radial bearings may be less than 2 mm, less than 1.5 mm, or less than 1 mm, for example, 0-1.5 mm, or 0.5-1 mm.
Reference is now made to
As described hereinabove, for some applications, along a proximal portion of pump-outlet tube 24, frame 34 is not disposed within the tube, and the tube is therefore not supported in an open state by frame 34. Tube 24 is typically made of a blood-impermeable, collapsible material. For example, tube 24 may include polyurethane, polyester, and/or silicone. Alternatively or additionally, the tube is made of polyethylene terephthalate (PET) and/or polyether block amide (PEBAX®). Typically, the proximal portion of the tube is configured to be placed such that it is at least partially disposed within the subject's ascending aorta. For some applications, the proximal portion of the tube traverses the subject's aortic valve, passing from the subject's left ventricle into the subject's ascending aorta, as shown in
For some applications, pump-outlet tube 24 is pre-shaped such that, during operation of the impeller, when the pressure of the blood flow through the tube maintains the proximal portion of the tube in an open state, the tube is curved. Typically, the curvature is such that when the proximal end of the tube is disposed within the aorta, at least a portion of the tube is disposed within the left ventricle and curving away from the posterior wall of the left ventricle, toward the apex of the left ventricle and/or toward the free wall. Further typically, the curvature is such that when the proximal end of the tube is disposed within the aorta, at least a portion of the tube is disposed within the left ventricle and curving away from the septal wall of the left ventricle, toward the apex of the left ventricle and/or toward the free wall. For some applications, the curvature of the tube is such that a separation is maintained between blood inlet openings 108 and posterior wall 336 of the left ventricle, mitral valve leaflets 402 and/or subvalvular components of the mitral valve (such as chordae tendineae 404, trabeculae carneae, and/or papillary muscles 341), as shown in
Typically, tube 24 is pre-shaped using blow molding in a curved mold, or using a shaping mold after a blow-molding process or a dipping process. Typically, the distal portion of the tube, within which frame 34, impeller 50 and axial shaft 92 are disposed, is maintained in a straight and open configuration by frame 34. The portion of the tube, which is proximal to frame 34 and which is disposed within the left ventricle, is typically shaped to define the above-described curvature. For some applications, the curvature is such that an angle gamma between the longitudinal axis of the tube at the proximal end of the tube, and the longitudinal axis of the tube at the distal end of the tube is greater than 90 degrees (e.g., greater than 120 degrees, or greater than 140 degrees), and/or less than 180 degrees (e.g., less than 160 degrees, or less than 150 degrees), e.g., 90-180 degrees, 90-160 degrees, 120-160 degrees, or 140-150 degrees. For some applications, the curvature of the tube is such that the surface of the tube that is at the inside of the curve defines a radius of curvature R that is greater than 10 mm, e.g. greater than 20 mm, and/or less than 200 mm (e.g., 100 mm), e.g., 10-200 mm, or 20-100 mm. (A dashed circle with a dashed line across its diameter is shown in
It is noted that pump-outlet tube 24, as described with reference to
Reference is now made to
As described with reference to
For some applications, when deploying the ventricular assist device within the left ventricle, the distal-tip portion is deployed first. As described hereinabove, the distal-tip portion is typically deployed in a given orientation with respect to the left ventricular anatomy. Typically, after deploying the distal-tip portion, the pump-outlet tube is deployed. In some cases, having already deployed the distal-tip portion in the desired orientation with respect to the left ventricular anatomy, the curved portion of the tube is not disposed within the left ventricle in a desired orientation. Therefore, for some applications, the distal-tip portion is coupled (directly or indirectly) to the pump-outlet tube via a joint 212 that permits rotation of the pump-outlet tube with respect to a distal-tip portion of the ventricular assist device, as indicated by arrow 210 in
Reference is now made to
For some applications, the curved element is shape set to have a curvature that is generally similar to that described with respect to tube 24, with reference to
For some applications, when deploying the ventricular assist device within the left ventricle, the distal-tip portion is deployed first. As described hereinabove, the distal-tip portion is typically deployed in a given orientation with respect to the left ventricular anatomy. Typically, after deploying the distal-tip portion, curved element 218 is deployed. In some cases, having already deployed the distal-tip portion in the desired orientation with respect to the left ventricular anatomy, curved element 218 is not disposed within the left ventricle in a desired orientation. Therefore, for some applications, the distal-tip portion is coupled (directly or indirectly) to the curved element 218 via a joint 212 that permits rotation of the pump-outlet tube with respect to a distal-tip portion of the ventricular assist device, as indicated by arrow 210 in
With reference to
Reference is now made to
For some applications, joint 232 is disposed between a proximal portion 234 of the axial shaft and a distal portion 236 of the axial shaft that are coupled to each other via the joint, such that the proximal and distal portion can flex with respect to each other via the joint. Typically, the joint allows the axial shaft to adopt a shape that conforms with the curvature of other portions of the left-ventricular device and/or the subject's anatomy. For some applications, the joint is configured to allow the axial shaft to conform with curvature of frame 34, such that even if frame 34 becomes slightly curved, the proximal portion of the axial shaft is disposed coaxially with respect to proximal bearing 116 and the distal portion of the axial shaft is disposed coaxially with respect to distal bearing 118.
For some applications, the ventricular assist device includes two or more such ventricular blood-pressure-measurement tubes 222, e.g., as shown in
For some applications, outer tube 142 defines a groove 215 in a portion of the outer surface of the outer tube that is configured to be disposed within tube 24. Typically, during insertion of the ventricular assist device into the subject's body, the portion of ventricular blood-pressure-measurement tube 222 that extends from within tube 24 to at least an outer surface of tube 24, is configured to be disposed within the groove, such that the portion of the ventricular blood-pressure-measurement tube does not protrude from the outer surface of the outer tube.
For some applications (not shown), distal portions of blood-pressure-measurement tubes 222 are disposed on the outside of pump-outlet tube 24. For example, blood-pressure-measurement tubes 222 may extend from outer tube 142 to the proximal end of pump-outlet tube 24, and thereafter the blood pressure measurement tubes may be built into the outer surface of tube pump-outlet tube 24, as shown in
As described hereinabove, for some applications, drive cable 130 extends from a motor outside the subject's body to axial shaft 92 upon which impeller 50 is disposed. Typically, the drive cable is disposed within first outer tube 140 and second outer tube 142, as described hereinabove. For some applications, a proximal portion of blood-pressure-measurement tube 222 comprises a channel between first outer tube 140 and second outer tube 142, as shown in the cross-section of
Reference is now made to
For some alternative applications, the ventricular assist device is initially inserted into the artery incision via an introducer sheath, which is subsequently removed for the remainder of the operation of the ventricular assist device. For example, the ventricular assist device may be inserted via a peel-away introducer sheath. Subsequently, the delivery catheter is typically in direct contact with the artery incision. Typically, this reduces the diameter of the devices that are disposed within the artery incision for the remainder of the procedure, relative to if the introducer sheath were to remain inside the artery incision throughout the operation of the ventricular assist device. For example, the outer diameter of the delivery catheter may be less than 3.3 mm (i.e., 10 French), and this is the diameter that passes through the incision once the introducer sheath has been removed. The inner diameter of the delivery catheter typically less than 3 mm (i.e., 9 French), for example, the inner diameter may be 2.7 mm (i.e., 8 French). In contrast, if an introducer sheath were to remain in place throughout the duration of the operation of the ventricular assist device, then this would increase the diameter that passes through the incision because the thickness of the walls of the introducer sheath must additionally be accommodated by the incision. For example, it may increase the diameter by 0.3-0.6 mm (i.e., approximately 1-2 French).
For some such applications, the delivery catheter is advanced until the distal end of the delivery catheter is disposed at a given location within the subject's aorta (e.g., within the ascending aorta). Subsequently, the pump portion 27 of the ventricular assist device is advanced relative to the distal end of the delivery catheter by outer tube 142 being advance relative to the delivery catheter. For such applications, sterile sleeve 242 forms a seal between delivery catheter 143 and outer tube 142 of ventricular assist device 20, such as to permit movement of the outer tube relative to the delivery catheter while maintaining sterility of the artery incision. For some such applications, the ventricular assist device is provided to a user in a kit that contains sterile sleeve 242 disposed in place between outer tube 142 and delivery catheter 143.
Reference is now made to
Reference is now made to
In accordance with the above-described experimental results, for some applications of the present invention, during operation of the ventricular assist device, the subject's arterial pulsatility is measured and a parameter is derived from the subject's arterial pulsatility. Typically, as the rotation rate of the impeller increases, the flow rate that is generated by the blood pump increases. Typically, flow that is generated by the blood pump is non-pulsatile, since the blood pump is a continuous-flow blood pump rather than a pulsatile blood pump. As such, it is typically the case that are the rotation rate of the impeller increases and the flow rate that is generated by the blood pump increases, the subject's arterial pulsatility decreases. For some applications, the subject's arterial pulsatility is measured as the rotation rate of the impeller changes. Based upon the aforementioned measurements, a relationship between the arterial pulsatility and the impeller rotation rate and/or the pump flow rate is derived. For some applications, based upon the aforementioned relationship, the subject's native cardiac output is derived. For some such applications, the relationship between the subject's arterial pulsatility and the pump flow rate is extrapolated to determine what the pump flow rate would be when the subject's arterial pulsatility reaches zero. In accordance with the above-described results, it is hypothesized that, at this value, the pump is replacing the native function of the heart and that the flow rate that is generated by the pump at this value provides an approximation of the subject's native cardiac output.
With regards to all aspects of ventricular assist device 20 described with reference to
The scope of the present invention includes combining any of the apparatus and methods described herein with any of the apparatus and methods described in one or more of the following applications, all of which are incorporated herein by reference:
US 2020/0237981 to Tuval, entitled “Distal tip element for a ventricular assist device,” filed Jan. 23, 2020, which claims priority from:
US Provisional Patent Application 62/796,138 to Tuval, entitled “Ventricular assist device,” filed Jan. 24, 2019;
U.S. Provisional Patent Application 62/851,716 to Tuval, entitled “Ventricular assist device,” filed May 23, 2019;
U.S. Provisional Patent Application 62/870,821 to Tuval, entitled “Ventricular assist device,” filed Jul. 5, 2019; and
U.S. Provisional Patent Application 62/896,026 to Tuval, entitled “Ventricular assist device,” filed Sep. 5, 2019.
U.S. Pat. No. 10,881,770 to Tuval, which is a continuation of International Application No. PCT/IB2019/050186 to Tuval (published as WO 19/138350), entitled “Ventricular assist device, filed Jan. 10, 2019, which claims priority from:
U.S. Provisional Patent Application 62/615,538 to Sohn, entitled “Ventricular assist device,” filed Jan. 10, 2018;
U.S. Provisional Patent Application 62/665,718 to Sohn, entitled “Ventricular assist device,” filed May 2, 2018;
U.S. Provisional Patent Application 62/681,868 to Tuval, entitled “Ventricular assist device,” filed Jun. 7, 2018; and
U.S. Provisional Patent Application 62/727,605 to Tuval, entitled “Ventricular assist device,” filed Sep. 6, 2018;
US 2019/0269840 to Tuval, which is the US national phase of International Patent Application PCT/IL2017/051273 to Tuval (published as WO 18/096531), filed Nov. 21, 2017, entitled “Blood pumps,” which claims priority from U.S. Provisional Patent Application 62/425,814 to Tuval, filed Nov. 23, 2016;
US 2019/0175806 to Tuval, which is a continuation of International Application No. PCT/IL2017/051158 to Tuval (published as WO 18/078615), entitled “Ventricular assist device,” filed Oct. 23, 2017, which claims priority from U.S. 62/412,631 to Tuval filed Oct. 25, 2016, and U.S. 62/543,540 to Tuval, filed Aug. 10, 2017;
US 2019/0239998 to Tuval, which is the US national phase of International Patent Application PCT/IL2017/051092 to Tuval (published as WO 18/061002), filed Sep. 28, 2017, entitled “Blood vessel tube,” which claims priority from U.S. Provisional Patent Application 62/401,403 to Tuval, filed Sep. 29, 2016;
US 2018/0169313 to Schwammenthal, which is the US national phase of International Patent Application PCT/IL2016/050525 to Schwammenthal (published as WO 16/185473), filed May 18, 2016, entitled “Blood pump,” which claims priority from U.S. Provisional Patent Application 62/162,881 to Schwammenthal, filed May 18, 2015, entitled “Blood pump;”
U.S. Pat. No. 10,583,231 to Schwammenthal, which is the US national phase of International Patent Application PCT/IL2015/050532 to Schwammenthal (published as WO 15/177793), filed May 19, 2015, entitled “Blood pump,” which claims priority from US Provisional Patent Application 62/000,192 to Schwammenthal, filed May 19, 2014, entitled “Blood pump;”
US Patent U.S. Pat. No. 10,039,874 to Schwammenthal, which is the US national phase of International Patent Application PCT/IL2014/050289 to Schwammenthal (published as WO 14/141284), filed Mar. 13, 2014, entitled “Renal pump,” which claims priority from (a) U.S. Provisional Patent Application 61/779,803 to Schwammenthal, filed Mar. 13, 2013, entitled “Renal pump,” and (b) U.S. Provisional Patent Application 61/914,475 to Schwammenthal, filed Dec. 11, 2013, entitled “Renal pump;”
U.S. Pat. No. 9,764,113 to Tuval, issued Sep. 19, 2017, entitled “Curved catheter,” which claims priority from U.S. Provisional Patent Application 61/914,470 to Tuval, filed Dec. 11, 2013, entitled “Curved catheter;” and
U.S. Pat. No. 9,597,205 to Tuval, which is the US national phase of International Patent Application PCT/IL2013/050495 to Tuval (published as WO 13/183060), filed Jun. 6, 2013, entitled “Prosthetic renal valve,” which claims priority from U.S. Provisional Patent Application 61/656,244 to Tuval, filed Jun. 6, 2012, entitled “Prosthetic renal valve.”
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
The present application is a continuation of U.S. application Ser. No. 17/609,589 to Tuval filed Nov. 8, 2021, which is a US national phase application of PCT Application No. PCT/IB2021/052857 to Tuval (published as WO 21/205346), filed Apr. 6, 2021, which claims priority from: U.S. Provisional Patent Application No. 63/006,122 to Tuval, entitled “Ventricular assist device,” filed Apr. 7, 2020; U.S. Provisional Patent Application No. 63/114,136 to Tuval, entitled “Ventricular assist device,” filed Nov. 16, 2020; and U.S. Provisional Patent Application No. 63/129,983 to Tuval, entitled “Ventricular assist device,” filed Dec. 23, 2020. Each of the above-referenced U.S. Provisional applications is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3592183 | Watkins et al. | Jul 1971 | A |
3932068 | Zimmermann | Jan 1976 | A |
4625712 | Wampler | Dec 1986 | A |
4753221 | Kensey et al. | Jun 1988 | A |
4919647 | Nash | Apr 1990 | A |
4944722 | Carriker et al. | Jul 1990 | A |
4954055 | Raible et al. | Sep 1990 | A |
4957504 | Chardack | Sep 1990 | A |
4964864 | Summers et al. | Oct 1990 | A |
4969865 | Hwang et al. | Nov 1990 | A |
4985014 | Orejola | Jan 1991 | A |
5011469 | Buckberg et al. | Apr 1991 | A |
5037403 | Garcia | Aug 1991 | A |
5061256 | Wampler | Oct 1991 | A |
5169378 | Figuera | Dec 1992 | A |
5275580 | Yamazaki | Jan 1994 | A |
5330484 | Guenther et al. | Jul 1994 | A |
5348545 | Shani et al. | Sep 1994 | A |
5507629 | Jarvik | Apr 1996 | A |
5531789 | Yamazaki et al. | Jul 1996 | A |
5569275 | Kotula et al. | Oct 1996 | A |
5613935 | Jarvik | Mar 1997 | A |
5692882 | Bozeman et al. | Dec 1997 | A |
5713730 | Nose et al. | Feb 1998 | A |
5749855 | Reitan | May 1998 | A |
5772693 | Brownlee | Jun 1998 | A |
5843158 | Lenker et al. | Dec 1998 | A |
5863179 | Westphal et al. | Jan 1999 | A |
5876385 | Ikari et al. | Mar 1999 | A |
5879499 | Corvi | Mar 1999 | A |
5911685 | Siess et al. | Jun 1999 | A |
5928132 | Leschinsky | Jul 1999 | A |
5947892 | Benkowski et al. | Sep 1999 | A |
5964694 | Siess et al. | Oct 1999 | A |
6007478 | Siess et al. | Dec 1999 | A |
6086527 | Talpade | Jul 2000 | A |
6116862 | Rau et al. | Sep 2000 | A |
6135729 | Aber | Oct 2000 | A |
6136025 | Barbut et al. | Oct 2000 | A |
6162017 | Raible | Dec 2000 | A |
6176848 | Rau et al. | Jan 2001 | B1 |
6183220 | Ohara et al. | Feb 2001 | B1 |
6217541 | Yu | Apr 2001 | B1 |
6247892 | Kazatchkov et al. | Jun 2001 | B1 |
6355001 | Quinn et al. | Mar 2002 | B1 |
6413222 | Pantages et al. | Jul 2002 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6506146 | Mohl | Jan 2003 | B1 |
6533716 | Schmutz-Rode et al. | Mar 2003 | B1 |
6537315 | Yamazaki et al. | Mar 2003 | B2 |
6544216 | Sammler et al. | Apr 2003 | B1 |
6592567 | Levin et al. | Jul 2003 | B1 |
6616624 | Kieval | Sep 2003 | B1 |
6884210 | Nose et al. | Apr 2005 | B2 |
6949066 | Bearnson et al. | Sep 2005 | B2 |
6974436 | Aboul-Hosn et al. | Dec 2005 | B1 |
7004925 | Navia et al. | Feb 2006 | B2 |
7010954 | Siess et al. | Mar 2006 | B2 |
7011620 | Siess | Mar 2006 | B1 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7027875 | Siess et al. | Apr 2006 | B2 |
7070555 | Siess | Jul 2006 | B2 |
7144364 | Barbut et al. | Dec 2006 | B2 |
7159593 | McCarthy et al. | Jan 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7258679 | Moore et al. | Aug 2007 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7338521 | Antaki et al. | Mar 2008 | B2 |
7341570 | Keren et al. | Mar 2008 | B2 |
7393181 | Mcbride et al. | Jul 2008 | B2 |
7485104 | Kieval | Feb 2009 | B2 |
7717952 | Case et al. | May 2010 | B2 |
7744642 | Rittgers et al. | Jun 2010 | B2 |
7762941 | Jarvik | Jul 2010 | B2 |
7766853 | Lane | Aug 2010 | B2 |
7766892 | Keren et al. | Aug 2010 | B2 |
7766961 | Patel et al. | Aug 2010 | B2 |
7780628 | Keren et al. | Aug 2010 | B1 |
7811221 | Gross | Oct 2010 | B2 |
7841976 | Mcbride et al. | Nov 2010 | B2 |
7878967 | Khanal | Feb 2011 | B1 |
7914436 | Kung | Mar 2011 | B1 |
7914503 | Goodson et al. | Mar 2011 | B2 |
7927068 | Mcbride et al. | Apr 2011 | B2 |
8012121 | Goodson et al. | Sep 2011 | B2 |
8079948 | Shifflette | Dec 2011 | B2 |
8118723 | Richardson et al. | Feb 2012 | B2 |
8123669 | Siess et al. | Feb 2012 | B2 |
8157758 | Pecor et al. | Apr 2012 | B2 |
8192451 | Cambronne et al. | Jun 2012 | B2 |
8216122 | Kung | Jul 2012 | B2 |
8221492 | Case et al. | Jul 2012 | B2 |
8235933 | Keren et al. | Aug 2012 | B2 |
8277470 | Demarais et al. | Oct 2012 | B2 |
8376707 | Mcbride et al. | Feb 2013 | B2 |
8439859 | Pfeffer et al. | May 2013 | B2 |
8449443 | Rodefeld et al. | May 2013 | B2 |
8485961 | Campbell et al. | Jul 2013 | B2 |
8489190 | Pfeffer et al. | Jul 2013 | B2 |
8512262 | Gertner | Aug 2013 | B2 |
8535211 | Walters et al. | Sep 2013 | B2 |
8538535 | Ariav et al. | Sep 2013 | B2 |
8579858 | Reitan et al. | Nov 2013 | B2 |
8591393 | Walters et al. | Nov 2013 | B2 |
8591539 | Gellman | Nov 2013 | B2 |
8597170 | Walters et al. | Dec 2013 | B2 |
8617239 | Reitan | Dec 2013 | B2 |
8672868 | Simons | Mar 2014 | B2 |
8684904 | Campbell et al. | Apr 2014 | B2 |
8690749 | Nunez | Apr 2014 | B1 |
8721516 | Scheckel | May 2014 | B2 |
8721517 | Zeng et al. | May 2014 | B2 |
8727959 | Reitan et al. | May 2014 | B2 |
8734331 | Evans et al. | May 2014 | B2 |
8734508 | Hastings et al. | May 2014 | B2 |
8777832 | Wang et al. | Jul 2014 | B1 |
8814543 | Liebing | Aug 2014 | B2 |
8814776 | Hastie et al. | Aug 2014 | B2 |
8814933 | Siess | Aug 2014 | B2 |
8827887 | Curtis et al. | Sep 2014 | B2 |
8849398 | Evans | Sep 2014 | B2 |
8864642 | Scheckel | Oct 2014 | B2 |
8888728 | Aboul-Hosn et al. | Nov 2014 | B2 |
8900060 | Liebing | Dec 2014 | B2 |
8926492 | Scheckel | Jan 2015 | B2 |
8932141 | Liebing | Jan 2015 | B2 |
8944748 | Liebing | Feb 2015 | B2 |
8979493 | Roehn | Mar 2015 | B2 |
8992163 | Mcbride et al. | Mar 2015 | B2 |
8998792 | Scheckel | Apr 2015 | B2 |
9028216 | Schumacher et al. | May 2015 | B2 |
9067006 | Toellner | Jun 2015 | B2 |
9072825 | Pfeffer et al. | Jul 2015 | B2 |
9089634 | Schumacher et al. | Jul 2015 | B2 |
9138518 | Campbell et al. | Sep 2015 | B2 |
9162017 | Evans et al. | Oct 2015 | B2 |
9162019 | Horvath et al. | Oct 2015 | B2 |
9217442 | Wiessler et al. | Dec 2015 | B2 |
9259521 | Simons | Feb 2016 | B2 |
9278189 | Corbett | Mar 2016 | B2 |
9314558 | Er | Apr 2016 | B2 |
9327067 | Zeng et al. | May 2016 | B2 |
9328741 | Liebing | May 2016 | B2 |
9339596 | Roehn | May 2016 | B2 |
9345824 | Mohl et al. | May 2016 | B2 |
9358329 | Fitzgerald et al. | Jun 2016 | B2 |
9358330 | Schumacher | Jun 2016 | B2 |
9364592 | Mcbride et al. | Jun 2016 | B2 |
9364593 | Mcbride et al. | Jun 2016 | B2 |
9370613 | Hsu et al. | Jun 2016 | B2 |
9381288 | Schenck et al. | Jul 2016 | B2 |
9393384 | Kapur et al. | Jul 2016 | B1 |
9402942 | Hastie et al. | Aug 2016 | B2 |
9404505 | Scheckel | Aug 2016 | B2 |
9416783 | Schumacher et al. | Aug 2016 | B2 |
9416791 | Toellner | Aug 2016 | B2 |
9421311 | Tanner et al. | Aug 2016 | B2 |
9446179 | Keenan et al. | Sep 2016 | B2 |
9474840 | Siess | Oct 2016 | B2 |
9512839 | Liebing | Dec 2016 | B2 |
9533082 | Reichenbach et al. | Jan 2017 | B2 |
9533084 | Siess et al. | Jan 2017 | B2 |
9545468 | Aboul-Hosn et al. | Jan 2017 | B2 |
9550017 | Spanier et al. | Jan 2017 | B2 |
9561314 | Aboul-Hosn et al. | Feb 2017 | B2 |
9572915 | Heuring et al. | Feb 2017 | B2 |
9597205 | Tuval | Mar 2017 | B2 |
9597437 | Aboul-Hosn et al. | Mar 2017 | B2 |
9603983 | Roehn et al. | Mar 2017 | B2 |
9611743 | Toellner et al. | Apr 2017 | B2 |
9616159 | Anderson et al. | Apr 2017 | B2 |
9623161 | Medvedev et al. | Apr 2017 | B2 |
9669142 | Spanier et al. | Jun 2017 | B2 |
9669144 | Spanier et al. | Jun 2017 | B2 |
9675738 | Tanner et al. | Jun 2017 | B2 |
9675740 | Zeng et al. | Jun 2017 | B2 |
9713663 | Medvedev et al. | Jul 2017 | B2 |
9717833 | Mcbride et al. | Aug 2017 | B2 |
9750860 | Schumacher | Sep 2017 | B2 |
9750861 | Hastie et al. | Sep 2017 | B2 |
9759237 | Liebing | Sep 2017 | B2 |
9764113 | Tuval et al. | Sep 2017 | B2 |
9771801 | Schumacher et al. | Sep 2017 | B2 |
9789238 | Aboul-Hosn et al. | Oct 2017 | B2 |
9795727 | Schumacher | Oct 2017 | B2 |
9814814 | Corbett et al. | Nov 2017 | B2 |
9821146 | Tao et al. | Nov 2017 | B2 |
9827356 | Muller et al. | Nov 2017 | B2 |
9833550 | Siess | Dec 2017 | B2 |
9835550 | Kakuno et al. | Dec 2017 | B2 |
9850906 | Ozaki et al. | Dec 2017 | B2 |
9872947 | Keenan et al. | Jan 2018 | B2 |
9872948 | Siess | Jan 2018 | B2 |
9878079 | Pfeffer et al. | Jan 2018 | B2 |
9889242 | Pfeffer et al. | Feb 2018 | B2 |
9895475 | Toellner et al. | Feb 2018 | B2 |
9903384 | Roehn | Feb 2018 | B2 |
9907890 | Muller | Mar 2018 | B2 |
9907891 | Wiessler et al. | Mar 2018 | B2 |
9919087 | Pfeffer et al. | Mar 2018 | B2 |
9962475 | Campbell et al. | May 2018 | B2 |
9964115 | Scheckel | May 2018 | B2 |
9974893 | Toellner | May 2018 | B2 |
9999714 | Spanier et al. | Jun 2018 | B2 |
10029037 | Muller et al. | Jul 2018 | B2 |
10029040 | Taskin | Jul 2018 | B2 |
10039872 | Zeng et al. | Aug 2018 | B2 |
10039874 | Schwammenthal et al. | Aug 2018 | B2 |
10052419 | Er | Aug 2018 | B2 |
10052420 | Medvedev et al. | Aug 2018 | B2 |
10071192 | Zeng | Sep 2018 | B2 |
10086121 | Fitzgerald et al. | Oct 2018 | B2 |
10105475 | Muller | Oct 2018 | B2 |
10107299 | Scheckel | Oct 2018 | B2 |
10117980 | Keenan et al. | Nov 2018 | B2 |
10119550 | Bredenbreuker et al. | Nov 2018 | B2 |
10149932 | Mcbride et al. | Dec 2018 | B2 |
10172985 | Simon et al. | Jan 2019 | B2 |
10179197 | Kaiser et al. | Jan 2019 | B2 |
10183104 | Anderson et al. | Jan 2019 | B2 |
10196899 | Toellner et al. | Feb 2019 | B2 |
10207037 | Corbett et al. | Feb 2019 | B2 |
10208763 | Schumacher et al. | Feb 2019 | B2 |
10215187 | Mcbride et al. | Feb 2019 | B2 |
10221866 | Liebing | Mar 2019 | B2 |
10231838 | Chin et al. | Mar 2019 | B2 |
10238783 | Aboul-Hosn et al. | Mar 2019 | B2 |
10245363 | Rowe | Apr 2019 | B1 |
10265447 | Campbell et al. | Apr 2019 | B2 |
10265448 | Liebing | Apr 2019 | B2 |
10279095 | Aboul-Hosn et al. | May 2019 | B2 |
10300185 | Aboul-Hosn et al. | May 2019 | B2 |
10300186 | Aboul-Hosn et al. | May 2019 | B2 |
10316853 | Toellner | Jun 2019 | B2 |
10330101 | Toellner | Jun 2019 | B2 |
10342904 | Schumacher | Jul 2019 | B2 |
10342906 | D'Ambrosio et al. | Jul 2019 | B2 |
10363349 | Muller et al. | Jul 2019 | B2 |
10369260 | Smith et al. | Aug 2019 | B2 |
10376162 | Edelman et al. | Aug 2019 | B2 |
10413646 | Wiessler et al. | Sep 2019 | B2 |
10449276 | Pfeffer et al. | Oct 2019 | B2 |
10449279 | Muller | Oct 2019 | B2 |
10478538 | Scheckel et al. | Nov 2019 | B2 |
10478539 | Pfeffer et al. | Nov 2019 | B2 |
10478540 | Scheckel et al. | Nov 2019 | B2 |
10495101 | Scheckel | Dec 2019 | B2 |
10557475 | Roehn | Feb 2020 | B2 |
10583231 | Schwammenthal et al. | Mar 2020 | B2 |
10584589 | Schumacher et al. | Mar 2020 | B2 |
10589012 | Toellner et al. | Mar 2020 | B2 |
10617808 | Hastie et al. | Apr 2020 | B2 |
10662967 | Scheckel | May 2020 | B2 |
10669855 | Toellner et al. | Jun 2020 | B2 |
10765789 | Zeng et al. | Sep 2020 | B2 |
10792406 | Roehn et al. | Oct 2020 | B2 |
10799624 | Pfeffer et al. | Oct 2020 | B2 |
10799626 | Siess et al. | Oct 2020 | B2 |
10801511 | Siess et al. | Oct 2020 | B2 |
10806838 | Er | Oct 2020 | B2 |
10835653 | Liebing | Nov 2020 | B2 |
10857272 | Liebing | Dec 2020 | B2 |
10864309 | Mcbride et al. | Dec 2020 | B2 |
10865801 | Mcbride et al. | Dec 2020 | B2 |
10874783 | Pfeffer et al. | Dec 2020 | B2 |
10881770 | Tuval et al. | Jan 2021 | B2 |
10881845 | Siess et al. | Jan 2021 | B2 |
10894115 | Pfeffer et al. | Jan 2021 | B2 |
10898629 | Siess et al. | Jan 2021 | B2 |
10907646 | Bredenbreuker et al. | Feb 2021 | B2 |
10920596 | Toellner et al. | Feb 2021 | B2 |
10926013 | Schumacher et al. | Feb 2021 | B2 |
10935038 | Siess | Mar 2021 | B2 |
10980927 | Pfeffer et al. | Apr 2021 | B2 |
10994120 | Tuval et al. | May 2021 | B2 |
11007350 | Tao et al. | May 2021 | B2 |
11020584 | Siess et al. | Jun 2021 | B2 |
11027114 | D'Ambrosio et al. | Jun 2021 | B2 |
11033729 | Scheckel et al. | Jun 2021 | B2 |
11040187 | Wiessler et al. | Jun 2021 | B2 |
RE48649 | Siess | Jul 2021 | E |
11077294 | Keenan et al. | Aug 2021 | B2 |
11116960 | Simon et al. | Sep 2021 | B2 |
11123539 | Pfeffer et al. | Sep 2021 | B2 |
11129978 | Pfeffer et al. | Sep 2021 | B2 |
11167124 | Pfeffer et al. | Nov 2021 | B2 |
11168705 | Liebing | Nov 2021 | B2 |
11185680 | Tuval et al. | Nov 2021 | B2 |
11191944 | Tuval et al. | Dec 2021 | B2 |
11197690 | Fantuzzi et al. | Dec 2021 | B2 |
11219755 | Siess et al. | Jan 2022 | B2 |
11229786 | Zeng et al. | Jan 2022 | B2 |
11253692 | Schumacher | Feb 2022 | B2 |
11253693 | Pfeffer et al. | Feb 2022 | B2 |
11260212 | Tuval et al. | Mar 2022 | B2 |
11260213 | Zeng et al. | Mar 2022 | B2 |
11260215 | Scheckel et al. | Mar 2022 | B2 |
11266824 | Er | Mar 2022 | B2 |
11268521 | Toellner | Mar 2022 | B2 |
11273301 | Pfeffer et al. | Mar 2022 | B2 |
11278711 | Liebing | Mar 2022 | B2 |
11280345 | Bredenbreuker et al. | Mar 2022 | B2 |
11291825 | Tuval et al. | Apr 2022 | B2 |
11298525 | Jahangir | Apr 2022 | B2 |
11305105 | Corbett et al. | Apr 2022 | B2 |
11313228 | Schumacher et al. | Apr 2022 | B2 |
11338124 | Pfeffer et al. | May 2022 | B2 |
11351358 | Nix et al. | Jun 2022 | B2 |
11364373 | Corbett et al. | Jun 2022 | B2 |
11421701 | Schumacher et al. | Aug 2022 | B2 |
11434922 | Roehn | Sep 2022 | B2 |
11708833 | Mcbride et al. | Jul 2023 | B2 |
11833278 | Siess et al. | Dec 2023 | B2 |
20010031210 | Antaki et al. | Oct 2001 | A1 |
20010031981 | Evans et al. | Oct 2001 | A1 |
20010041934 | Yamazaki et al. | Nov 2001 | A1 |
20020107536 | Hussein | Aug 2002 | A1 |
20020151799 | Pantages et al. | Oct 2002 | A1 |
20030055486 | Adams et al. | Mar 2003 | A1 |
20030088310 | Hansen et al. | May 2003 | A1 |
20030100816 | Siess | May 2003 | A1 |
20030135086 | Khaw et al. | Jul 2003 | A1 |
20030149473 | Chouinard et al. | Aug 2003 | A1 |
20030208097 | Aboul-Hosn et al. | Nov 2003 | A1 |
20040064090 | Keren et al. | Apr 2004 | A1 |
20040064091 | Keren et al. | Apr 2004 | A1 |
20040111006 | Alferness et al. | Jun 2004 | A1 |
20040116769 | Jassawalla et al. | Jun 2004 | A1 |
20040167415 | Gelfand et al. | Aug 2004 | A1 |
20040210236 | Allers et al. | Oct 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050033406 | Barnhart et al. | Feb 2005 | A1 |
20050049692 | Numamoto et al. | Mar 2005 | A1 |
20050079274 | Palasis et al. | Apr 2005 | A1 |
20050085848 | Johnson et al. | Apr 2005 | A1 |
20050119682 | Nguyen et al. | Jun 2005 | A1 |
20050137680 | Ortiz et al. | Jun 2005 | A1 |
20050180854 | Grabau et al. | Aug 2005 | A1 |
20060062672 | Mcbride et al. | Mar 2006 | A1 |
20060064059 | Gelfand et al. | Mar 2006 | A1 |
20060106449 | Ben | May 2006 | A1 |
20060135961 | Rosenman et al. | Jun 2006 | A1 |
20060155322 | Sater et al. | Jul 2006 | A1 |
20060265051 | Caro et al. | Nov 2006 | A1 |
20070100415 | Licata et al. | May 2007 | A1 |
20070100435 | Case et al. | May 2007 | A1 |
20070142729 | Pfeiffer et al. | Jun 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070208291 | Patel | Sep 2007 | A1 |
20070260327 | Case et al. | Nov 2007 | A1 |
20070282243 | Pini et al. | Dec 2007 | A1 |
20070293808 | Williams et al. | Dec 2007 | A1 |
20080009668 | Cohn | Jan 2008 | A1 |
20080086027 | Siess et al. | Apr 2008 | A1 |
20080103591 | Siess | May 2008 | A1 |
20080114339 | Mcbride et al. | May 2008 | A1 |
20080132747 | Shifflette | Jun 2008 | A1 |
20080132748 | Shifflette | Jun 2008 | A1 |
20080140189 | Nguyen et al. | Jun 2008 | A1 |
20080154236 | Elkins et al. | Jun 2008 | A1 |
20080183280 | Agnew et al. | Jul 2008 | A1 |
20080306327 | Shifflette | Dec 2008 | A1 |
20090024157 | Anukhin | Jan 2009 | A1 |
20090024195 | Rezai et al. | Jan 2009 | A1 |
20090062597 | Shifflette | Mar 2009 | A1 |
20090093764 | Pfeffer et al. | Apr 2009 | A1 |
20090093796 | Pfeffer et al. | Apr 2009 | A1 |
20090264991 | Paul et al. | Oct 2009 | A1 |
20090287299 | Tabor et al. | Nov 2009 | A1 |
20090318857 | Goodson et al. | Dec 2009 | A1 |
20100030098 | Fojtik | Feb 2010 | A1 |
20100048793 | Baekelandt | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100076247 | Zilbershlag et al. | Mar 2010 | A1 |
20100130810 | Mohl | May 2010 | A1 |
20100152523 | Macdonald et al. | Jun 2010 | A1 |
20100185043 | Woodard et al. | Jul 2010 | A1 |
20100268017 | Siess | Oct 2010 | A1 |
20110004046 | Campbell et al. | Jan 2011 | A1 |
20110034874 | Reitan et al. | Feb 2011 | A1 |
20110106244 | Ferrari et al. | May 2011 | A1 |
20110112567 | Lenker et al. | May 2011 | A1 |
20110152999 | Hastings et al. | Jun 2011 | A1 |
20110190874 | Celermajer et al. | Aug 2011 | A1 |
20110213408 | Gross et al. | Sep 2011 | A1 |
20110230949 | Haverkost et al. | Sep 2011 | A1 |
20110257462 | Rodefeld et al. | Oct 2011 | A1 |
20110264075 | Leung et al. | Oct 2011 | A1 |
20110282128 | Reitan et al. | Nov 2011 | A1 |
20110282274 | Fulton | Nov 2011 | A1 |
20110301662 | Bar-Yoseph et al. | Dec 2011 | A1 |
20120022579 | Fulton | Jan 2012 | A1 |
20120059460 | Reitan | Mar 2012 | A1 |
20120089047 | Ryba et al. | Apr 2012 | A1 |
20120089225 | Akkerman et al. | Apr 2012 | A1 |
20120116382 | Ku et al. | May 2012 | A1 |
20120130469 | Cragg et al. | May 2012 | A1 |
20120143141 | Verkaik et al. | Jun 2012 | A1 |
20120172654 | Bates | Jul 2012 | A1 |
20120172655 | Campbell et al. | Jul 2012 | A1 |
20120172656 | Walters et al. | Jul 2012 | A1 |
20120178985 | Walters et al. | Jul 2012 | A1 |
20120178986 | Campbell et al. | Jul 2012 | A1 |
20120224970 | Schumacher et al. | Sep 2012 | A1 |
20120234411 | Scheckel | Sep 2012 | A1 |
20120237353 | Schumacher et al. | Sep 2012 | A1 |
20120237357 | Schumacher et al. | Sep 2012 | A1 |
20120245680 | Masuzawa et al. | Sep 2012 | A1 |
20120303112 | Armstrong et al. | Nov 2012 | A1 |
20120316586 | Demarais et al. | Dec 2012 | A1 |
20120328460 | Horvath et al. | Dec 2012 | A1 |
20130053623 | Evans et al. | Feb 2013 | A1 |
20130053732 | Heuser | Feb 2013 | A1 |
20130060077 | Liebing | Mar 2013 | A1 |
20130066140 | Mcbride et al. | Mar 2013 | A1 |
20130079874 | Doss et al. | Mar 2013 | A1 |
20130085318 | Toellner | Apr 2013 | A1 |
20130085319 | Evans et al. | Apr 2013 | A1 |
20130177407 | Farineau et al. | Jul 2013 | A1 |
20130177409 | Schumacher et al. | Jul 2013 | A1 |
20130177432 | Toellner et al. | Jul 2013 | A1 |
20130237744 | Pfeffer et al. | Sep 2013 | A1 |
20130245360 | Schumacher | Sep 2013 | A1 |
20130253328 | Zelenka et al. | Sep 2013 | A1 |
20130303831 | Evans | Nov 2013 | A1 |
20130303969 | Keenan et al. | Nov 2013 | A1 |
20140018840 | Morgan et al. | Jan 2014 | A1 |
20140025041 | Fukuoka et al. | Jan 2014 | A1 |
20140128659 | Heuring et al. | May 2014 | A1 |
20140255176 | Bredenbreuker et al. | Sep 2014 | A1 |
20140275720 | Ferrari | Sep 2014 | A1 |
20140275722 | Zimmermann et al. | Sep 2014 | A1 |
20140350523 | Dehdashtian et al. | Nov 2014 | A1 |
20150005570 | Fritz et al. | Jan 2015 | A1 |
20150018597 | Fierens et al. | Jan 2015 | A1 |
20150119633 | Haselby et al. | Apr 2015 | A1 |
20150157777 | Tuval et al. | Jun 2015 | A1 |
20150164662 | Tuval | Jun 2015 | A1 |
20150176582 | Liebing | Jun 2015 | A1 |
20150258262 | Pfeffer et al. | Sep 2015 | A1 |
20150290372 | Muller et al. | Oct 2015 | A1 |
20150328382 | Corbett et al. | Nov 2015 | A1 |
20150343136 | Nitzan et al. | Dec 2015 | A1 |
20150343179 | Schumacher et al. | Dec 2015 | A1 |
20150343186 | Nitzan et al. | Dec 2015 | A1 |
20160022890 | Schwammenthal et al. | Jan 2016 | A1 |
20160051741 | Schwammenthal et al. | Feb 2016 | A1 |
20160053768 | Schumacher et al. | Feb 2016 | A1 |
20160106896 | Pfeffer et al. | Apr 2016 | A1 |
20160129170 | Siess | May 2016 | A1 |
20160136341 | Pfeffer et al. | May 2016 | A1 |
20160136342 | Pfeffer et al. | May 2016 | A1 |
20160136343 | Anagnostopoulos | May 2016 | A1 |
20160144089 | Woo et al. | May 2016 | A1 |
20160184500 | Zeng | Jun 2016 | A1 |
20160256620 | Scheckel et al. | Sep 2016 | A1 |
20160279310 | Scheckel et al. | Sep 2016 | A1 |
20160331378 | Nitzan et al. | Nov 2016 | A1 |
20160354525 | Mcbride et al. | Dec 2016 | A1 |
20170007403 | Wildhirt et al. | Jan 2017 | A1 |
20170014562 | Liebing | Jan 2017 | A1 |
20170028115 | Muller | Feb 2017 | A1 |
20170035954 | Muller et al. | Feb 2017 | A1 |
20170049946 | Kapur et al. | Feb 2017 | A1 |
20170071769 | Mangiardi | Mar 2017 | A1 |
20170087286 | Spanier et al. | Mar 2017 | A1 |
20170087288 | Gross-Hardt et al. | Mar 2017 | A1 |
20170100527 | Schwammenthal et al. | Apr 2017 | A1 |
20170173237 | Pfeifer et al. | Jun 2017 | A1 |
20170197021 | Nitzan et al. | Jul 2017 | A1 |
20170215918 | Tao et al. | Aug 2017 | A1 |
20170232168 | Reichenbach et al. | Aug 2017 | A1 |
20170232171 | Roehn et al. | Aug 2017 | A1 |
20170290964 | Barry | Oct 2017 | A1 |
20170333067 | Wilson | Nov 2017 | A1 |
20170333607 | Zarins | Nov 2017 | A1 |
20170340791 | Aboul-Hosn et al. | Nov 2017 | A1 |
20170348470 | D'Ambrosio et al. | Dec 2017 | A1 |
20180050142 | Siess et al. | Feb 2018 | A1 |
20180055979 | Corbett et al. | Mar 2018 | A1 |
20180064861 | Dur et al. | Mar 2018 | A1 |
20180080326 | Schumacher et al. | Mar 2018 | A1 |
20180100507 | Wu et al. | Apr 2018 | A1 |
20180104453 | Tao et al. | Apr 2018 | A1 |
20180149164 | Siess | May 2018 | A1 |
20180149165 | Siess et al. | May 2018 | A1 |
20180169312 | Barry | Jun 2018 | A1 |
20180169313 | Schwammenthal et al. | Jun 2018 | A1 |
20180207334 | Siess | Jul 2018 | A1 |
20180228952 | Pfeffer et al. | Aug 2018 | A1 |
20180228953 | Siess et al. | Aug 2018 | A1 |
20180264182 | Spanier et al. | Sep 2018 | A1 |
20180264183 | Jahangir | Sep 2018 | A1 |
20180280598 | Curran et al. | Oct 2018 | A1 |
20180289877 | Schumacher et al. | Oct 2018 | A1 |
20180303990 | Siess et al. | Oct 2018 | A1 |
20180303992 | Taskin | Oct 2018 | A1 |
20180303993 | Schwammenthal et al. | Oct 2018 | A1 |
20180353667 | Moyer et al. | Dec 2018 | A1 |
20190015570 | Muller | Jan 2019 | A1 |
20190030228 | Keenan et al. | Jan 2019 | A1 |
20190046702 | Siess et al. | Feb 2019 | A1 |
20190060539 | Siess et al. | Feb 2019 | A1 |
20190070345 | Mcbride et al. | Mar 2019 | A1 |
20190076167 | Fantuzzi et al. | Mar 2019 | A1 |
20190083690 | Siess et al. | Mar 2019 | A1 |
20190101130 | Bredenbreuker et al. | Apr 2019 | A1 |
20190105437 | Siess et al. | Apr 2019 | A1 |
20190117865 | Walters et al. | Apr 2019 | A1 |
20190134287 | Demou | May 2019 | A1 |
20190143018 | Salahieh et al. | May 2019 | A1 |
20190143019 | Mehaffey et al. | May 2019 | A1 |
20190170153 | Scheckel | Jun 2019 | A1 |
20190175802 | Tuval et al. | Jun 2019 | A1 |
20190175803 | Pfeffer et al. | Jun 2019 | A1 |
20190175805 | Tuval et al. | Jun 2019 | A1 |
20190175806 | Tuval et al. | Jun 2019 | A1 |
20190209753 | Tuval et al. | Jul 2019 | A1 |
20190209755 | Nix et al. | Jul 2019 | A1 |
20190209757 | Tuval et al. | Jul 2019 | A1 |
20190209758 | Tuval et al. | Jul 2019 | A1 |
20190211836 | Schumacher et al. | Jul 2019 | A1 |
20190216994 | Pfeffer et al. | Jul 2019 | A1 |
20190224391 | Liebing | Jul 2019 | A1 |
20190224392 | Pfeffer et al. | Jul 2019 | A1 |
20190224393 | Pfeffer et al. | Jul 2019 | A1 |
20190239998 | Tuval et al. | Aug 2019 | A1 |
20190262518 | Molteni et al. | Aug 2019 | A1 |
20190269840 | Tuval et al. | Sep 2019 | A1 |
20190275224 | Hanson et al. | Sep 2019 | A1 |
20190282741 | Franano et al. | Sep 2019 | A1 |
20190290817 | Guo et al. | Sep 2019 | A1 |
20190307561 | Gosal et al. | Oct 2019 | A1 |
20190316591 | Toellner | Oct 2019 | A1 |
20190321527 | King et al. | Oct 2019 | A1 |
20190321530 | Cambronne et al. | Oct 2019 | A1 |
20190321531 | Cambronne et al. | Oct 2019 | A1 |
20190328948 | Salahieh et al. | Oct 2019 | A1 |
20190336664 | Liebing | Nov 2019 | A1 |
20190344001 | Salahieh et al. | Nov 2019 | A1 |
20190351118 | Graichen et al. | Nov 2019 | A1 |
20190365975 | Muller et al. | Dec 2019 | A1 |
20200038567 | Siess et al. | Feb 2020 | A1 |
20200078506 | Schwammenthal et al. | Mar 2020 | A1 |
20200087199 | Gimblet | Mar 2020 | A1 |
20200093973 | Gandhi et al. | Mar 2020 | A1 |
20200114053 | Salahieh et al. | Apr 2020 | A1 |
20200155739 | Siess et al. | May 2020 | A1 |
20200197585 | Scheckel et al. | Jun 2020 | A1 |
20200237981 | Tuval et al. | Jul 2020 | A1 |
20200237982 | Tuval et al. | Jul 2020 | A1 |
20200237984 | Tuval et al. | Jul 2020 | A1 |
20200237985 | Tuval et al. | Jul 2020 | A1 |
20200237986 | Tuval et al. | Jul 2020 | A1 |
20200246527 | Hildebrand et al. | Aug 2020 | A1 |
20200268952 | Nitzan et al. | Aug 2020 | A1 |
20200276369 | Nitzan et al. | Sep 2020 | A1 |
20200288988 | Goldvasser | Sep 2020 | A1 |
20200405926 | Alexander et al. | Dec 2020 | A1 |
20210023285 | Brandt | Jan 2021 | A1 |
20210023286 | Tuval et al. | Jan 2021 | A1 |
20210069394 | Tuval et al. | Mar 2021 | A1 |
20210069395 | Tuval et al. | Mar 2021 | A1 |
20210077692 | Tanner et al. | Mar 2021 | A1 |
20210145475 | Tao et al. | May 2021 | A1 |
20210170081 | Kanz | Jun 2021 | A1 |
20210178145 | Tuval et al. | Jun 2021 | A1 |
20210236797 | D'Ambrosio et al. | Aug 2021 | A1 |
20210299433 | Siess et al. | Sep 2021 | A1 |
20220072297 | Tuval et al. | Mar 2022 | A1 |
20220079457 | Tuval et al. | Mar 2022 | A1 |
20220088368 | Tuval et al. | Mar 2022 | A1 |
20220134085 | Siess et al. | May 2022 | A1 |
20220184376 | Tuval et al. | Jun 2022 | A1 |
20220226632 | Tuval et al. | Jul 2022 | A1 |
20230071248 | Keenan et al. | Mar 2023 | A1 |
20230137473 | Zipory et al. | May 2023 | A1 |
20230226342 | Tuval et al. | Jul 2023 | A1 |
Number | Date | Country |
---|---|---|
2013205145 | May 2013 | AU |
2701809 | Apr 2009 | CA |
2927346 | Apr 2009 | CA |
101448535 | Jun 2009 | CN |
102805885 | Dec 2012 | CN |
113457006 | Oct 2021 | CN |
1033690 | Jul 1958 | DE |
10336902 | Aug 2004 | DE |
0916359 | May 1999 | EP |
1339443 | Sep 2003 | EP |
1651290 | May 2006 | EP |
1827531 | Sep 2007 | EP |
1871441 | Jan 2008 | EP |
2047872 | Apr 2009 | EP |
2047873 | Apr 2009 | EP |
2217300 | Aug 2010 | EP |
2218469 | Aug 2010 | EP |
2234658 | Oct 2010 | EP |
2282070 | Feb 2011 | EP |
2298374 | Mar 2011 | EP |
2299119 | Mar 2011 | EP |
2301598 | Mar 2011 | EP |
2308524 | Apr 2011 | EP |
2314331 | Apr 2011 | EP |
2345440 | Jul 2011 | EP |
2366412 | Sep 2011 | EP |
2376788 | Oct 2011 | EP |
2408489 | Jan 2012 | EP |
2424587 | Mar 2012 | EP |
2475415 | Jul 2012 | EP |
2607712 | Jun 2013 | EP |
2040639 | Feb 2014 | EP |
1207934 | Aug 2014 | EP |
2662099 | Sep 2014 | EP |
2427230 | Dec 2014 | EP |
2396050 | Jan 2015 | EP |
2835141 | Feb 2015 | EP |
2840954 | Mar 2015 | EP |
2841122 | Mar 2015 | EP |
2841124 | Mar 2015 | EP |
2860849 | Apr 2015 | EP |
2868331 | May 2015 | EP |
2868332 | May 2015 | EP |
2999496 | Mar 2016 | EP |
3000492 | Mar 2016 | EP |
3000493 | Mar 2016 | EP |
3055922 | Aug 2016 | EP |
3062730 | Sep 2016 | EP |
3115070 | Jan 2017 | EP |
3127562 | Feb 2017 | EP |
2922486 | May 2017 | EP |
3216467 | Sep 2017 | EP |
3222302 | Sep 2017 | EP |
3236079 | Oct 2017 | EP |
3287154 | Feb 2018 | EP |
3287155 | Feb 2018 | EP |
3326567 | May 2018 | EP |
3329951 | Jun 2018 | EP |
3338825 | Jun 2018 | EP |
3205360 | Aug 2018 | EP |
3359214 | Aug 2018 | EP |
3359215 | Aug 2018 | EP |
3398624 | Nov 2018 | EP |
3398625 | Nov 2018 | EP |
3407930 | Dec 2018 | EP |
3446729 | Feb 2019 | EP |
3446730 | Feb 2019 | EP |
3545983 | Oct 2019 | EP |
3606575 | Feb 2020 | EP |
3737436 | Nov 2020 | EP |
3858421 | Aug 2021 | EP |
3897814 | Oct 2021 | EP |
4218899 | Aug 2023 | EP |
2239675 | Jul 1991 | GB |
2451161 | Jan 2009 | GB |
2504175 | Jan 2014 | GB |
2504177 | Jan 2014 | GB |
2003504091 | Feb 2003 | JP |
2009530041 | Aug 2009 | JP |
2012505038 | Mar 2012 | JP |
2012527269 | Nov 2012 | JP |
2015500666 | Jan 2015 | JP |
2016509950 | Apr 2016 | JP |
2018535727 | Dec 2018 | JP |
9001972 | Mar 1990 | WO |
9013321 | Nov 1990 | WO |
199401148 | Jan 1994 | WO |
9934847 | Jul 1999 | WO |
2001083016 | May 2000 | WO |
2000043053 | Jul 2000 | WO |
0062838 | Oct 2000 | WO |
2002070039 | Mar 2001 | WO |
2002038085 | May 2002 | WO |
03006096 | Jan 2003 | WO |
03103745 | Dec 2003 | WO |
2004073796 | Sep 2004 | WO |
2005020848 | Mar 2005 | WO |
2007081818 | Jul 2007 | WO |
2007112033 | Oct 2007 | WO |
2007127477 | Nov 2007 | WO |
2008005747 | Jan 2008 | WO |
2008005990 | Jan 2008 | WO |
2008055301 | May 2008 | WO |
2008104858 | Sep 2008 | WO |
2009010963 | Jan 2009 | WO |
2009046096 | Apr 2009 | WO |
2009064879 | May 2009 | WO |
2009129481 | Oct 2009 | WO |
2010042546 | Apr 2010 | WO |
2010063494 | Jun 2010 | WO |
2010105854 | Sep 2010 | WO |
2010127871 | Nov 2010 | WO |
2010133567 | Nov 2010 | WO |
2010150208 | Dec 2010 | WO |
2011035926 | Mar 2011 | WO |
2011047884 | Apr 2011 | WO |
2011076441 | Jun 2011 | WO |
2011089022 | Jul 2011 | WO |
2012007141 | Jan 2012 | WO |
2012094535 | Jul 2012 | WO |
2013032849 | Mar 2013 | WO |
2013070186 | May 2013 | WO |
2013093001 | Jun 2013 | WO |
2013148697 | Oct 2013 | WO |
2013183060 | Dec 2013 | WO |
2014141284 | Sep 2014 | WO |
2015063277 | May 2015 | WO |
2015160943 | Oct 2015 | WO |
2015177793 | Nov 2015 | WO |
2016001218 | Jan 2016 | WO |
2016005803 | Jan 2016 | WO |
2016185473 | Nov 2016 | WO |
2016207293 | Dec 2016 | WO |
2017053361 | Mar 2017 | WO |
2017060254 | Apr 2017 | WO |
2017081561 | May 2017 | WO |
2017137604 | Aug 2017 | WO |
2017147291 | Aug 2017 | WO |
2018033920 | Feb 2018 | WO |
2018061001 | Apr 2018 | WO |
2018061002 | Apr 2018 | WO |
2018067410 | Apr 2018 | WO |
2018078615 | May 2018 | WO |
2018096531 | May 2018 | WO |
2018158636 | Sep 2018 | WO |
2018172848 | Sep 2018 | WO |
2018220589 | Dec 2018 | WO |
2018226991 | Dec 2018 | WO |
2018234454 | Dec 2018 | WO |
2019094963 | May 2019 | WO |
2019125899 | Jun 2019 | WO |
2019138350 | Jul 2019 | WO |
2019152875 | Aug 2019 | WO |
2019158996 | Aug 2019 | WO |
2019229223 | Dec 2019 | WO |
2020152611 | Jul 2020 | WO |
2021152012 | Aug 2021 | WO |
2021159147 | Aug 2021 | WO |
2021198881 | Oct 2021 | WO |
2021205346 | Oct 2021 | WO |
2022189932 | Sep 2022 | WO |
2023062453 | Apr 2023 | WO |
2024057252 | Mar 2024 | WO |
2024057253 | Mar 2024 | WO |
2024057254 | Mar 2024 | WO |
2024057255 | Mar 2024 | WO |
2024057256 | Mar 2024 | WO |
2024057257 | Mar 2024 | WO |
Entry |
---|
Corrected Notice of Allowability for U.S. Appl. No. 16/810,121 mailed Sep. 20, 2022. |
Corrected Notice of Allowability for U.S. Appl. No. 17/182,482 mailed Feb. 7, 2023. |
Examination Report for Australian Patent Application No. 2017349920 mailed Nov. 4, 2022. |
Extended European Search Report for European Application No. 22155936.2 mailed Jul. 8, 2022. |
Extended European Search Report for European Application No. 22163648.3 mailed Aug. 10, 2022. |
Extended European Search Report for European Application No. 22163648.3 mailed Jul. 1, 2022. |
Final Office Action for U.S. Appl. No. 17/176,344 mailed Oct. 12, 2022. |
International Search Report and Written Opinion from International Application No. PCT/IB2022/051990 mailed Aug. 10, 2022. |
Invitation to Pay Additional Fees for International Application No. PCT/IB2022/051990 mailed May 13, 2022. |
Issue Notification for U.S. Appl. No. 16/810,270 mailed Oct. 12, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/275,559 mailed Jan. 19, 2023. |
Non-Final Office Action for U.S. Appl. No. 16/952,327 mailed Nov. 8, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/952,389 mailed Dec. 21, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/952,444 mailed Jan. 6, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/069,064 mailed Nov. 7, 2022. |
Non-Final Office Action for U.S. Appl. No. 17/069,570 mailed Oct. 6, 2022. |
Non-Final Office Action for U.S. Appl. No. 17/070,323 mailed Oct. 6, 2022. |
Non-Final Office Action for U.S. Appl. No. 17/070,670 mailed Oct. 5, 2022. |
Non-Final Office Action for U.S. Appl. No. 17/077,769 mailed Oct. 5, 2022. |
Non-Final Office Action for U.S. Appl. No. 17/180,041 mailed Jan. 31, 2023. |
Notice of Allowance for U.S. Appl. No. 16/810,121 mailed Aug. 19, 2022. |
Notice of Allowance for U.S. Appl. No. 16/810,270 mailed Jul. 22, 2022. |
Notice of Allowance for U.S. Appl. No. 17/182,482 mailed Jan. 5, 2023. |
Office Action for Japanese Application No. 2019-521643 mailed May 10, 2022. |
Office Action for Japanese Application No. 2019-521643 mailed Oct. 27, 2022. |
Third Party Submission received during the prosecution of U.S. Appl. No. 17/078,439 on Sep. 28, 2022. |
U.S. Appl. No. 63/003,955, filed Apr. 2, 2020. |
“Compendium of Technical and Scientific Information for the Hemopump Temporary Cardiac Assist System”, Johnson & Johnson Interventional Systems, 1988, pp. 1-15. |
Achour , et al., “Mechanical Left Ventricular Unloading Prior to Reperfusion Reduces Infarct Size in a Canine Infarction Model”, Catheterization and Cardiovascular Interventions 64, 2005, pp. 182-192. |
Butler, et al., “The Hemopump—A New Cardiac Prothesis Device”, Reprinted from IEEE Transactions on Biomedical Engineering, vol. 37, No. 2, Feb. 1990, pp. 192-195. |
Chan , et al., “Rapid manufacturing techniques in the development of an axial blood pump impeller”, Proc. Instn Mech. Engrs vol. 217 Part H: J. Engineering in Medicine, 2003, pp. 469-475. |
Dekker , et al., “Efficacy of a New Intraaortic Propeller Pump vs the Intraaortic Balloon Pump”, CHEST, vol. 123, Issue 6, Jun. 2003, pp. 2089-2095. |
Flameng , “Temporary Cardiac Assist with an Axial Pump System”, Steinkopff Verlag Darmstadt, 1991, 79 pages. |
Frazier , et al., “Treatment of Cardiac Allograft Failure by use of an IntraAortic Axial Flow Pump”, Journal of Heart Transplantation, St. Louis, vol. 9, No. 4, pp. 408-414, Jul. 1990. |
Gunther , et al., “Experimentelle Radiologie”, Life Sciences, Berichte Aus Der Rheinischwestfälischen Technischen Hochschule Aachen Ausgabe Feb. 2002, 9 pages. |
Ledoux, et al., “Left Ventricular Unloading With Intra-aortic Counter Pulsation Prior to Reperfusion Reduces Myocardial Release of Endothelin-1 and Decreases Infarction Size in a Porcine Ischemia-Reperfusion Model”, Catheterization and Cardiovascular Interventions 72, 2008, pp. 513-521. |
Merhige , et al., “Effect of the Hemopump Left Ventricular Assist Device on Regional Myocardial Perfusion and Function”, Reduction of Ischemia during Coronary Occlusion, Johnson & Johnson Interventional Systems Supplement 3, Circulation vol. 80, No. 5, Nov. 1989, pp. III-159-III-166. |
Roundtree , et al., “The Hemopump Cardiac Assist System: Nursing Care of the Patient”, Reprinted from Critical Care Nurse, Apr. 1991. |
Scholz, et al., “Mechanical left Ventricular Unloading During High Risk Coronary Angioplasty: First Use of a New Percutaneous Transvalvular Left Ventricular Assist Device”, Catheterization and Cardiovascular Diagnosis 31, 1994, pp. 61-69. |
Siess , “System Analysis and Development of Intravascular Rotation Pumps for Cardiac Assist”, Helmholtz-Institute—Chapter 3, Jun. 1998, 17 pages. |
Smalling , et al., “Improved Regional Myocardial Blood Flow, Left Ventricular Unloading, and Infarct Salvage Using an Axial-Flow, Transvalvular Left Ventricular Assist Device”, A Comparison With Intra-Aortic Balloon Counterpulsation and Reperfusion Alone in a Canine Infarction Model, Presented in part at the American College of Cardiology 38th Annual Scientific Session, Mar. 1990, pp. 1152-1160. |
Smalling , et al., “The Hemopump: A transvalvular, axial flow, left ventricular assist device”, Coronary Artery Disease, Circulatory support devices in clinical cardiology, vol. 2 No. 6, pp. 666-671, Aug. 1991. |
Smalling , et al., “Transvalvular Left Ventricular Assistance in Cardiogenic Shock Secondary to Acute Myocardial Infarction”, Evidence for Recovery From Near Fatal Myocardial Stunning, JACC vol. 23, No. 3, pp. 637-644, Mar. 1, 1994. |
Tamareille , et al., “Left ventricular unloading before reperfusion reduces endothelin-1 release and calcium overload in porcine myocardial infarction”, Cardiopulmonary Support and Physiology, The Journal of Thoracic and Cardiovascular Surgery, vol. 136, No. 2, 2008, pp. 343-351. |
Wampler , “Newspaper Articles”, Captain Hemo, 1988, 6 pages. |
Wampler , “Newsweek”, Captain Hemo, May 16, 1988, 3 pages. |
Wampler , “THI Today”, Captain Hemo, Summer 1988, 2 pages. |
Wampler , “Time Magazine”, Captain Hemo, May 1988, 2 pages. |
Wampler , et al., “Treatment of Cardiogenic Shock With the Hemopump Left Ventricular Assist Device”, Annual of Thoracic Surgery, vol. 52, pp. 560-513, 1991. |
Wampler , “U.S. News & World Report”, Captain Hemo, pp. 1-2, May 16, 1988. |
Corrected Notice of Allowability for U.S. Appl. No. 16/810,121 mailed Jun. 28, 2022. |
Corrected Notice of Allowability for U.S. Appl. No. 16/810,172 mailed Feb. 2, 2022. |
Examination Report for Australian Patent Application No. 2017349920 issued on Jun. 2, 2022. |
Examination Report for Indian Patent Application No. 202047017397 issued on May 4, 2022. |
Extended European Search Report for European Application No. 21208803.3 issued on Apr. 13, 2022. |
Extended European Search Report for European Application No. 21209256.3 issued on Mar. 2, 2022. |
Final Office Action for U.S. Appl. No. 16/275,559 mailed May 17, 2022. |
Final Office Action for U.S. Appl. No. 17/069,064 mailed May 25, 2022. |
Issue Notification for U.S. Appl. No. 16/276,965 mailed Mar. 16, 2022. |
Issue Notification for U.S. Appl. No. 16/277,411 mailed Feb. 9, 2022. |
Issue Notification for U.S. Appl. No. 16/750,354 mailed Nov. 17, 2021. |
Issue Notification for U.S. Appl. No. 16/810,086 mailed Mar. 9, 2022. |
Issue Notification for U.S. Appl. No. 16/810,172 mailed Mar. 23, 2022. |
Issue Notification for U.S. Appl. No. 17/069,321 mailed Mar. 16, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/275,559 mailed Jan. 26, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/810,121 mailed Mar. 9, 2022. |
Non-Final Office Action for U.S. Appl. No. 17/069,064 mailed Dec. 9, 2021. |
Non-Final Office Action for U.S. Appl. No. 17/069,321 mailed Nov. 18, 2021. |
Non-Final Office Action for U.S. Appl. No. 17/176,344 mailed Apr. 20, 2022. |
Notice of Allowance for U.S. Appl. No. 16/276,965 mailed Jan. 26, 2022. |
Notice of Allowance for U.S. Appl. No. 16/277,411 mailed Dec. 8, 2021. |
Notice of Allowance for U.S. Appl. No. 16/810,086 mailed Jan. 7, 2022. |
Notice of Allowance for U.S. Appl. No. 16/810,121 mailed Jun. 1, 2022. |
Notice of Allowance for U.S. Appl. No. 16/810,172 mailed Jan. 10, 2022. |
Notice of Allowance for U.S. Appl. No. 16/810,270 mailed Apr. 14, 2022. |
Notice of Allowance for U.S. Appl. No. 17/069,321 mailed Feb. 2, 2022. |
Restriction Requirement for U.S. Appl. No. 16/810,116 mailed Jun. 29, 2022. |
Supplemental Notice of Allowability for U.S. Appl. No. 16/276,965 mailed Mar. 10, 2022. |
Supplemental Notice of Allowability for U.S. Appl. No. 16/276,965 mailed Mar. 2, 2022. |
U.S. Appl. No. 16/810,086, filed Mar. 5, 2020. |
U.S. Appl. No. 16/810,121, filed Mar. 5, 2020. |
U.S. Appl. No. 17/528,015, filed Nov. 16, 2021. |
U.S. Appl. No. 17/528,807, filed Nov. 17, 2021. |
U.S. Appl. No. 17/532,318, filed Nov. 22, 2021. |
U.S. Appl. No. 17/574,701, filed Jan. 13, 2022. |
U.S. Appl. No. 17/677,571, filed Feb. 22, 2022. |
U.S. Appl. No. 17/678,122, filed Feb. 23, 2022. |
U.S. Appl. No. 17/857,402, filed Jul. 5, 2022. |
Agarwal , et al., “Newer-generation ventricular assist devices.”, Best Practice & Research Clinical Anaesthesiology, 2012, pp. 117-130. |
Corrected Notice of Allowability for U.S. Appl. No. 16/279,352 mailed Nov. 3, 2021. |
Corrected Notice of Allowability for U.S. Appl. No. 16/281,237 mailed Mar. 31, 2021. |
Final Office Action for U.S. Appl. No. 16/275,559 mailed Jan. 4, 2021. |
Final Office Action for U.S. Appl. No. 16/275,559 mailed Oct. 20, 2021. |
Final Office Action for U.S. Appl. No. 16/276,965 mailed Apr. 13, 2021. |
Final Office Action for U.S. Appl. No. 16/277,411 mailed Jun. 21, 2021. |
Final Office Action for U.S. Appl. No. 16/279,352 mailed May 3, 2021. |
Issue Notification for U.S. Appl. No. 16/278,482 mailed Jan. 13, 2021. |
Issue Notification for U.S. Appl. No. 16/279,352 mailed Nov. 10, 2021. |
Issue Notification for U.S. Appl. No. 16/280,566 mailed Nov. 10, 2021. |
Issue Notification for U.S. Appl. No. 16/281,237 mailed Apr. 14, 2021. |
Issue Notification for U.S. Appl. No. 16/281,264 mailed Dec. 16, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/275,559 mailed May 26, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/275,559 mailed Sep. 4, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/276,965 mailed Jul. 26, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/276,965 mailed Jun. 19, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/276,965 mailed Nov. 30, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/277,411 mailed Feb. 9, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/278,482 mailed Jun. 23, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/279,352 mailed Nov. 10, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/280,566 mailed Dec. 21, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/281,237 mailed Aug. 21, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/281,264 mailed Jun. 29, 2020. |
Notice of Allowance for U.S. Appl. No. 16/278,482 mailed Dec. 2, 2020. |
Notice of Allowance for U.S. Appl. No. 16/279,352 mailed Oct. 1, 2021. |
Notice of Allowance for U.S. Appl. No. 16/280,566 mailed Aug. 31, 2021. |
Notice of Allowance for U.S. Appl. No. 16/281,237 mailed Feb. 1, 2021. |
Notice of Allowance for U.S. Appl. No. 16/281,264 mailed Nov. 12, 2020. |
Notice of Allowance for U.S. Appl. No. 16/750,354 mailed Oct. 18, 2021. |
Restriction Requirement for U.S. Appl. No. 16/275,559 mailed Jun. 2, 2020. |
Restriction Requirement for U.S. Appl. No. 16/279,352 mailed Aug. 11, 2020. |
Restriction Requirement for U.S. Appl. No. 16/280,566 mailed Aug. 11, 2020. |
Supplemental Notice of Allowability for U.S. Appl. No. 16/278,482 mailed Dec. 24, 2020. |
Supplemental Notice of Allowability for U.S. Appl. No. 16/279,352 mailed Oct. 21, 2021. |
Alba, et al., “The future is here: ventricular assist devices for the failing heart”, Expert review of cardiovascular therapy, 2009, pp. 1067-1077. |
Bai , et al., “A Split-Array, C-2C Switched-Capacitor Power Amplifier in 65 nm CMOS”, IEEE Radio Frequency Integrated Circuits Symposium, 2017, pp. 336-339. |
Burnett , et al., “Renal Interstitial Pressure And Sodium Excretion During Renal Vein Constriction”, American Physiological Society, 1980, pp. F279-F282. |
Cassidy , et al., “The Conductance Volume Catheter Technique for Measurement of Left Ventricular Volume in Young Piglets”, Pediatric Research, 1992, pp. 85-90. |
Coxworth , “Artificial Vein Valve Could Replace Drugs For Treating Common Circulatory Problem”, Published on Gizmag website (http://www.gizmag.com/artificial-venous-valve-cvi/21785/), Mar. 9, 2012. |
Damman , et al., “Decreased Cardiac Output, Venous Congestion And The Association With Renal Impairment In Patients With Cardiac Dysfunction”, European Journal of Heart Failure, 2007, pp. 872-878. |
Damman , et al., “Increased Central Venous Pressure Is Associated With Impaired Renal Function And Mortality In A Broad Spectrum Of Patients With Cardiovascular Disease”, Journal of American College of Cardiology, 2009, pp. 582-588. |
Doty , et al., “The Effect Of Increased Renal Venous Pressure On Renal Function”, The Journal of Trauma,, Dec. 1999, pp. 1000-1003. |
Felker , et al., “Anemia As A Risk Factor And Therapeutic Target In Heart Failure”, Journal of the American College of Cardiology, 2004, pp. 959-966. |
Firth , et al., “Raised Venous Pressure: A Direct Cause Of Sodium Retention In Oedema?”, The Lancet, May 7, 1988, pp. 1033-1036. |
Forman , et al., “Incidence, Predictors At Admission, And Impact Of Worsening Renal Function Among Patients Hospitalized With Heart Failure”, Journal of American College of Cardiology, 2004, pp. 61-67. |
Fraser , et al., “The use of computational fluid dynamics in the development of ventricular assist devices”, Medical engineering & physics, 2011, pp. 263-280. |
Frazier , et al., “First Human Use of the Hemopump, a CatheterMounted Ventricular Assist Device”, Ann Thorac Surg, 1990, pp. 299-304. |
Gomes , et al., “Heterologous Valve Implantation In The Infra-Renal Vena Cava For Treatment Of The Iliac Venous Valve Regurgitation Disease: Experimental Study”, Rev Bras Cir Cardiovasc, 2002, pp. 367-369. |
Haddy , et al., “Effect Of Elevation Of Intraluminal Pressure On Renal Vascular Resistance”, Circulation Research Journal Of The American Heart Association, 1956, pp. 659-663. |
Heywood , et al., “High Prevalence Of Renal Dysfunction And Its Impact On Outcome In 118,465 Patients Hospitalized With Acute Decompensated Heart Failure: A Report From The ADHERE Database”, Journal of Cardiac Failure, 2007, pp. 422-430. |
Hillege , et al., “Renal Function As A Predictor Of Outcome In A Broad Spectrum Of Patients With Heart Failure”, Circulation Journal of the American Heart Association, 2006, pp. 671-678. |
Hillege , et al., “Renal Function, Neurohormonal Activation, And Survival In Patients With Chronic Heart Failure”, Circulation Journal of the American Heart Association, 2000, pp. 203-210. |
Hsu , et al., “Review of recent patents on foldable ventricular assist devices”, Recent Patents on Biomedical Engineering, 2012, pp. 208-222. |
IKARI , “The Physics Of Guiding Catheter; The IKARI Guiding Catheter In TRI”, available at httu:i /www.docstoc.com/docs/148136553/The-[KARI-catheter---anovel-guide-for-TRI--. |
Kafagy , et al., “Design of axial blood pumps for patients with dysfunctional fontan physiology: computational studies and performance testing”, Artificial organs, 2015, pp. 34-42. |
Kang , et al., “Fluid dynamics aspects of miniaturized axial-flow blood pump”, Bio-medical materials and engineering, 2014, pp. 723-729. |
Koochaki , et al., “A new design and computational fluid dynamics study of an implantable axial blood pump”, Australasian Physical & Engineering Sciences in Medicine, 2013, pp. 417-422. |
Lauten , et al., “Heterotopic Transcatheter Tricuspid Valve Implantation: First-In-Man Application Of A Novel Approach To Tricuspid Regurgitation”, European Heart Journal, Feb. 15, 2011, pp. 1207-1213. |
McAlister , et al., “Renal Insufficiency And Heart Failure: Prognostic And Therapeutic Implications From A Prospective Cohort Study”, Circulation Journal of the American Heart Association, 2004, pp. 1004-1009. |
Meyns , et al., “The Heart-Hemopump Interaction: A Study of Hemopump Flow as a Function of Cardiac Activity”, Artificial Organs, 1996, pp. 641-649. |
Mullens , et al., “Elevated Intra-Abdominal Pressure In Acute Decompensated Heart Failure. A Potential Contributor To Worsening Renal Function”, Journal of the American College of Cardiology, 2008, pp. 300-306. |
Mullens , et al., “Importance Of Venous Congestion For Worsening Of Renal Function In Advanced Decompensated Heart Failure”, Journal of American College of Cardiology, 2009, pp. 589-596. |
Mullens , et al., “Prompt Reduction In Intra-Abdominal Pressure Following Large-Volume Mechanical Fluid Removal Improves Renal Insufficiency In Refractory Decompensated Heart Failure”, Journal of Cardiac Failure, 2008, pp. 508-514. |
Notarius , et al., “Central Venous Pressure During Exercise: Role Of Muscle Pump”, Canadian Journal of Physiology and Pharmacology, 1996, pp. 647-651. |
Park , et al., “Nutcracker Syndrome: Intravascular Stenting Approach”, Nephrol Dial Transplant, 2000, pp. 99-101. |
Reul , et al., “Blood pumps for circulatory support”, PERFUSION-SEVENOAKS, 2000, pp. 295-312. |
Reul , et al., “Rotary blood pumps in circulatory assist”, Perfusion, May 1995, pp. 153-158. |
Roefeld , “Cavopulmonary assist for the univentricular Fontan circulation: von Karman viscous impeller pump”, The Journal of Thoracic and Cardiovascular Surgery, 2010, pp. 529-536. |
Schmitz-Rode , et al., “An Expandable Percutaneous Catheter Pump For Left Ventricular Support”, Journal of the American College of Cardiology, 2005, pp. 1856-1861. |
Schmitz-Rode , et al., “Axial flow catheter pump for circulatory support”, Biomed Tech (Berl), 2002, pp. 142-143. |
Semple , et al., “Effect Of Increased Renal Venous Pressure On Circulatory “Autoregulation” Of Isolated Dog Kidneys”, Circulation Research Journal of The American Heart Association, 1959, pp. 643-648. |
Sianos , et al., “The Recover® LP 2.5 catheter-mounted left ventricular assist device”, EuroIntervention, 2006, pp. 116-119. |
Siess , et al., “Concept, realization, and first in vitro testing of an intraarterial microaxial blood pump”, Artificial Organs, 1995, pp. 644-652. |
Siess , et al., “Hemodynamic system analysis of intraarterial microaxial pumps in vitro and in vivo”, Artificial Organs, Jun. 1996, pp. 650-661. |
Siess , “PhD Chapter 3—English translation”, https://www.shaker.eu/en/content/catalogue/index.asp?lang=en&ID=8&ISBN=978-3-8265-6150-4&search=yes. |
Song , et al., “Axial flow blood pumps”, ASAIO journal, 2003, pp. 355-364. |
Tang , et al., “Anemia In Chronic Heart Failure: Prevalence, Etiology, Clinical Correlates, And Treatment Options”, Circulation Journal of the American Heart Association, 2006, pp. 2454-2461. |
Throckmorton , et al., “Design of a protective cage for an intra vascular axial flow blood pump to mechanically assist the failing Fontan”, Artificial organs, 2009, pp. 611-621. |
Throckmorton , et al., “Mechanical Cavopulmonary Assist for the Univentricular Fontan Circulation Using a Novel Folding Propeller Blood Pump”, ASAIO Journal, 2007, pp. 734-741. |
Thunberg , et al., “Ventricular assist devices today and tomorrow”, Journal of cardiothoracic and vascular anesthesia, 2010, pp. 656-680. |
Timms , “A review of clinical ventricular assist devices”, Medical engineering & physics, 2011, pp. 1041-1047. |
Triep , et al., “Computational Fluid Dynamics and Digital Particle Image Velocimetry Study of the Flow Through an Optimized Micro-axial Blood Pump”, Artificial Organs, May 2006, pp. 384-391. |
Uthoff , et al., “Central venous pressure at emergency room presentation predicts cardiac rehospitalization in patients with decompensated heart failure”, European Journal of Heart Failure, 2010, pp. 469-476. |
U.S. Appl. No. 14/567,439, filed Dec. 11, 2014. |
U.S. Appl. No. 16/275,559, filed Feb. 14, 2019. |
U.S. Appl. No. 16/276,965, filed Feb. 15, 2019. |
U.S. Appl. No. 16/277,411, filed Feb. 15, 2019. |
U.S. Appl. No. 16/278,482, filed Feb. 18, 2019. |
U.S. Appl. No. 16/279,352, filed Feb. 19, 2019. |
U.S. Appl. No. 16/280,566, filed Feb. 20, 2019. |
U.S. Appl. No. 16/281,237, filed Feb. 21, 2019. |
U.S. Appl. No. 16/281,264, filed Feb. 21, 2019. |
U.S. Appl. No. 16/750,354, filed Jan. 23, 2020. |
U.S. Appl. No. 16/952,327, filed Nov. 19, 2020. |
U.S. Appl. No. 16/952,389, filed Nov. 19, 2020. |
U.S. Appl. No. 16/952,444, filed Nov. 19, 2020. |
U.S. Appl. No. 17/069,064, filed Oct. 13, 2020. |
U.S. Appl. No. 17/069,321, filed Oct. 13, 2020. |
U.S. Appl. No. 17/069,570, filed Oct. 13, 2020. |
U.S. Appl. No. 17/070,323, filed Oct. 14, 2020. |
U.S. Appl. No. 17/070,670, filed Oct. 14, 2020. |
U.S. Appl. No. 17/077,769, filed Oct. 22, 2020. |
U.S. Appl. No. 17/078,439, filed Oct. 23, 2020. |
U.S. Appl. No. 17/078,472, filed Oct. 23, 2020. |
U.S. Appl. No. 17/176,344, filed Feb. 16, 2021. |
U.S. Appl. No. 17/177,296, filed Feb. 17, 2021. |
U.S. Appl. No. 17/180,041, filed Feb. 19, 2021. |
U.S. Appl. No. 17/182,482, filed Feb. 23, 2021. |
U.S. Appl. No. 17/609,589, filed Nov. 8, 2021. |
U.S. Appl. No. 61/656,244, filed Jun. 6, 2012. |
U.S. Appl. No. 61/779,803, filed Mar. 13, 2013. |
U.S. Appl. No. 61/914,470, filed Dec. 11, 2013. |
U.S. Appl. No. 61/914,475, filed Dec. 11, 2013. |
U.S. Appl. No. 62/000,192, filed May 19, 2014. |
U.S. Appl. No. 62/162,881, filed May 18, 2015. |
U.S. Appl. No. 62/401,403, filed Sep. 29, 2016. |
U.S. Appl. No. 62/412,631, filed Oct. 25, 2016. |
U.S. Appl. No. 62/425,814, filed Nov. 23, 2016. |
U.S. Appl. No. 62/543,540, filed Aug. 10, 2017. |
U.S. Appl. No. 62/615,538, filed Jan. 10, 2018. |
U.S. Appl. No. 62/665,718, filed May 2, 2018. |
U.S. Appl. No. 62/681,868, filed Jun. 7, 2018. |
U.S. Appl. No. 62/727,605, filed Sep. 6, 2018. |
U.S. Appl. No. 62/796,138, filed Jan. 24, 2019. |
U.S. Appl. No. 62/851,716, filed May 23, 2019. |
U.S. Appl. No. 62/870,821, filed Jul. 5, 2019. |
U.S. Appl. No. 62/896,026, filed Sep. 5, 2019. |
U.S. Appl. No. 63/006,122, filed Apr. 7, 2020. |
U.S. Appl. No. 63/114,136, filed Nov. 16, 2020. |
U.S. Appl. No. 63/129,983, filed Dec. 23, 2020. |
Examination Report for Indian Patent Application No. 201917018651 mailed Jun. 30, 2021. |
Extended Search Report for European Application No. 19172327.9 mailed Aug. 23, 2019. |
Extended Search Report for European Application No. 20159714.3 mailed Jul. 3, 2020. |
Extended Search Report for European Application No. 20159716.8 mailed Jul. 3, 2020. |
Extended Search Report for European Application No. 20159718.4 mailed Jul. 9, 2020. |
Extended Search Report for European Application No. 20195082.1 mailed Nov. 5, 2020. |
Extended Search Report for European Application No. 20195084.7 mailed Nov. 5, 2020. |
Extended Search Report for European Application No. 20195085.4 mailed Nov. 4, 2020. |
Extended Search Report for European Application No. 20195987.1 mailed Nov. 5, 2020. |
Extended Search Report for European Application No. 21156647.6 mailed May 21, 2021. |
Extended Search Report for European Application No. 21158196.2 mailed Apr. 8, 2021. |
Extended Search Report for European Application No. 21158902.3 mailed Apr. 29, 2021. |
Extended Search Report for European Application No. 21158903.1 mailed Apr. 9, 2021. |
International Search Report and Written Opinion from International Application No. PCT/IB2020/050515 mailed Sep. 9, 2020. |
International Search Report and Written Opinion from International Application No. PCT/IB2021/052590 mailed Sep. 14, 2021. |
International Search Report and Written Opinion from International Application No. PCT/IB2021/052857 mailed Oct. 5, 2021. |
International Search Report and Written Opinion from International Application No. PCT/IL2017/051158 mailed Jan. 17, 2018. |
International Search Report and Written Opinion from International Application No. PT/IB2019/050186 mailed Jul. 18, 2019. |
Invitation to Pay Additional Fees for International Application No. PCT/IB2020/050515 mailed Mar. 31, 2020. |
Invitation to Pay Additional Fees for International Application No. PCT/IB2021/052590 mailed Jul. 23, 2021. |
Invitation to Pay Additional Fees for International Application No. PCT/IB2021/052857 mailed Jul. 7, 2021. |
Invitation to Pay Additional Fees in International Application No. PCT/IB2020/050515 mailed Mar. 31, 2020. |
Office Action for Chinese Application No. 201780066201.3 mailed Jun. 29, 2021. |
Office Action for Japanese Patent Application No. 2019-521643 mailed Sep. 28, 2021. |
“Tanslation of decision of Board 4 (Nullity Board) of the German Federal Patent Court re German patent 10336902”, pronounced Nov. 15, 2016, and appendices to decision, 62 pages. |
Van Mieghem , et al., “Design and Principle of Operation of the HeartMate PHPTM (Percutaneous Heart Pump)”, EuroIntervention, 2016. |
Vercaemst , et al., “Impella: A Miniaturized Cardiac Support System in an Era of Minimal Invasive Cardiac Surgery”, Presented at the 39th International Conference of the American Society of Extra-Corporeal Technology, Mar. 22-25, 2001. |
Wampler , “The first co-axial flow pump for human use: the Hemopump”, Flameng W. (eds) Temporary Cardiac Assist with an Axial Pump System, 1991. |
Wencker , “Acute Cardio-Renal Syndrome: Progression From Congestive Heart Failure To Congestive Kidney Failure”, Current Heart Failure Reports, 2007, pp. 134-138. |
Winton , “The Control Of Glomerular Pressure By Vascular Changes Within The Mammalian Kidney, Demonstrated By The Actions Of Adrenaline”, Journal of Physiology, Nov. 1931, pp. 151-162. |
Winton , “The Influence Of Venous Pressure On The Isolated Mammalian Kidney”, Journal of Physiology, Jun. 6, 1931, pp. 49-61. |
Wood , “The Mechanism Of The Increased Venous Pressure With Exercise In Congestive Heart Failure”, Journal of Clinical Investigation, 1962, pp. 2020-2024. |
Wu , et al., “Design and simulation of axial flow maglev blood pump”, International Journal of Information Engineering and Electronic Business, 2011, p. 42. |
Yancy et al., “Clinical Presentation, Management, And In-Hospital Outcomes Of Patients Admitted With Acute Decompensated Heart Failure With Preserved Systolic Function. A Report From The Acute Decompensated Heart Failure National Registry (ADHERE) Database”, Journal of the American College of Cardiology, 2006, pp. 76-84. |
Corrected Notice of Allowability for U.S. Appl. No. 16/810,116 mailed Apr. 7, 2023. |
Corrected Notice of Allowability for U.S. Appl. No. 17/070,323 mailed Jun. 1, 2023. |
Corrected Notice of Allowability for U.S. Appl. No. 17/180,041 mailed Jun. 30, 2023. |
Examination Report for Indian Patent Application No. 202147033522 mailed May 24, 2023. |
Extended Search Report and Preliminary Opinion for European Application No. 23159720.4 mailed Jun. 27, 2023. |
Extended Search Report for European Application No. 22197511.3 mailed Dec. 5, 2022. |
Extended Search Report for European Application No. 23159721.2 mailed Jun. 26, 2023. |
Extended Search Report for European Application No. 23159724.6 mailed Jun. 26, 2023. |
Extended Search Report for European Application No. 23159725.3 mailed Jun. 28, 2023. |
Final Office Action for U.S. Appl. No. 16/952,327 mailed Jun. 8, 2023. |
Final Office Action for U.S. Appl. No. 16/952,389 mailed Jul. 18, 2023. |
Final Office Action for U.S. Appl. No. 16/952,444 mailed Jul. 5, 2023. |
Final Office Action for U.S. Appl. No. 17/069,570 mailed Apr. 28, 2023. |
Final Office Action for U.S. Appl. No. 17/070,670 mailed Jun. 2, 2023. |
Final Office Action for U.S. Appl. No. 17/077,769 mailed Jun. 7, 2023. |
International Search Report and Written Opinion from International Application No. PCT/IB2022/058101 mailed Feb. 20, 2023. |
Issue Notification for U.S. Appl. No. 16/810,116 mailed May 17, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/078,439 mailed Jun. 1, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/078,472 mailed May 4, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/574,701 mailed Sep. 27, 2023. |
Notice of Allowance for U.S. Appl. No. 16/275,559 mailed Jul. 27, 2023. |
Notice of Allowance for U.S. Appl. No. 16/810,116 mailed Mar. 13, 2023. |
Notice of Allowance for U.S. Appl. No. 17/069,064 mailed Mar. 8, 2023. |
Notice of Allowance for U.S. Appl. No. 17/070,323 mailed Aug. 30, 2023. |
Notice of Allowance for U.S. Appl. No. 17/070,323 mailed May 15, 2023. |
Notice of Allowance for U.S. Appl. No. 17/077,769 mailed Sep. 27, 2023. |
Notice of Allowance for U.S. Appl. No. 17/173,944 mailed Jul. 10, 2023. |
Notice of Allowance for U.S. Appl. No. 17/180,041 mailed Jun. 13, 2023. |
Notice of Allowance for U.S. Appl. No. 17/180,041 mailed Sep. 18, 2023. |
Notice of Allowance for U.S. Appl. No. 17/182,482 mailed Apr. 21, 2023. |
Office Action for Canadian Application No. 3,039,285 mailed Mar. 24, 2023. |
Office Action for Canadian Application No. 3,080,800 mailed Sep. 12, 2023. |
Office Action for Canadian Application No. 3,122,415 mailed Mar. 31, 2023. |
Office Action for Chinese Application No. 201980007116.9 mailed Nov. 28, 2022. |
Office Action for Japanese Application No. 2019-521643 mailed Apr. 11, 2023. |
Office Action for Japanese Application No. 2020-537746 mailed Feb. 21, 2023. |
U.S. Appl. No. 18/121,995, filed Mar. 15, 2023. |
U.S. Appl. No. 18/122,456, filed Mar. 16, 2023. |
U.S. Appl. No. 18/122,486, filed Mar. 16, 2023. |
U.S. Appl. No. 18/122,504, filed Mar. 16, 2023. |
U.S. Appl. No. 18/447,025, filed Aug. 9, 2023. |
U.S. Appl. No. 18/447,050, filed Aug. 9, 2023. |
U.S. Appl. No. 18/447,064, filed Aug. 9, 2023. |
U.S. Appl. No. 18/447,074, filed Aug. 9, 2023. |
U.S. Appl. No. 18/447,086, filed Aug. 9, 2023. |
U.S. Appl. No. 63/158,708, filed Mar. 9, 2021. |
U.S. Appl. No. 63/254,321, filed Oct. 11, 2021. |
U.S. Appl. No. 63/317,199, filed Mar. 7, 2022. |
Extended European Search Report for EP Patent Application No. 22163640.0 mailed Jun. 29, 2022. |
Corrected Notice of Allowance for U.S. Appl. No. 16/275,559 mailed Nov. 8, 2023. |
Corrected Notice of Allowance for U.S. Appl. No. 17/070,323 mailed Oct. 4, 2023. |
Corrected Notice of Allowance for U.S. Appl. No. 17/077,769 mailed Nov. 15, 2023. |
Corrected Notice of Allowance for U.S. Appl. No. 17/077,769 mailed Nov. 6, 2023. |
Corrected Notice of Allowance for U.S. Appl. No. 17/077,769 mailed Oct. 4, 2023. |
Corrected Notice of Allowance for U.S. Appl. No. 17/180,041 mailed Oct. 4, 2023. |
Examination Report for Australian Patent Application No. 2019206421 mailed Sep. 29, 2023. |
Extended Search Report for European Application No. 23189145.8 mailed Nov. 27, 2023. |
Extended Search Report for European Application No. 23189147.4 mailed Dec. 13, 2023. |
Extended Search Report for European Application No. 23189148.2 mailed Dec. 13, 2023. |
Extended Search Report for European Application No. 23189149.0 mailed Dec. 13, 2023. |
Final Office Action for U.S. Appl. No. 17/078,472 mailed Oct. 23, 2023. |
Hearing Notice for Indian Patent Application No. 201917018651 mailed Dec. 11, 2023. |
Issue Notification for U.S. Appl. No. 16/275,559 mailed Nov. 22, 2023. |
Issue Notification for U.S. Appl. No. 17/070,323 mailed Oct. 18, 2023. |
Issue Notification for U.S. Appl. No. 17/077,769 mailed Nov. 29, 2023. |
Issue Notification for U.S. Appl. No. 17/180,041 mailed Oct. 18, 2023. |
Non-Final Office Action for U.S. Appl. No. 16/952,327 mailed Oct. 13, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/069,570 mailed Oct. 2, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/070,670 mailed Oct. 30, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/176,344 mailed Oct. 31, 2023. |
Notice of Allowance for U.S. Appl. No. 16/275,559 mailed Oct. 4, 2023. |
Notice of Allowance for U.S. Appl. No. 17/078,439 mailed Dec. 5, 2023. |
Notice of Allowance for U.S. Appl. No. 17/173,944 mailed Nov. 8, 2023. |
Notice of Allowance for U.S. Appl. No. 17/177,296 mailed Nov. 17, 2023. |
Office Action for Canadian Application No. 3,176,272 mailed Jan. 2, 2024. |
Office Action for Chinese Application No. 202080017728.9 mailed Nov. 6, 2023. |
Office Action for Japanese Application No. 2021-533242 mailed Nov. 8, 2023. |
U.S. Appl. No. 18/511,532, filed Nov. 16, 2023. |
Corrected Notice of Allowance for U.S. Appl. No. 16/952,389 mailed Feb. 20, 2024. |
Corrected Notice of Allowance for U.S. Appl. No. 16/952,389 mailed Mar. 4, 2024. |
Corrected Notice of Allowance for U.S. Appl. No. 16/952,444 mailed Mar. 13, 2024. |
Examination Report for European Application No. 21718229.4 mailed Mar. 17, 2022. |
Final Office Action for U.S. Appl. No. 17/176,344 mailed Apr. 12, 2024. |
Final Office Action for U.S. Appl. No. 17/574,701 mailed Feb. 8, 2024. |
International Search Report and Written Opinion from International Application No. PCT/IB2023/059136 mailed Jan. 2, 2024. |
International Search Report and Written Opinion from International Application No. PCT/IB2023/059137 mailed Mar. 21, 2024. |
International Search Report and Written Opinion from International Application No. PCT/IB2023/059138 mailed Feb. 7, 2024. |
International Search Report and Written Opinion from International Application No. PCT/IB2023/059141 mailed Mar. 22, 2024. |
International Search Report and Written Opinion from International Application No. PCT/IB2023/059143 mailed Mar. 14, 2024. |
Invitation to Pay Additional Fees for International Application No. PCT/IB2023/059134 mailed Dec. 21, 2023. |
Invitation to Pay Additional Fees for International Application No. PCT/IB2023/059137 mailed Jan. 2, 2024. |
Invitation to Pay Additional Fees for International Application No. PCT/IB2023/059138 mailed Dec. 8, 2023. |
Invitation to Pay Additional Fees for International Application No. PCT/IB2023/059141 mailed Dec. 22, 2023. |
Invitation to Pay Additional Fees for International Application No. PCT/IB2023/059142 mailed Jan. 2, 2024. |
Issue Notification for U.S. Appl. No. 16/952,389 mailed Mar. 13, 2024. |
Issue Notification for U.S. Appl. No. 16/952,444 mailed Mar. 20, 2024. |
Issue Notification for U.S. Appl. No. 17/078,439 mailed Apr. 3, 2024. |
Issue Notification for U.S. Appl. No. 17/177,296 mailed Mar. 13, 2024. |
Non-Final Office Action for U.S. Appl. No. 17/078,472 mailed Feb. 14, 2024. |
Notice of Allowance for U.S. Appl. No. 16/952,389 mailed Feb. 7, 2024. |
Notice of Allowance for U.S. Appl. No. 16/952,444 mailed Feb. 15, 2024. |
Notice of Allowance for U.S. Appl. No. 17/069,570 mailed Mar. 13, 2024. |
Notice of Allowance for U.S. Appl. No. 17/078,439 mailed Feb. 27, 2024. |
Notice of Allowance for U.S. Appl. No. 17/173,944 mailed Mar. 6, 2024. |
Notice of Allowance for U.S. Appl. No. 17/177,296 mailed Feb. 14, 2024. |
Notice of Missing Requirements for U.S. Appl. No. 18/447,025 mailed Feb. 1, 2024. |
U.S. Appl. No. 18/444,972, filed Feb. 19, 2024. |
U.S. Appl. No. 18/632,533, filed Apr. 11, 2024. |
U.S. Appl. No. 18/632,545, filed Apr. 11, 2024. |
U.S. Appl. No. 18/632,557, filed Apr. 11, 2024. |
U.S. Appl. No. 18/632,569, filed Apr. 11, 2024. |
U.S. Appl. No. 63/406,427, filed Sep. 14, 2022. |
U.S. Appl. No. 63/432,496, filed Dec. 14, 2022. |
U.S. Appl. No. 63/443,519, filed Feb. 6, 2023. |
U.S. Appl. No. 63/470,259, filed Jun. 1, 2023. |
Chang , et al., “Leveraging Device-Arterial Coupling to Determine Cardiac and Vascular State”, IEEE Transactions On Biomedical Engineering, vol. 66, No. 10, Oct. 2019, pp. 2800-2808. |
Keller , et al., “Dynamic Modulation of Device-Arterial Coupling to Determine Cardiac Output and Vascular Resistance”, Annals of Biomedical Engineering, vol. 48, No. 9, Sep. 2020, pp. 2333-2342. |
Corrected Notice of Allowance for U.S. Appl. No. 17/069,570 mailed Apr. 10, 2024. |
Corrected Notice of Allowance for U.S. Appl. No. 17/069,570 mailed Jul. 16, 2024. |
Examination Report for European Application No. 21158196.2 mailed May 28, 2024. |
Examination Report for European Application No. 21158903.1 mailed Jul. 9, 2024. |
Extended Search Report for European Application No. 24170573.0 mailed Jul. 29, 2024. |
Final Office Action for U.S. Appl. No. 17/078,472 mailed Aug. 9, 2024. |
Hearing Notice for Indian Application No. 202147033522 mailed Jul. 24, 2024. |
International Search Report and Written Opinion from International Application No. PCT/IB2023/059142 mailed Apr. 16, 2024. |
Issue Notification for U.S. Appl. No. 17/173,944 mailed Jun. 12, 2024. |
Non-Final Office Action for U.S. Appl. No. 17/532,318 mailed Jul. 18, 2024. |
Non-Final Office Action for U.S. Appl. No. 17/609,589 mailed Jul. 1, 2024. |
Non-Final Office Action for U.S. Appl. No. 17/677,571 mailed Aug. 15, 2024. |
Notice of Allowance for U.S. Appl. No. 16/952,327 mailed Apr. 29, 2024. |
Notice of Allowance for U.S. Appl. No. 16/952,327 mailed Aug. 6, 2024. |
Notice of Allowance for U.S. Appl. No. 17/069,570 mailed Jun. 24, 2024. |
Notice of Allowance for U.S. Appl. No. 17/070,670 mailed Jun. 13, 2024. |
Notice of Allowance for U.S. Appl. No. 17/574,701 mailed Jun. 26, 2024. |
Office Action for Japanese Application No. 2023-156391 mailed Jun. 3, 2024. |
U.S. Appl. No. 18/635,275, filed Apr. 15, 2024. |
U.S. Appl. No. 18/635,286, filed Apr. 15, 2024. |
U.S. Appl. No. 18/635,292, filed Apr. 15, 2024. |
U.S. Appl. No. 18/637,653, filed Apr. 17, 2024. |
U.S. Appl. No. 18/637,655, filed Apr. 17, 2024. |
U.S. Appl. No. 18/637,667, filed Apr. 17, 2024. |
U.S. Appl. No. 18/639,079, filed Apr. 18, 2024. |
U.S. Appl. No. 18/639,087, filed Apr. 18, 2024. |
U.S. Appl. No. 18/639,094, filed Apr. 18, 2024. |
U.S. Appl. No. 18/639,098, filed Apr. 18, 2024. |
U.S. Appl. No. 18/640,222, filed Apr. 19, 2024. |
U.S. Appl. No. 18/640,260, filed Apr. 19, 2024. |
U.S. Appl. No. 18/640,285, filed Apr. 19, 2024. |
U.S. Appl. No. 18/640,303, filed Apr. 19, 2024. |
U.S. Appl. No. 18/652,930, filed May 2, 2024. |
U.S. Appl. No. 18/652,956, filed May 2, 2024. |
U.S. Appl. No. 18/652,959, filed May 2, 2024. |
U.S. Appl. No. 18/652,962, filed May 2, 2024. |
U.S. Appl. No. 18/654,336, filed May 3, 2024. |
“Peripheral Interventions 2015 Product Catalog”, Boston Scientific, 2015, 7 pages. |
Alsafarr, et al., “Hydrodynamic Effects on Flow Through Screens at Intakes”, Water Research vol. 8, Issue 9, Sep. 1974, pp. 617-622. |
Brückler, et al., “Flow Design and Optimization of a Percutaneously Implantable Miniature Blood Pump”, Medical technology in cardiology, 2002, 11 pages. |
Fox, et al., “Introduction to Fluid Mechanics”, Sixth Edition, pp. 341-343. |
Kapur, et al., “Mechanical Left Ventricular Unloading to Reduce Infarct Size During Acute Myocardial Infarction: Insight from Preclinical and Clinical Studies”, Journal of Cardiovascular Translational Research, Apr. 23, 2019, pp. 1-8. |
Kaufman, “Invasive Vascular Diagnosis”, Radiology Key Fastest Radiology Insight Engine, Chapter 3, Dec. 23, 2015, 12 pages. |
Schmitz-Rode, “Percutaneously implantable, self-expanding left heart support pump”, Clinic for Radiological Diagnostics, 2001, 19 Pages. |
Siess, et al., “Basic Design Criteria for Rotary Blood Pumps”, Rotary Blood Pumps, 2000, pp. 69-83. |
US 9,427,507, Jul. 2004, Siess (withdrawn). |
US 9,399,088, Apr. 2013, Siess (withdrawn). |
Number | Date | Country | |
---|---|---|---|
20220072297 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
63129983 | Dec 2020 | US | |
63114136 | Nov 2020 | US | |
63006122 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17609589 | US | |
Child | 17528807 | US |