Manufacture of split tip catheters

Information

  • Patent Grant
  • 8500939
  • Patent Number
    8,500,939
  • Date Filed
    Thursday, October 2, 2008
    16 years ago
  • Date Issued
    Tuesday, August 6, 2013
    11 years ago
Abstract
Multi-lumen catheter devices having at least one split-tipped end are disclosed, together with methods of forming such split tip catheters. In one aspect of the invention, the manufacturing methods can include the steps of: providing a catheter body having at least a first and a second internal lumen extending longitudinally through the catheter body; removing a distal portion of the catheter body to form a first distal tip segment such that the first lumen extends longitudinally within this tip segment beyond the second lumen; and joining a second lumen tip segment to the catheter body in communication with the second lumen. The second tip segment can be joined to the catheter body such that it is at least partially separated from the first tip segment and, in some embodiments, preferably diverges at an angle relative to the first tip segment.
Description
BACKGROUND

The present invention generally relates to catheters and preferably to multi-lumen catheters used for vascular access.


Multi-lumen catheters and, in particular split-tip catheters, are desirable for various treatment applications such as hemodialysis where fluid extraction and return occur simultaneously. Hemodialysis is the separation of metabolic waste products and water from the blood by filtration. Typically, a hemodialysis unit is connected to a patient's body by a catheter. The catheter's distal end is placed in a blood vessel and its proximal end is connected to a hemodialysis unit.


During hemodialysis, a patient's blood typically flows through a double lumen catheter to the hemodialysis unit which provides filtration and controls the flow of blood. A double lumen catheter has two lumens that independently allow fluid extraction and return. For example, one lumen can be used for removing blood from a patient for processing in the hemodialysis machine and the other lumen can be used for subsequently returning the processed blood back to the patient's circulatory system. Such catheters can also include additional lumens for flushing, administration of anticoagulants or the like.


Parameters that can be varied to achieve adequate hemodialysis include blood flow rate, dialysis solution flow rate, and dialyzer competency. Generally, raising the blood flow rate increases dialysis efficiency. However, conditions such as access recirculation decrease efficiency. Access recirculation is the recirculation of treated blood back into the hemodialysis unit. Excess recirculation effectively reduces dialysis efficiency and lengthens the duration of the treatment needed for adequate dialysis. Access recirculation can be particularly of concern when using a double lumen catheter due to the close proximity of the intake and outflow ports at the distal tip of the catheter.


Various double lumen catheter designs have been suggested for the purpose of reducing access recirculation. The distal ends of intake and outflow lumens have been longitudinally spaced 20-30 mm apart to prevent recirculation. For example, Twardowski et al. U.S. Pat. No. 5,569,182 discloses that the lumen for return of blood back into the vein should terminate beyond the extraction lumen. The purpose of this is to prevent cleansed blood, exiting from the outlet point of the catheter, from re-entering the catheter's blood inlet point and returning to the dialysis machine. However, certain disadvantages have been noted by such large longitudinal spacing between the distal ends of the respective lumens. For example, blood flow stagnation in the region of the blood vessel between two widely separated tips can lead to clot formation.


In addition to longitudinal spacing of the distal openings of the lumens, others have suggested that the distal end of a multi-lumen catheter can be split such that the distal tip segments can independently move in the blood vessel to optimize the fluid dynamics of the different functions (blood extraction and blood return). The introduction of an angle between the extraction and return lumens of a split tip catheter can further reduce the likelihood of access recirculation due to greater separation between inflow and outflow lumens.


Moreover, it can be desirable to have the maximum possible luminal cross-sectional areas to optimize catheter flow characteristics and also to maintain adequate flow over time since flow rates tend to decrease due to factors such as catheter clotting. However, a need can remain to maintain adequate physical and mechanical properties of the catheter, for instance tensile strength and kink-resistance, and to keep overall catheter dimensions small enough for insertion and proper physiological function. With these constraints in mind, it can be advantageous to have a different shape, e.g., greater luminal cross-section, for one or the other of the lumens or split tip segments, for example, to facilitate blood withdrawal or to diffuse returning cleansed blood. In particular, the arterial (or extraction) lumen is more prone to clogging and can benefit from having a larger cross-section. However, such geometric differences are difficult to incorporate into split-tip catheters using conventional manufacturing techniques.


While various techniques are known for manufacturing split tip catheters, there exists a need for more efficient and more robust techniques, especially in manufacturing split tip catheters when the divergence of the tip elements at an angle is desired or a different shape or geometry is desired for one or the other of the lumens or tip segments.


SUMMARY OF THE INVENTION

Multi-lumen catheter devices having at least one split end are disclosed, together with methods of forming such split tip catheters. In one aspect of the invention, the manufacturing methods can include the steps of: providing a catheter body having at least a first and a second internal lumen extending longitudinally through the catheter body; removing a distal portion of the catheter body to form a first distal tip segment such that the first lumen extends longitudinally within this tip segment beyond the second lumen; and joining a second lumen tip segment to the catheter body in communication with the second lumen. The second tip segment can be joined to the catheter body such that it is at least partially separated from the first tip segment and, in some embodiments, preferably diverges at an angle relative to the first tip segment.


The second lumen tip segment can be joined to the device by various techniques. For example, the second segment can be joined to the catheter body by thermal or chemical fusion. Alternatively, the second lumen tip segment can be bonded to the catheter body with an adhesive or the like.


In one embodiment of the invention, the second lumen tip segment can be oriented such that the first and second tip segments are separate and diverge from each other at an angle. The angle between the first and second tip segments can be formed before, during, or after the second tip segment is joined to the catheter body. For example, the angle can be formed after joining the segment to the catheter body by the application of heat. Alternatively, the catheter body and/or the second segment can present an angled interface such that an angle is formed at the joint itself. The angle between the first and second tip segments can change from a proximal end of the first and second tip segments to a distal end of the first and second tip segments, e.g., one or both of the separate tip segments can be a compound angle or formed in the shape of a simple or compound curve.


In another embodiment of the invention, the second lumen tip segment can be oriented such that the first and second tip segments are separate but substantially parallel to each other.


Split tip catheters according to the invention can be formed by removing a distal portion of the catheter body by slicing away one of the lumens. If an angled separation is desired, the method can further include trimming the lumen in a non-perpendicular direction with respect to a longitudinal axis of the catheter body to facilitate attachment of the second tip segment at an angle. Alternatively, if substantially parallel split tips are desired, the method can further include trimming the lumen in a direction that is substantially perpendicular to a longitudinal axis of the trimmed lumen.


The catheters of the present invention can further include forming fluid passage holes in a side of at least one of the tip segments. In another aspect, the catheters of the present invention can further include coatings of at least a portion of the catheter body or the first and/or second tip segments with an antithrombotic agent, such as heparin, to reduce blood clotting or protein adhesion. In other aspects, the catheters of the present invention can include coatings of at least a portion of the body or the first and/or second tip segments with an antibacterial agent and/or an anti-inflammatory agent.


Additionally, following (or during) formation of the split tip catheter, the first and second tip segments can be joined together with a bioresorbable adhesive to simplify vascular insertion. Following insertion, the tip segments can separate upon dissolution of the adhesive, e.g., over a period of time ranging from 1 second to several days, more preferably from about 1 minute to about 10 hours, or 5 hours or one hour.


In another aspect of the invention, a method of forming a split tip catheter is disclosed including the steps of: (a) providing a multi-lumen catheter having at least a first inner lumen and a second inner lumen extending therethrough; (b) partially truncating a distal end of the multi-lumen catheter body to form a first distal lumen tube such that the first lumen of the catheter within the first distal tube longitudinally extends further than at least a second lumen of the catheter; and (c) attaching a second lumen tube to the severed end of the catheter such that a second distal lumen tube in fluid communication with the second lumen of the catheter is formed and extends longitudinally from the catheter separate from the first distal lumen tube.


The method can further include forming a non-zero angle between the first distal tube and the second distal tube. A non-zero-angle can be formed, for example, by trimming the catheter body at an angle, e.g., in a non-perpendicular direction with respect to a longitudinal axis of the first distal lumen tube, and then fusing or bonding the second distal tube to the catheter body at this location. The term “fusing” is used interchangeably with “bonding” herein and, as used, both terms are intended to encompass thermal fusion, melt bonding, ultrasonic welding, chemical bonding, adhesive bonding and the like.


Alternatively, the first and second distal end tubes can be formed with substantially a zero angle of divergence, e.g., the two end segments are substantially parallel to each other in a rest position. A zero-angle can be formed, for example, by trimming the catheter body in a perpendicular direction with respect to a longitudinal axis of the first distal lumen tube, and then fusing or bonding the second distal tube to the catheter body at this location.


In certain embodiments, it may be preferable that the second distal tube (that is to be joined to the catheter body) have a different luminal cross-section than the second lumen within the catheter body or that the first and second lumens within the catheter body have a different luminal cross-section from one another. The invention is also applicable to catheters having three or more lumens. For example, a three lumen catheter body can be truncated such that only one distal lumen extends from the point of truncation and then two separate end tubes can be grafted onto the body to provide three independent distal tip segments. Alternatively, the two grafted segments can be attached together but joined to the body separately from the first segment (formed from the original catheter body). In another alternative, the three lumen catheter body can be truncated such that two of the lumens extend in a distal segment from the point of truncation with a separate end tube grafted onto the body to provide a separated third lumen.


The present invention is advantageous, among other reasons, because only one distal tip segment is bonded to the catheter body (in contrast to prior art where two tip segments must be bonded), thus simplifying the process and shortening the manufacturing time. A further advantage is that bonding a single distal tip segment permits reduced septum thickness in the catheter body (and therefore increased luminal cross-sections) since the septum does not have to accommodate the attachment of two separate distal end tubes.


The method is particularly useful when one or more of the lumens has a non-circular cross-section, e.g., a substantially D-shaped cross-section. For example, the catheter body can be formed in a “double-D” configuration, with two “D” shaped lumens back-to-back and separated by a septum. A catheter body with a septum between the lumens can be formed by various means, e.g., as an integral body by extrusion or by assembling two D-shaped single lumen elements and then surrounding them by a sheath of heat-shrink polymeric material, thereby forming an integral body.


The method according to the invention can further include the step of partially truncating the catheter body further comprises truncating the body at a truncation point such that at least a portion of the septum (and preferably a major portion or all of the septum) is retained by the first distal lumen tube. Moreover, the method can further include attaching the second distal tube at least partially to the septum of the first distal tube.


The method according to the invention can further include the step of attaching a second distal tube that has a different shape than the first or second lumens of the catheter body. (The term “shape” is used herein to encompass differences in geometry, e.g., circular, ellipsoid or D-shaped as well as differences in size, e.g., cross-sectional area of the lumens.)


In another aspect of the invention, a method of forming a split tip catheter is disclosed, wherein the method can include the steps of: (a) truncating the catheter body at a septum dividing two of the lumens such that a first distal end tube is formed and the first tube surrounds a first lumen having a length that extends beyond a truncation point; and (b) attaching a second distal end lumen tube to the catheter body in fluid communication with a second lumen of the catheter body.


In yet another aspect of the invention, another method of forming a split tip catheter is disclosed including the steps of: (a) removing a partial length of a lumen included in a catheter body to expose a septum between the lumen and another lumen included in the catheter body, wherein each lumen defines a separate fluid pathway extending longitudinally through the body; and (b) attaching a replacement lumen tube at a distal end of the catheter body such that a pathway extending longitudinally through the replacement lumen tube is in communication with the pathway of the lumen that was partially removed. Again, the two (or more) lumen tubes can be formed to either diverge at an angle or to remain parallel to each other. (The term “parallel,” as used herein, is intended to encompass configurations that nominally have a “zero” angle of divergence as well as slight angles that may exist due to practical constraints or machining tolerances. It should also be appreciated that the preferred materials for the catheters of this invention are polymeric materials, such as polyurethane or silicone, that will also exhibit flexibility or “floppiness,” in both their parallel and divergence configurations.)


The step of removing the partial length of the lumen can further include trimming the lumen opening at a zero or non-zero angle in relation to an axis perpendicular to a longitudinal axis of the catheter. The end of the replacement lumen tube to be joined to the catheter body can also be cut at an angle.


In another aspect of the invention, a method of forming a split tip catheter is disclosed including the steps of: (a) providing a multi-lumen catheter body having at least a first inner lumen and a second inner lumen extending therethrough; (b) partially truncating the multi-lumen catheter body such that a first distal lumen tube is formed to longitudinally extend the first lumen of the catheter further than at least the second lumen of the catheter; and (c) attaching a second lumen tube to the truncated end of the catheter such that a pathway separate from the first distal tube is formed in fluid communication with the second lumen of the catheter, wherein the first inner lumen has a different shape than the second inner lumen.


In a further aspect of the invention, split tip catheter devices are disclosed. In one embodiment the split tip catheter can include a catheter body; a first lumen included in the catheter body, the first lumen having an inner pathway extending longitudinally through the catheter body; a second lumen included in the catheter body, the second lumen having an inner pathway extending longitudinally through the catheter body and a length less than a length of the first lumen; and a lumen tip segment attached to the second lumen and having a pathway extending longitudinally through the lumen tip segment such that the pathway of the lumen tip segment is in communication with the pathway of the second lumen.


Catheter devices according to the invention can be formed such that at least a part of one of the lumen tip segments is composed of a material different than a material of the catheter body. In certain embodiments, the first lumen and the lumen tip segment are separate and diverge from each other at an angle at a distal end of the catheter body. In other embodiments, the first lumen and the lumen tip segment are separate but substantially parallel to each other.


In yet another embodiment, a split tip catheter device is disclosed including a catheter body; a first distal tip segment integral with the catheter body, the first distal segment having an inner pathway extending longitudinally through a first lumen of the catheter body; and a second distal tip segment separate from the first distal segment and joined to the catheter body to provide a fluid pathway from a second lumen of the catheter body and extending longitudinally through the second tip segment.


Other advantages and features will become apparent from the following description and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which like reference numerals designate like parts throughout the figures, and wherein:



FIG. 1 is a schematic, partially cutaway, side view of a catheter according to the present invention;



FIG. 2 is a cross-section view of an embodiment of the present invention showing a catheter construction formed from opposed D-shaped lumen bodies inside an outer sheath;



FIG. 3 is a cross-section view of an embodiment of the present invention showing a unibody catheter construction utilizing opposed D-shaped lumens;



FIG. 4 is a cross-section view of a variation of an embodiment of the present invention showing opposed D-shaped lumens of different cross-sectional areas;



FIG. 5 is a cross-section view of an embodiment of the present invention showing yet another unibody construction with lumens of different shape and size;



FIG. 6 is a cross-section view of an embodiment of the present invention showing a unibody construction formed from two individual circular lumens inside an outer sheath;



FIG. 7 is a cross-section view of an embodiment of the present invention showing a unibody construction with two individual circular lumens;



FIG. 8 is a cross-section view of an embodiment of the present invention showing a unibody construction with three lumens;



FIG. 9 is a cross-section view of a variation of an embodiment of the present invention showing a unibody construction with three lumens;



FIG. 10 is a cross-section view of an embodiment of the present invention showing an elliptical-shaped unibody construction;



FIG. 11 is a schematic, perspective view of a catheter according to the present invention in an initial, pre-trimmed configuration;



FIG. 12 is a schematic, perspective view of another catheter in an initial, pre-trimmed configuration;



FIG. 13 is a schematic, perspective view of an embodiment of the present invention showing a trimmed catheter;



FIG. 14 is a schematic, perspective view of a variation of an embodiment of the present invention showing a trimmed catheter;



FIG. 15 is a schematic, perspective view of an embodiment of the present invention showing a lumen tube attached to a catheter;



FIG. 16 is a schematic, perspective view of a variation of an embodiment of the present invention showing a lumen tube attached to a catheter;



FIG. 17 is a schematic, perspective view of a variation of an embodiment of the present invention showing a lumen tube attached to a catheter;



FIG. 18 is a schematic, perspective view of a variation of an embodiment of the present invention showing a lumen tube attached to a catheter, where the lumen tube is attached to at least a portion of the septum;



FIG. 19 is a schematic, perspective view of a variation of an embodiment of the present invention showing a lumen tube attached to a catheter, where the lumen tube is attached to at least a portion of the septum using an alternative method;



FIG. 20 is a schematic, perspective view of an embodiment of the present invention showing an adhesive application;



FIG. 21 is a distal cross-sectional view of another embodiment of the present invention showing alternative adhesive disposition;



FIG. 22 is a distal cross-sectional view of yet another adhesive design;



FIG. 23 is a schematic, perspective view of an embodiment of the present invention showing fluid openings in the distal tip;



FIG. 24 is a cross-section view of a variation of an embodiment of the present invention showing a trimmed catheter;



FIG. 25 is a cross-section view of a variation of an embodiment of the present invention showing another trimmed catheter; and



FIG. 26 is a schematic side view of a catheter according to the present invention.





DETAILED DESCRIPTION

In FIG. 1 an embodiment of a split tip catheter 100 according to the invention is shown having a catheter body 102 with two internal lumens 104a, 104b (collectively, the lumens 104). The lumens 104 include respective inner lumen pathways 106a, 106b (collectively, the pathways 106) extending longitudinally through the catheter body 102. The catheter body 102 has a split-tip distal end 108 in which the catheter body 102 (and the lumens 104) separate into two distal lumen tip segments, 110a, 110b (collectively, the lumen tips 110). One of the lumens 104b has been trimmed to a length less than the other lumen 104a. A lumen tip segment 114 has been joined to the trimmed lumen 104b such that the lumen tip 110b includes the lumen tip segment 114 and such that the lumen tip segment 114 is in fluid communication with the trimmed lumen 104b. The lumen tip 110b forms an angle α with respect to the other lumen tip 110a. The value of α can be zero or non-zero and is preferably in the range of zero to ninety degrees. The lumen tips 110 can, but need not, have one or more fluid passage holes 112a, 112b (collectively, the fluid passage holes 112) in fluid communication with their respective lumen 104 to facilitate fluid removal (typically through lumen 104b) and return (typically through lumen 104a), e.g., blood removal and return during hemodialysis. Alternatively, or in conjunction with the fluid passage holes 112, one or both distal ends 116a, 116b (collectively, the distal ends 116) of the lumens 104 can be open to provide fluid passageways through the pathways 106, e.g., for blood removal and return. A proximal end 118 of the catheter body 102 can also be split into separate segments 118a, 118b and terminate with two access ports 120a, 120b, which can include couplings, such as Luer-locks or the like, to couple the catheter 100 to a hemodialysis machine in which blood is circulated and purified. The catheter body 102 is typically a very flexible silicone, polyurethane, or other biocompatible composition (e.g., having a stiffness in the range of about 65 to about 85 durometer), and can include any type of catheter (e.g., a hemodialysis catheter or a central venous catheter).


The catheter body 102 can include an outer sheath 122 which partially or entirely covers and encloses the lumens 104. The outer sheath 122 can be any shape and size and can be made of the same material as the lumens 104 or other material compatible with insertion into a blood vessel. As illustrated in this embodiment, the outer sheath 122 terminates proximal to the distal ends 116 of the lumens 104 such that the lumen tips 110 of each lumen 104 are separate or can separate from one another after being inserted into a blood vessel.



FIG. 2 shows a cross-section c1-c1 of one embodiment of the outer sheath 122. The outer sheath 122 can be of any thickness and can have varying inner and outer shapes as well as varying inner and outer dimensions. The catheter body 102 can be constructed such that sheath material 200 encases the lumens 104a and 104b and no space remains between the sheath and the lumens. For example, the sheath can be fused to the lumens or heat-shrunk around them.


The lumens 104 can have a variety of cross-sectional shapes and sizes but preferably, as shown in the embodiment in FIG. 1, the catheter body 102 has a substantially elliptical (circular or oval) shape and the lumens 104 are each D-shaped. However, one or both of the lumens 104 can transition from one shape to another along at least a portion of its length, e.g., transition from a D-shaped cross-section to a circular cross-section. Furthermore, each of the lumens 104 can have a cross-sectional shape, size, or area that can be the same or distinct from the catheter body 102 and/or the other lumen, as shown in examples of c2-c2 cross-sections in FIGS. 3-10.



FIG. 3 is a cross-section view of an embodiment showing unibody construction utilizing opposed D-shaped lumens 104 having substantially the same size of pathways 106. This configuration eliminates the sheath as a distinct element. The device of FIG. 3 can be formed, for example, by extrusion molding of a catheter body with a plurality of lumens integrated therein. In one embodiment according to the invention the end portion of the catheter body 102 can be truncated by splitting the body along either the center line γ of the longitudinal axis or along an off-center longitudinal axis γ′. In certain applications, truncation along off-center line γ can be preferably because it preserves most or all the septum 202, while sacrificing part of the other lumen 104a (e.g., the part extending distally beyond the cut point 124 as shown in FIG. 1).



FIG. 4 is a cross-section view of another embodiment showing opposed D-shaped lumens 104 where one lumen 104a is of a smaller size (e.g., smaller cross-sectional area) than the other lumen 104b. FIG. 5 is a cross-section view of an embodiment showing yet another unibody construction. FIG. 6 is a cross-section view of an embodiment showing individual, elliptical lumens inside an outer sheath 122. FIG. 7 is a cross-section view of an embodiment showing a unibody construction utilizing individual, elliptical lumens 104. FIG. 8 is a cross-section view of an embodiment showing three lumens 104, at least one of which (here, lumen 104c) having a different size and/or shape from at least one other lumen (here, lumens 104a, 104b). FIG. 9 is a cross-section view of a variation of an embodiment showing three lumens 104 having substantially the same size and shape. FIG. 10 is a cross-section view of another embodiment showing two elliptical-shaped lumens 104.


The lumens 104 can be made of any biocompatible material, including any material which allows the lumen tips 110, 114 of the lumens 104 to be flexible and facilitate hemodialysis. Furthermore, the lumen tip segment 114 can be made from a material different from a material of the cut lumen 104b. The different material can be one more or less flexible than the material of the cut lumen 104b. Using different materials for the lumen tip segment 114 and the cut lumen 104b can allow the catheter body 102 to be used more efficiently or to be used at all in an application where it would not be preferable or possible having material of the cut lumen 104b at the distal end 116b.


The distal extraction and return tip portions 110 of each lumen 104 include pathways 106 formed therein for the extraction or return of blood or other bodily fluids. The pathways 106 are preferably sized to allow the carrying of blood to and from a hemodialysis unit, although the pathways 106 can be any size and the catheter 100 can be used in any application. The distal extraction and return tip portions 110 can be the same length or, as discussed further below, can be different lengths.


An exemplary method of forming a split tip catheter is described with reference to FIGS. 11-26. Although described with reference to these figures (and related ones of FIGS. 1-10), this method (or a similar method) can be implemented to form any of the split tip catheter devices described herein.



FIG. 11 shows a circular catheter body 102 in an initial untrimmed configuration (e.g., without separate distal tip segments) having two “D-shaped” lumens 104a, 104b. FIG. 12 shows another, elliptical catheter body 102 with circular lumens 104a, 104b in an initial configuration (e.g., prior to trimming and joinder of a second distal lumen tip segment 114). Although the lumens 104 are shown having equal lengths in FIG. 12, the lumens 104 can have different lengths in this initial configuration.



FIG. 13 shows the catheter body 102 in a trimmed configuration where a distal portion of the catheter body 102 has been removed, as compared to the initial configuration in FIG. 11 or 12. The catheter body 102 of FIG. 13 can also be formed by extending the lumens 104a, 104b in a staggered, step configuration such that one of the lumens 104a is extended longer than the other lumen 104b by a length L1. The lumens 104a, 104b can be aligned in this way while hot and can bond together in this formation as they cool. However formed, in this configuration, one of the lumens 104a (herein referred to as “the uncut lumen 104a”) extends longitudinally beyond the other lumen 104b (herein referred to as “the cut lumen 104b”) by a length L1. In an initial configuration such as in this embodiment where the lumens 104 initially have equal lengths, length L1 equals the amount of lumen trimmed from the cut lumen 104b. The length L1 can be in the range of about 1-3 inches, which is a preferable, but only an example, length of lumen to trim.


The sacrificed lumen 104a can be trimmed in a variety of ways. In a preferred example, one of the lumens 104b can be sliced (e.g., cut or scored) widthwise across its circumference at a location 124. Then a length L1 of the cut lumen 104b can be trimmed from the catheter body 102. When the length L1 of the cut lumen 104b has been removed, a septum between the cut lumen 104b and the uncut lumen 104a can thereby be at least partially exposed.


Referring again to FIG. 4 where one lumen 104a is smaller than the other lumen 104b, the larger lumen 104b is typically the arterial lumen because that is the one of the lumens 104 more prone to clogging in a hemodialysis setting, and a larger size pathway 106b can help reduce clogging. Truncation of the end portion according the invention typically involves sacrificing part of the larger lumen 104b and joining a new distal tip segment in its place. The catheter body 102 can again be split along an off-center longitudinal axis γ′, thereby preserving most or all the septum 202, sacrificing part of lumen 104b (e.g., the part extending distally beyond the cut point 124). Following truncation, a new distal tip segment 114 (as shown in FIG. 1) can then be joined to the second lumen of the catheter body. The distal tip segment 114 can be similar in size and shape to the sacrificed lumen or can be different in size and/or shape.


In certain applications it can be preferable to sacrifice the smaller lumen 104a instead. In such instances, the truncation line can be moved to the other side of the septum 202.


Dimensions of the lumens 104a and 104b can vary between embodiments. In this example embodiment, dimensions allow the catheter body 102 to be used with standard hemodialysis equipment and lumen tip segments. Maximum width w2 of the smaller lumen pathway 106b is about 0.06 in. and maximum width w1 of the larger lumen pathway 106a is about 0.08 in. The septum 202 has a width w3 of about 0.02±0.002 in., while the lumens 104 have an exterior width w4 of about 0.022±0.003 in. Maximum height h2 of the smaller pathway 106a is about 0.14 in. and maximum height h1 of the larger pathway 106b is about 0.15 in.


The cut distal end 124 of the cut lumen 104b can be trimmed in a perpendicular direction or a non-perpendicular direction with respect to a longitudinal axis β of the cut lumen 104b. FIG. 13 shows the cut distal end 124 trimmed in a perpendicular direction with respect to axis β. Alternatively, FIG. 14 shows the cut distal end 124 trimmed in a non-perpendicular direction with respect to axis β. The non-perpendicular direction can result in any non-zero angle θ between the cut distal end 124 and axis β. As shown in FIGS. 13 and 14, the distal extraction tip portion 110b of the blood extraction lumen 104b terminates proximal to the distal return tip portion 110a of the blood return lumen 104a. However, also including the lumen tip segment 114 attached to the distal tip return portion 110b as shown in FIG. 15, the two distal lumen tip segments 110 have the same length, although even including the lumen tip segment 114, one or the other of the lumen tips 110 can be longer than the other.


With a distal portion of the catheter body 102 removed, the lumen tip segment 114 can be joined to the catheter body 102 as shown in FIG. 15. The lumen tip segment 114 has been joined to the lumen tip 110b of the cut lumen 104b at the cut distal end 124 such that the pathway of the cut lumen 104b is in communication with the pathway of the lumen tip segment 114, thereby forming a single pathway 106b through the cut lumen 104b and the lumen tip segment 114.


The lumen tip segment 114 can be attached to the catheter body 102 in a variety of ways. For example, the lumen tip segment 114 can be fused to the lumen tip 110b at the cut distal end 124. Any fusion technique can be used, e.g., thermal fusion where elements to be joined (here, the lumen tip segment 114 and the lumen tip 110b) are heated along any or all portions of their perimeters or other areas to a desired temperature and fused together by application of a desired force or by inserting one lumen tube over the other (e.g., with an overlap by about 1 cm) and allowing them to melt/cool together. In another example, the lumen tip segment 114 can be bonded to the lumen tip 110b at the cut distal end 124. Any bonding technique can be used, e.g., applying a bonding material such as an adhesive to one or more of the elements to be bonded and, if necessary, heating the bonding material to bond it to the elements. In some embodiments, the lumen tip segment 114 can be attached in such a way as to provide a gradual transition between the luminal walls of the catheter body 102 and the luminal walls of the lumen tip segment 114, for instance via the insertion of a mandrel and the application of heat.


The lumen tip segment 114 can be oriented at any angle with respect to the longitudinal axis β of the cut lumen 104b. Moreover, one or both of the lumen tip segment 114 and the lumen tip 110a can have a convex shape with respect to the other tip over at least some portion of its length. For example, the lumen tip segment 114 can be attached to the lumen tip 110b at a ninety degree angle θ′ with respect to axis β as shown in FIG. 15. In such a configuration, the lumen tips 110 are separate but are substantially parallel to each other. FIG. 16 shows another embodiment where the lumen tips 110 are separate and substantially parallel to each other in an angled spit tip configuration, e.g., as described in U.S. Pat. No. 6,482,169, which is hereby incorporated by reference in its entirety. Alternatively, as shown in FIG. 17, the lumen tip segment 114 can be oriented to the cut lumen 104b at an angle θ′ less than ninety degrees. In such a configuration, the lumens 104 are separate and diverge from each other at an angle σ. When the angle θ′ is less than ninety degrees, it is typically in configurations where the cut distal end 124 has been trimmed in a non-perpendicular direction with respect to axis β, and the angle σ is formed when the lumen tip segment 114 is joined to the cut lumen 104b. However, the angle σ can be formed after the lumen tip segment 114 has been joined to the cut lumen tip 110b, e.g., by the application of heat. In another example, the design in FIG. 17 can be formed by first attaching the lumen tip segment 114 to the cut lumen tip 110b and then heating the lumens 104 to form the angle σ. Alternatively, the lumen tips 110 such as those in FIG. 17 can have an initial configuration where they are at the angle θ′ with respect to axis β.


The apex of angle σ can be located either at the junction of the cut lumen 104b and the lumen tip segment 114, as shown in FIG. 17, or further toward the distal end of the catheter body 102. In the case that angle σ is further toward the distal end of the catheter body 102, the lumen tip segment 114 can be bonded to the septum along a length L5 of the uncut lumen 104a, as shown in FIG. 18. Alternatively, the lumen tip segment 114 can be bonded to the septum along the length L5 of uncut lumen 104a and attached to the cut lumen 104b at an angle θ′, as shown in FIG. 19. Typically, in these or other embodiments, the lumen tip segment 114 can also be bonded along the circumference at the junction with the cut lumen 104b.


Whether substantially parallel or diverging from one another, the lumens 104 are separate (at least before application of any adhesive, discussed further below). FIG. 17 shows the lumens 104 separate for the length L1, and FIG. 18 shows the lumens 104 separate for the length L4. FIG. 17 also shows an embodiment where one of the lumens 104 is longer than the other, with the distal end 116a of the lumen tip 110a extending beyond the distal end 116b of the lumen tip segment 114 by a length L3.


Referring again to FIG. 15, the lumens 104 shown in this embodiment are substantially parallel and can be secured together with an adhesive 1600 for a length L1. Prior to the distal ends 116 of the catheter body 102 being inserted into a blood vessel, a full or partial portion of the lumen tips 110 of the lumens 104 can be joined to one another with the bioresorbable adhesive 1600. After insertion into the blood vessel, the bioresorbable adhesive 1600 facilitates separation of the lumen tips 110 of the lumens 104. As used herein, the term “bioresorbable” refers to materials that are biodegradable or biosoluble such that they degrade or break down by mechanical degradation upon interaction with a physiological environment into components that are metabolizable or excretable over a period of time.


The bioresorbable adhesive 1600 used to join the lumen tips 110 of the lumens 104 to one another can be a composition selected from the group of polymers consisting of polylactides, polyglycolides, polylactones, polyorthoesters, polyanhydrides, and copolymers and combinations thereof. In general, bioresorbable adhesives have bonding elements and degradable elements. The degradable elements can have the components of polylactide, polyglycolide and polylactones (polycaprolactone). The bonding elements can have hydrogen bonding strength (polyvinyl alcohol, polysaccharides) or can be able to polymerize as a single component (cyanoacrylates) or as two components (epoxy compound plus amino compounds, or radical (light) initiators of acrylate compounds).


Proteins, sugars, and starch can also be used as an adhesive. By way of non-limiting example, antithrombotic agents such as heparin and hirudin, citrate, antithrombin-heparin complex, and albumin heparin complex as well as anti-infective agents such as chlorohexidine, silver, antibiotics, and antiseptic agents may be added to the adhesive.


In an embodiment of the present invention, polymers which can be useful include polyurethane, generally described as a copolymer of polyethylene glycol with polylactide or polyglycolide end capped with methacrylates. Another embodiment can include a two component composition, one component preferably including a low molecular weight polyurethane end capped with methacrylates, and the other component preferably including polylactide, polyglycolide, or polycaprolactone end capped with methacrylate.


In another embodiment of the present invention, one or more components can be used from styrene, methyl methacrylate, methyl acrylate, ethylene dimethacrylate, ethylene diacrylate, acrylamide, diurethane dimethacrylate, polyisoprenegraft-maleic acid monomethyl ester, azobis (cyanovaleric acid), azobiscyclohexanecarbonitrile, azobisisobutyronitrile, benzoyl peroxide, iron (II) sulfate, polyvinyl alcohol, dextran, polysaccharide, epichlorohydrin, ethylenediamine, diaminocyclohexane, diamino propane, copolymers with polylactide and polyethylene oxide as the blocks and acrylate, methacrylate as the end groups, cyanoacrylates, ethyl-2cyanoacrylate, propyl-2-cyanoacrylates, pentyl-2-cyanoacrylate, hexyl-2-cyanoacrylate, and octyl-2-cyanoacrylate, ammonium persulfate and/or polyethylene glycol methacrylate when water, organic solvent such as dichloromethane, chloroform, tetrahydrofuran, acetone, petroleum ether, acetyl acetate, dirnethylformamide, or the mixture thereof, is combined with the aforementioned solvents.


As shown in FIG. 15, the bioresorbable adhesive 1600 can be applied along a facing surface of either, or both, the lumen tips 110 of the lumens 104 to facilitate the joining of the lumen tips 110 along their longitudinal lengths prior to insertion of the distal ends 116 of the catheter body 102 into a blood vessel. (As used throughout, “the catheter body 102” and its components refers to the various embodiments of the present invention.) FIG. 15 shows the bioresorbable adhesive 1600 applied along a longitudinal length L1. However, the bioresorbable adhesive 1600 need not be applied along the entire length of the facing surfaces of each lumen 104 but is preferably applied such that the adhesive 1600 facilitates the joining of the lumen tips 110 of the lumens 104 prior to insertion into a blood vessel and allows the lumen tips 110 of the lumens 104 to separate after insertion. Furthermore, the bioresorbable adhesive 1600 can be applied along more than length L1 if, for example, the lumens 104 were separated an additional length L2, in which case the adhesive 1600 can be applied along a length equal to L1+L2.


In an embodiment shown in FIG. 20, bioresorbable adhesive can be applied to facing surfaces of the lumen tips 110 of the lumens 104 as discrete spots or regions 2000. (Assume in this example that the lumen tip segment 114 has already been attached to the cut lumen tip 110b.) The spots 2000 of the bioresorbable adhesive can be applied continuously along the entire longitudinal length of the lumen tips 110 of the lumens 104 or selectively in an assortment of areas thereof. Preferably, the bioresorbable adhesive is applied such that the spots 2000 of adhesive facilitate the joining of the lumen tips 110 of the lumens 104 prior to insertion into a blood vessel and allow the distal extraction and return tips 110 of the lumens 104 to separate after insertion. The spots 2000 of bioresorbable adhesive can vary in number, size, and distance from one another in order to facilitate the joining and/or disjoining of the lumen tips 110 of the lumens 104.


In the embodiments described herein, the bioresorbable adhesive preferably dissolves after insertion into a blood vessel to provide separation of the lumen tips 110 of the lumens 104 in a time period ranging from one minute to one hour (but as long as several days or longer). This range can be controlled by using different compositions of the bioresorbable adhesive as well as by the amount of adhesive applied to join the lumen tips 110 of the lumens 104 together.


In another embodiment with opposed distal fluid openings 112 (further described below), the bioresorbable adhesive can be water soluble such that the introduction of saline or similar type fluid will effectuate the separation of the lumen tips 110 of the lumens 104. In this instance, the bioresorbable adhesive will not dissolve until a time after the introduction of the soluble solution into the lumens 104.



FIGS. 21-22 show cross-sections of the lumen tips 110 of the lumens 104 detailing alternate embodiments of the bioresorbable adhesive application. FIGS. 21 and 22 show the bioresorbable adhesive 400 applied at a contact point 402 of the facing surfaces of the lumens 104. FIG. 21 shows one embodiment of an application of the bioresorbable adhesive 400 such that the adhesive 400, as applied, joins non-contacting surfaces 2100, 2102 of the lumen tips 110 of the lumens 104. FIG. 22 shows a variation on the embodiment shown in FIG. 21 where the bioresorbable adhesive 400 surrounds the lumen tips 110 of the lumens 104 forming a continuous cross-section of adhesive coating notwithstanding the lumen tips 110 of the lumens 104 extending therethrough. As stated above, the bioresorbable adhesive 400 need not be applied along the entire length of the lumen tips 110 of the lumens 104 but is preferably applied such that the adhesive 400 facilitates the joining of the distal extraction and return tip portions 110 of the blood extraction and blood return lumens 104 prior to insertion into a blood vessel and allows the lumen tips 110 of the lumens 104 to separate after insertion. Furthermore, the lumen tips 110 can have different coatings from one another and/or different from a coating on the catheter body 102.



FIG. 23 shows another embodiment where distal fluid openings (also called fluid passage holes) 112a are formed in the lumen tip 110a of the lumen 104a. It should be understood from the drawings that in the embodiment shown, the distal fluid openings 112a can either be in addition to, or in place of, the pathway opening located at the distal end 116a of the lumen 104a. Furthermore, the cut lumen 104b can have distal fluid openings 112b similar to those described here, whereby the fluid openings 112b would typically be included in the lumen tip segment 114 attached to the cut lumen tip 110b or subsequently formed in the lumen tip segment 114 after its attachment to the cut lumen tip 110b.


The distal fluid openings 112a can be any shape and size and can be located in a variety of places on the lumen 104a. FIG. 23 shows the distal fluid openings 112a located on facing (contacting) surface 2300 of the lumen tip 110a of the lumen 104a. In this embodiment, the distal fluid openings 112a can be filled or covered with fluid activated bioresorbable adhesive and joined to the other lumen 104b along its facing surface 2302. After insertion of the catheter body 102 into a blood vessel, saline or similar type fluid can be introduced into the lumen 104a at its proximal end 118 such that the fluid travels through the lumen 104a to the distal fluid openings 112a and dissolves the fluid activated bioresorbable adhesive thereby separating the lumen tips 110 along their longitudinal length to, e.g., facilitate hemodialysis. Bioresorbable adhesive can also be applied to the contact surfaces 2300, 2302 of each lumen 104 as previously described above in addition to the distal fluid openings 112a being filled or covered with fluid activated bioresorbable adhesive.



FIGS. 1-7 and 11-23 illustrate double lumen configurations, but the split tip catheter devices and methods described herein can apply to any multi-lumen configuration. For example, FIG. 24 shows an embodiment of a catheter body 2400 having three lumens 104a, 104b, 104c, each having respective pathways 106a, 106b, 106c. The catheter body 2400 can have any c1-c1 cross-sectional configuration, and in this example is shown having the one in FIG. 9. One of the lumens 104a in this example has been split from the other lumens 104b, 104c, and the lumen 104a been trimmed. FIG. 25 shows the catheter body 2400 of FIG. 24 where a second lumen 104c has been split from the other lumen 104b and trimmed. A lumen tip segment 2500 has been attached to the first trimmed lumen 104a, and another lumen tip segment can be attached to the second trimmed lumen 104c.


The above embodiments describe a split distal end of a catheter, but in addition to or instead of splitting the distal end, the proximal end can also be formed in a split tip configuration in any way described above with respect to the distal end (e.g., in a double split-tip or “double-Y” configuration). Such a configuration can be useful in retrograde or reverse insertions where the catheter body is passed through a subcutaneous tunnel from venotomy site to the remote exit location. After tunneling the catheter, fluid couplings or other attachments can be disposed to the proximal end of the lumens. FIG. 26 shows an embodiment of a catheter body 2600 having a split distal end 2602 and a split proximal end 2604. A cuff 2606 can be attached to any location on the catheter body 2600 to enhance tissue ingrowth. The catheter can have any dimensions, but only as an example, the catheter body 2600 can have a length L5 of about 38 cm, a length L6 between a distal most end 2608 of the distal end 2602 and the cuff 2606 can be about 23 cm, and a length L7 between the distal most end 2608 and a cut proximal end 2610 can be about 28 cm.


Other embodiments are within the scope of the following claims.


All publications, patent documents and other information sources identified in this application are hereby incorporated by reference.

Claims
  • 1. A method of forming a split tip catheter, comprising: providing an elongate catheter body comprising at least a first lumen and a second lumen extending longitudinally through the catheter body;removing a distal portion of the catheter body to form a first lumen tip segment such that the first lumen extends longitudinally beyond the second lumen; andjoining a second lumen tip segment to the catheter body in communication with the second lumen.
  • 2. The method of claim 1, wherein the step of joining a second lumen tip segment further comprises fusing the second lumen tip segment to the catheter body.
  • 3. The method of claim 1, wherein the step of joining a second lumen tip segment further comprises orienting the second lumen tip segment such that the first and second lumen tip segments are separate but substantially parallel to each other.
  • 4. The method of claim 1, wherein the step of joining a second lumen tip segment further comprises orienting the second lumen tip segment such that the first and second lumen tip segments are separate and diverge from each other at an angle.
  • 5. The method of claim 1, further comprising forming an angle between the first and second lumen tip segments after the second lumen tip segment is joined to the catheter body.
  • 6. The method of claim 5, wherein at least one of the first and second lumen tip segments forms a compound angle or a curve.
  • 7. The method of claim 5, further comprising forming an angle between the first and second lumen tip segments by applying heat.
  • 8. The method of claim 1, wherein the step of removing a portion of the catheter body further comprises partially slicing the catheter body in a non-perpendicular direction with respect to a longitudinal axis of the catheter body.
  • 9. The method of claim 1, further comprising forming fluid passage holes in a side of at least one of the lumen tip segments.
  • 10. The method of claim 1, further comprising securing the first and second lumen tip segments together with a bioresorbable adhesive.
  • 11. The method of claim 1, further comprising coating at least a portion of the first and second lumen tip segments with at least one agent selected from the group of antithrombotic agents, antibacterial agents, anti-inflammatory agents.
  • 12. A method of forming a split tip catheter, comprising: providing a multi-lumen catheter body having at least a first lumen and a second lumen extending therethrough;partially truncating the multi-lumen catheter body such that a first distal lumen tube is formed to longitudinally extend a distal end of the first lumen of the catheter further than a distal end of at least the second lumen of the catheter; andattaching a second distal lumen tube to a truncated end of the catheter such that a pathway separate from the first distal lumen tube is formed in fluid communication with the second lumen of the catheter.
  • 13. The method of claim 12, further comprising forming a non-zero angle between the first and second distal lumen tubes.
  • 14. The method of claim 13, wherein the non-zero angle varies over at least a portion of the first and second distal lumen tubes.
  • 15. The method of claim 12, further comprising forming a zero angle between the first and second distal lumen tubes.
  • 16. The method of claim 12, further comprising forming a non-zero angle between at least one distal lumen tube and a longitudinal axis of the catheter body.
  • 17. The method of claim 12, further comprising: further truncating the distal end of the catheter body to isolate a third lumen; andattaching a third distal lumen tube to the catheter body.
  • 18. The method of claim 12, wherein a septum separates the first lumen and second lumen and the step of partially truncating the catheter body further comprises truncating the body at a truncation point such that at least a portion of the septum is retained by the first distal lumen tube.
  • 19. The method of claim 18, wherein the step of attaching the second distal lumen tube further comprises attaching the second distal lumen tube at least partially to the septum of the first distal lumen tube.
  • 20. The method of claim 12, wherein the step of attaching the second distal lumen tube further comprises attaching the second distal lumen tube that has a different shape than the first or second lumen.
  • 21. The method of claim 12, wherein the step of attaching the second distal lumen tube further comprises attaching the second distal lumen tube such that luminal walls of the catheter body gradually transition to luminal walls of the second distal lumen tube.
  • 22. A method of forming a split tip catheter, comprising: providing a multi-lumen catheter body having at least a first lumen and a second lumen extending therethrough;partially truncating the multi-lumen catheter body such that a first distal lumen tube is formed to longitudinally extend a distal end of the first lumen of the catheter further than a distal end of at least the second lumen of the catheter;attaching a second distal lumen tube to a truncated end of the catheter such that a pathway separate from the first distal lumen tube is formed in fluid communication with the second lumen of the catheter; andforming a second split end portion by: partially truncating the multi-lumen catheter body at a proximal end of the catheter body such that a first proximal lumen tube is formed to longitudinally extend the first lumen of the catheter further than at least a second proximal lumen of the catheter, andattaching a second proximal lumen tube to the truncated proximal end of the catheter such that a pathway separate from the first proximal lumen tube is formed in fluid communication with the second lumen of the catheter.
  • 23. A method of forming a split tip catheter, comprising: splitting a distal end of a catheter body having two or more lumens at a septum dividing two of the lumens to isolate a first distal end tube, truncating the catheter body such that the first distal end tube is formed and the first distal end tube surrounds a first lumen having a length that extends beyond a truncation point; andattaching a second distal end tube to the catheter body in fluid communication with a second lumen of the body.
  • 24. A method of forming a split tip catheter, comprising: providing a multi-lumen catheter body having at least a first lumen and a second lumen extending therethrough;partially truncating the multi-lumen catheter body such that a first distal lumen tube is formed to longitudinally extend the first lumen of the catheter further than at least the second lumen of the catheter; andattaching a second lumen tube to a truncated end of the catheter such that a pathway separate from the first distal lumen tube is formed in fluid communication with the second lumen of the catheter wherein the second lumen has a different shape than the first lumen.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application No. 60/980,633, filed Oct. 17, 2007, and titled “Manufacture of Split Tip Catheters,” which is incorporated by reference in its entirety herein. The following three applications, filed concurrently herewith, are related to the subject matter of this application and are incorporated by reference in their entirety herein: 1) U.S. patent application Ser. No. 12/244,554, titled “Catheters With Enlarged Arterial Lumens,” and published as US 2009/0204079; 2) U.S. patent application Ser. No. 12/244,544, titled “Fusion Manufacture of Multi-Lumen Catheters,” and published as US 2009/0209940; and 3) U.S. patent application Ser. No. 12/244,559, titled “Manufacture of Fixed Tip Catheters,” and published as US 2009/0205189.

US Referenced Citations (603)
Number Name Date Kind
701075 McCully May 1902 A
1696018 Scheliberg Dec 1928 A
1856811 Inaki May 1932 A
2024982 Scott Dec 1935 A
2173527 Agayoff Sep 1939 A
2286462 Chaffin Jun 1942 A
2393002 Smith Jan 1946 A
2910981 Wilson et al. Nov 1959 A
3144868 Jascalevich Aug 1964 A
3176690 H'Doubler Apr 1965 A
3256885 Higgins et al. Jun 1966 A
3416532 Grossman Dec 1968 A
3426759 Smith Feb 1969 A
3460255 Hutson Aug 1969 A
D217795 Spaven Jun 1970 S
3612038 Halligan Oct 1971 A
3736939 Taylor Jun 1973 A
3805794 Schlesinger Apr 1974 A
3812851 Rodriguez May 1974 A
3848604 Sackner Nov 1974 A
3890977 Wilson Jun 1975 A
3929126 Corsaut Dec 1975 A
3935857 Co Feb 1976 A
3995623 Blake et al. Dec 1976 A
4068659 Moorehead Jan 1978 A
4072146 Howes Feb 1978 A
4072153 Swartz Feb 1978 A
4098275 Consalvo Jul 1978 A
4114625 Onat Sep 1978 A
4117836 Erikson Oct 1978 A
4129129 Amrine Dec 1978 A
4134402 Mahurkar Jan 1979 A
4149535 Volder et al. Apr 1979 A
4180068 Jacobsen et al. Dec 1979 A
4248224 Jones Feb 1981 A
4276880 Malmin Jul 1981 A
4292976 Banka Oct 1981 A
4299228 Peters Nov 1981 A
4300550 Gandi et al. Nov 1981 A
4309994 Grunwald Jan 1982 A
4327722 Groshong et al. May 1982 A
4385631 Uthmann May 1983 A
4392855 Oreopoulos et al. Jul 1983 A
4403983 Edelman et al. Sep 1983 A
4405313 Sisley et al. Sep 1983 A
4406656 Hattler et al. Sep 1983 A
D272651 Mahurkar Feb 1984 S
4431426 Groshong et al. Feb 1984 A
4432722 Bohan, Jr. et al. Feb 1984 A
4432752 Marlon Feb 1984 A
4445893 Bodicky May 1984 A
4451252 Martin May 1984 A
4453928 Steiger Jun 1984 A
4465482 Tittel et al. Aug 1984 A
4490138 Lipsky et al. Dec 1984 A
4493696 Uldall Jan 1985 A
RE31873 Howes Apr 1985 E
4531933 Norton et al. Jul 1985 A
4543087 Sommercorn et al. Sep 1985 A
4545373 Christoudias Oct 1985 A
4557261 Rugheimer et al. Dec 1985 A
4568329 Mahurkar Feb 1986 A
4568338 Todd Feb 1986 A
4573476 Ruiz Mar 1986 A
4581012 Brown et al. Apr 1986 A
4583968 Mahurkar Apr 1986 A
4583986 Lapidus Apr 1986 A
4601697 Mammolenti et al. Jul 1986 A
4619643 Bai Oct 1986 A
4623327 Mahurkar Nov 1986 A
4626240 Edelman et al. Dec 1986 A
4642101 Krolikowski et al. Feb 1987 A
4643711 Bates Feb 1987 A
4666426 Aigner et al. May 1987 A
4668221 Luther May 1987 A
4670009 Bullock Jun 1987 A
4675004 Hadford et al. Jun 1987 A
4681122 Winters et al. Jul 1987 A
4681564 Landreneau Jul 1987 A
4681570 Dalton Jul 1987 A
4682978 Martin Jul 1987 A
4687471 Twardowski et al. Aug 1987 A
4692141 Mahurkar Sep 1987 A
4694838 Wijayarthna et al. Sep 1987 A
4701159 Brown et al. Oct 1987 A
4702917 Schindler Oct 1987 A
4713171 Polaschegg Dec 1987 A
4717379 Ekholmer et al. Jan 1988 A
4735620 Ruiz Apr 1988 A
4737141 Spits Apr 1988 A
4737152 Alchas Apr 1988 A
4738667 Galloway Apr 1988 A
4748808 Hill Jun 1988 A
4755176 Patel Jul 1988 A
4769016 Labianca et al. Sep 1988 A
4770652 Mahurkar Sep 1988 A
4772268 Bates Sep 1988 A
4772269 Twardowski et al. Sep 1988 A
4776841 Catalano Oct 1988 A
4777951 Cribier et al. Oct 1988 A
4784638 Ghajar et al. Nov 1988 A
4790809 Kuntz Dec 1988 A
4795439 Guest Jan 1989 A
4801297 Mueller Jan 1989 A
4804359 Grunwald et al. Feb 1989 A
4808155 Mahurkar Feb 1989 A
4808163 Laub Feb 1989 A
4809710 Williamson Mar 1989 A
4820265 DeSatnick et al. Apr 1989 A
4832687 Smith, III May 1989 A
4834709 Banning et al. May 1989 A
4842582 Mahurkar Jun 1989 A
4842592 Caggiani et al. Jun 1989 A
4846814 Ruiz Jul 1989 A
4863441 Lindsay et al. Sep 1989 A
4867742 Calderon Sep 1989 A
4892518 Cupp et al. Jan 1990 A
4894057 Howes Jan 1990 A
4895561 Mahurkar Jan 1990 A
4898591 Jang et al. Feb 1990 A
4906238 Greenfeld et al. Mar 1990 A
4925452 Melinyshyn et al. May 1990 A
4927418 Dake et al. May 1990 A
4935004 Cruz Jun 1990 A
4935010 Cox et al. Jun 1990 A
4935044 Schoenpflug et al. Jun 1990 A
4936826 Amarasinghe Jun 1990 A
4950232 Ruzicka et al. Aug 1990 A
4950259 Geary et al. Aug 1990 A
4951665 Schneider Aug 1990 A
4961729 Vaillancourt Oct 1990 A
4961731 Bodicky et al. Oct 1990 A
4961809 Martin et al. Oct 1990 A
4968307 Dake et al. Nov 1990 A
4969890 Sugita et al. Nov 1990 A
4981477 Schon et al. Jan 1991 A
4985014 Orejola Jan 1991 A
4990138 Bacich et al. Feb 1991 A
4994027 Farrell Feb 1991 A
4995865 Gahara et al. Feb 1991 A
5009636 Wortley et al. Apr 1991 A
5015230 Martin et al. May 1991 A
5016640 Ruiz May 1991 A
5021044 Sharkawy Jun 1991 A
5041101 Seder et al. Aug 1991 A
5041107 Heil, Jr. Aug 1991 A
5049138 Chevalier et al. Sep 1991 A
5053003 Dadson et al. Oct 1991 A
5053004 Markel et al. Oct 1991 A
5053023 Martin Oct 1991 A
5057073 Martin Oct 1991 A
5059170 Cameron Oct 1991 A
5069673 Shwab Dec 1991 A
5074841 Ademovic et al. Dec 1991 A
5084013 Takase et al. Jan 1992 A
5098412 Shiu Mar 1992 A
5100395 Rosenberg Mar 1992 A
5102402 Dror et al. Apr 1992 A
5106368 Uldall et al. Apr 1992 A
5106376 Mononen et al. Apr 1992 A
5111829 Alvarez de Toledo May 1992 A
5112301 Fenton, Jr. et al. May 1992 A
5114423 Kasprzyk et al. May 1992 A
5117836 Millar Jun 1992 A
5120299 Lombardi Jun 1992 A
5120304 Sasaki Jun 1992 A
5122125 Deuss et al. Jun 1992 A
5125904 Lee Jun 1992 A
5129891 Young Jul 1992 A
5135599 Martin et al. Aug 1992 A
5139486 Moss Aug 1992 A
5156592 Martin et al. Oct 1992 A
5163928 Hobbs et al. Nov 1992 A
5167623 Cianci et al. Dec 1992 A
5171216 Dasse et al. Dec 1992 A
5171227 Twardowski et al. Dec 1992 A
5178616 Uemiya et al. Jan 1993 A
5188592 Hakki Feb 1993 A
5188593 Martin Feb 1993 A
5190520 Fenton, Jr. et al. Mar 1993 A
5190529 McCrory et al. Mar 1993 A
5191898 Millar Mar 1993 A
5195962 Martin et al. Mar 1993 A
5197951 Mahurkar Mar 1993 A
5197973 Pang et al. Mar 1993 A
5197976 Herweck et al. Mar 1993 A
5201723 Quinn Apr 1993 A
5207648 Gross May 1993 A
5207650 Martin May 1993 A
5209723 Twardowski et al. May 1993 A
5209725 Roth May 1993 A
5209742 Venema et al. May 1993 A
5211256 Muramatsu May 1993 A
5215527 Beck et al. Jun 1993 A
5221255 Mahurkar et al. Jun 1993 A
5221256 Mahurkar Jun 1993 A
5222949 Kaldany Jun 1993 A
5226880 Martin et al. Jul 1993 A
5234438 Semrad Aug 1993 A
5236016 Vogelsang et al. Aug 1993 A
5242398 Knoll et al. Sep 1993 A
5246430 MacFarlane Sep 1993 A
5250034 Appling et al. Oct 1993 A
5254084 Geary Oct 1993 A
5273527 Schatz et al. Dec 1993 A
5273534 Knoepfler Dec 1993 A
5279596 Castaneda et al. Jan 1994 A
5279599 Wilk Jan 1994 A
5306240 Berry Apr 1994 A
5312337 Flaherty et al. May 1994 A
5312357 Buijs et al. May 1994 A
5318517 Reiman Jun 1994 A
5322519 Ash Jun 1994 A
5324274 Martin Jun 1994 A
5338308 Wilk Aug 1994 A
5342295 Imran Aug 1994 A
5342386 Trotta Aug 1994 A
5346471 Raulerson Sep 1994 A
5348536 Young et al. Sep 1994 A
5350358 Martin Sep 1994 A
5360397 Pinchuk Nov 1994 A
5360407 Leonard et al. Nov 1994 A
5364344 Beattie et al. Nov 1994 A
5374245 Mahurkar Dec 1994 A
5378230 Mahurkar Jan 1995 A
5380276 Miller et al. Jan 1995 A
5380290 Makower et al. Jan 1995 A
5382238 Abrahamson et al. Jan 1995 A
5389087 Miraki Feb 1995 A
5389090 Fischell et al. Feb 1995 A
5395316 Martin et al. Mar 1995 A
5399168 Wadsworth, Jr. et al. Mar 1995 A
5403291 Abrahamson Apr 1995 A
5405320 Twardowski et al. Apr 1995 A
5405341 Martin Apr 1995 A
5409463 Thomas et al. Apr 1995 A
5417668 Setzer et al. May 1995 A
5423768 Folden et al. Jun 1995 A
5431661 Koch Jul 1995 A
5451026 Smith Sep 1995 A
5451206 Young Sep 1995 A
5451233 Yock Sep 1995 A
5458570 May, Jr. Oct 1995 A
5458582 Nakao Oct 1995 A
5472417 Martin et al. Dec 1995 A
5472432 Martin Dec 1995 A
5476453 Mehta Dec 1995 A
5480380 Martin Jan 1996 A
5486159 Mahurkar Jan 1996 A
5489278 Abrahamson Feb 1996 A
5496292 Burnham Mar 1996 A
5505710 Dorsey, III Apr 1996 A
5507723 Keshaviah Apr 1996 A
5509897 Twardowski et al. Apr 1996 A
5509900 Kirkman Apr 1996 A
5509902 Raulerson Apr 1996 A
5542925 Orth Aug 1996 A
5545373 Maziasz et al. Aug 1996 A
5556390 Hicks Sep 1996 A
5556930 Brehm et al. Sep 1996 A
5558635 Cannon Sep 1996 A
5562609 Brumbach Oct 1996 A
5569182 Twardowski et al. Oct 1996 A
5569195 Saab Oct 1996 A
5571093 Cruz et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5599304 Shaari Feb 1997 A
5599328 Stevens Feb 1997 A
5607462 Imran Mar 1997 A
5624392 Saab Apr 1997 A
5624413 Markel et al. Apr 1997 A
5632729 Cai et al. May 1997 A
5637102 Tolkoff et al. Jun 1997 A
5642270 Green et al. Jun 1997 A
5662606 Cimino et al. Sep 1997 A
5665067 Linder et al. Sep 1997 A
5685867 Twardowski et al. Nov 1997 A
5686867 Sutardja et al. Nov 1997 A
5693030 Lee et al. Dec 1997 A
5695457 St. Goar et al. Dec 1997 A
5704915 Melsky et al. Jan 1998 A
5713849 Bosma et al. Feb 1998 A
5713853 Clark et al. Feb 1998 A
5717216 McCoy et al. Feb 1998 A
5718678 Fleming, III Feb 1998 A
5718692 Schon et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5738649 Macoviak Apr 1998 A
5741329 Agrawal et al. Apr 1998 A
5743873 Cai et al. Apr 1998 A
5752939 Makoto et al. May 1998 A
5769796 Palermo et al. Jun 1998 A
5772643 Howell et al. Jun 1998 A
5776096 Fields Jul 1998 A
5776111 Tesio Jul 1998 A
5785686 Runge Jul 1998 A
5792094 Stevens et al. Aug 1998 A
5792123 Ensminger Aug 1998 A
5797869 Martin et al. Aug 1998 A
5800384 Russell et al. Sep 1998 A
5800414 Cazal et al. Sep 1998 A
5800516 Fine et al. Sep 1998 A
5807311 Palestrant Sep 1998 A
5807318 St. Goar et al. Sep 1998 A
5807329 Gelman Sep 1998 A
5809897 Powell et al. Sep 1998 A
5810789 Powers et al. Sep 1998 A
5814016 Valley et al. Sep 1998 A
5830184 Basta Nov 1998 A
5830196 Hicks Nov 1998 A
5833671 Macoviak et al. Nov 1998 A
5858009 Jonkman Jan 1999 A
5861010 Boussignac et al. Jan 1999 A
5868717 Prosl Feb 1999 A
5873865 Horzewski et al. Feb 1999 A
5876366 Dykstra et al. Mar 1999 A
5876426 Kume et al. Mar 1999 A
5882347 Mouris-Laan et al. Mar 1999 A
5891111 Ismael et al. Apr 1999 A
5904670 Schreiner May 1999 A
5911715 Berg et al. Jun 1999 A
5913848 Luther et al. Jun 1999 A
5916208 Luther et al. Jun 1999 A
5919160 Sanfilippo, II Jul 1999 A
5944732 Raulerson et al. Aug 1999 A
5947937 Urrutia et al. Sep 1999 A
5947953 Ash et al. Sep 1999 A
5957879 Roberts et al. Sep 1999 A
5957893 Luther et al. Sep 1999 A
5957912 Heitzmann Sep 1999 A
5961486 Twardowski et al. Oct 1999 A
5964796 Imran Oct 1999 A
5976103 Martin Nov 1999 A
5976120 Chow et al. Nov 1999 A
5980551 Summers et al. Nov 1999 A
5984908 Davis et al. Nov 1999 A
5989206 Prosl et al. Nov 1999 A
5989213 Maginot Nov 1999 A
6001079 Pourchez Dec 1999 A
6033382 Basta Mar 2000 A
6036654 Quinn et al. Mar 2000 A
6059771 Balbierz et al. May 2000 A
6074374 Fulton Jun 2000 A
6086555 Eliasen et al. Jul 2000 A
6090096 St. Goar et al. Jul 2000 A
6099513 Spehalski Aug 2000 A
6103778 Hyon et al. Aug 2000 A
6106540 White et al. Aug 2000 A
6113572 Gailey et al. Sep 2000 A
6117117 Mauch Sep 2000 A
6120494 Jonkman Sep 2000 A
6126631 Loggie Oct 2000 A
6146354 Beil Nov 2000 A
6146373 Cragg et al. Nov 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6156016 Maginot Dec 2000 A
6161547 Barbut Dec 2000 A
6178356 Chastain et al. Jan 2001 B1
6180059 Divino, Jr. et al. Jan 2001 B1
6190349 Ash et al. Feb 2001 B1
6190371 Maginot et al. Feb 2001 B1
6193685 Goodin Feb 2001 B1
6196996 Teirstein Mar 2001 B1
6206849 Martin et al. Mar 2001 B1
6210365 Afzal Apr 2001 B1
6210380 Mauch Apr 2001 B1
6217527 Selmon et al. Apr 2001 B1
6224622 Kotzev May 2001 B1
6238406 Ellis et al. May 2001 B1
6264627 Liska et al. Jul 2001 B1
6273879 Keith et al. Aug 2001 B1
6280423 Davey et al. Aug 2001 B1
6287326 Pecor Sep 2001 B1
6293927 McGuckin, Jr. Sep 2001 B1
6293958 Berry et al. Sep 2001 B1
6296631 Chow Oct 2001 B2
6299631 Shalaby Oct 2001 B1
6322551 Brugger Nov 2001 B1
6328730 Harkrider, Jr. Dec 2001 B1
6342120 Basta Jan 2002 B1
6361529 Goodin et al. Mar 2002 B1
6383172 Barbut May 2002 B1
6394141 Wages et al. May 2002 B2
6394142 Woelfel et al. May 2002 B1
6409700 Siegel, Jr. et al. Jun 2002 B1
6413228 Hung et al. Jul 2002 B1
6428513 Abrahamson Aug 2002 B1
6443922 Roberts et al. Sep 2002 B1
6450988 Bradshaw Sep 2002 B1
6453185 O'Keefe Sep 2002 B1
6454997 Divino, Jr. et al. Sep 2002 B1
6463335 Munch et al. Oct 2002 B1
6475207 Maginot et al. Nov 2002 B1
6475209 Larson et al. Nov 2002 B1
6478789 Spehalski et al. Nov 2002 B1
6482169 Kuhle Nov 2002 B1
6533763 Schneiter Mar 2003 B1
6565594 Herweck et al. May 2003 B1
6576001 Werneth et al. Jun 2003 B2
6582459 Lau et al. Jun 2003 B1
6585705 Maginot et al. Jul 2003 B1
6592565 Twardowski Jul 2003 B2
6595966 Davey et al. Jul 2003 B2
6620118 Prosl et al. Sep 2003 B1
6638242 Wilson et al. Oct 2003 B2
6659134 Navis Dec 2003 B2
6682498 Ross Jan 2004 B2
6682519 Schon Jan 2004 B1
6695832 Schon et al. Feb 2004 B2
6702776 Quinn Mar 2004 B2
6712797 Southern, Jr. Mar 2004 B1
6712798 Constantz Mar 2004 B2
6719717 Johnson et al. Apr 2004 B1
6719749 Schweikert et al. Apr 2004 B1
6723084 Maginot et al. Apr 2004 B1
6723114 Shalaby Apr 2004 B2
6730299 Tayot et al. May 2004 B1
6752827 Ross et al. Jun 2004 B2
6755851 Noda et al. Jun 2004 B2
6758836 Zawacki Jul 2004 B2
6786664 Claramunt et al. Sep 2004 B2
6786884 DeCant, Jr. et al. Sep 2004 B1
6796991 Nardeo Sep 2004 B2
6797107 Kotzey Sep 2004 B1
6808510 DiFiore Oct 2004 B1
6814718 McGuckin, Jr. et al. Nov 2004 B2
6819951 Patel et al. Nov 2004 B2
6821287 Jang Nov 2004 B1
6824554 Jang Nov 2004 B1
6835452 Hamerski Dec 2004 B1
6837864 Bertolero et al. Jan 2005 B1
6852079 Miyano Feb 2005 B2
6852097 Fulton, III Feb 2005 B1
6858019 McGuckin, Jr. et al. Feb 2005 B2
6872198 Wilson et al. Mar 2005 B1
6878143 Andersen Apr 2005 B2
6881211 Schweikert et al. Apr 2005 B2
6911014 Wentling et al. Jun 2005 B2
6913601 St. Goar et al. Jul 2005 B2
6916313 Cunningham Jul 2005 B2
6921396 Wilson et al. Jul 2005 B1
6921411 Yock Jul 2005 B2
6934142 Grosse et al. Aug 2005 B2
6966886 Appling Nov 2005 B2
6969381 Voorhees Nov 2005 B2
6991625 Gately et al. Jan 2006 B1
D515211 Chesnin Feb 2006 S
6997894 Caresio Feb 2006 B2
7008395 Loggie Mar 2006 B1
7011645 McGuckin, Jr. et al. Mar 2006 B2
7018384 Skakoon Mar 2006 B2
7029467 Currier et al. Apr 2006 B2
7066914 Andersen Jun 2006 B2
7066925 Gately et al. Jun 2006 B2
7074213 McGuckin, Jr. et al. Jul 2006 B2
7077829 McGuckin, Jr. et al. Jul 2006 B2
7087053 Vanney Aug 2006 B2
7090654 Lotito et al. Aug 2006 B2
7108674 Quinn Sep 2006 B2
D530420 Chesnin Oct 2006 S
7128734 Wilson et al. Oct 2006 B1
7130700 Gardeski et al. Oct 2006 B2
7141035 Haggstrom Nov 2006 B2
RE39451 Kuhle Dec 2006 E
7182746 Haarala et al. Feb 2007 B2
7300430 Wilson et al. Nov 2007 B2
7322953 Redinger Jan 2008 B2
7347852 Hobbs et al. Mar 2008 B2
7381204 Wilson et al. Jun 2008 B2
7393339 Zawacki et al. Jul 2008 B2
7422571 Schweikert et al. Sep 2008 B2
7465286 Patterson et al. Dec 2008 B2
7485107 DiFiore et al. Feb 2009 B2
7569029 Clark Aug 2009 B2
7575563 Appling Aug 2009 B2
7798999 Bailey et al. Sep 2010 B2
8021321 Zawacki Sep 2011 B2
8066660 Gregersen et al. Nov 2011 B2
8092415 Moehle Jan 2012 B2
8152951 Zawacki et al. Apr 2012 B2
8206371 Nimkar et al. Jun 2012 B2
8292841 Gregersen Oct 2012 B2
20010041857 Sansoucy Nov 2001 A1
20010041873 Dopper et al. Nov 2001 A1
20020013569 Sterman et al. Jan 2002 A1
20020026156 Quinn Feb 2002 A1
20020086047 Mueller et al. Jul 2002 A1
20020087108 Maginot et al. Jul 2002 A1
20020087145 Ehwald et al. Jul 2002 A1
20020091362 Maginot et al. Jul 2002 A1
20020091430 Dobak et al. Jul 2002 A1
20020099326 Wilson et al. Jul 2002 A1
20020099327 Wilson et al. Jul 2002 A1
20020107506 McGuckin et al. Aug 2002 A1
20020138031 Ross Sep 2002 A1
20020169490 Noda et al. Nov 2002 A1
20020177904 Huxel et al. Nov 2002 A1
20030023198 Twardowski Jan 2003 A1
20030088213 Schweikert et al. May 2003 A1
20030093027 McGuckin et al. May 2003 A1
20030097091 Hobbs et al. May 2003 A1
20030144623 Heath et al. Jul 2003 A1
20030149395 Zawacki Aug 2003 A1
20030153898 Schon et al. Aug 2003 A1
20030187411 Constantz Oct 2003 A1
20030204179 Davey et al. Oct 2003 A1
20040054321 Schon et al. Mar 2004 A1
20040059314 Schon et al. Mar 2004 A1
20040064086 Gottlieb et al. Apr 2004 A1
20040065333 Wilson et al. Apr 2004 A1
20040075198 Schweikert et al. Apr 2004 A1
20040087892 Cunningham May 2004 A1
20040092863 Raulerson et al. May 2004 A1
20040097863 Appling May 2004 A1
20040097903 Raulerson May 2004 A1
20040122418 Voorhees Jun 2004 A1
20040147903 Latini Jul 2004 A1
20040167463 Zawacki et al. Aug 2004 A1
20040171997 Wilson et al. Sep 2004 A1
20040172003 Wilson et al. Sep 2004 A1
20040176739 Stephens et al. Sep 2004 A1
20040193102 Haggstrom Sep 2004 A1
20040210180 Altman Oct 2004 A1
20040210187 Zawacki Oct 2004 A1
20040210237 Ross et al. Oct 2004 A1
20040220550 Schryver Nov 2004 A1
20040230204 Wortley et al. Nov 2004 A1
20040243095 Nimkar et al. Dec 2004 A1
20040249337 DiFiore Dec 2004 A1
20050003322 Logan et al. Jan 2005 A1
20050004504 Frye et al. Jan 2005 A1
20050013341 Baghai Jan 2005 A1
20050025641 Shibata et al. Feb 2005 A1
20050027282 Schweikert et al. Feb 2005 A1
20050027289 Castellano et al. Feb 2005 A1
20050033222 Haggstrom et al. Feb 2005 A1
20050054989 McGuckin et al. Mar 2005 A1
20050055012 Trerotola Mar 2005 A1
20050059925 Maginot et al. Mar 2005 A1
20050070842 Lotito et al. Mar 2005 A1
20050080398 Markel et al. Apr 2005 A1
20050085765 Voorhees Apr 2005 A1
20050096585 Schon et al. May 2005 A1
20050113904 Shank et al. May 2005 A1
20050131341 McGuckin et al. Jun 2005 A1
20050171469 Cunningham Aug 2005 A1
20050187535 Wilson et al. Aug 2005 A1
20050228339 Clark Oct 2005 A1
20050245900 Ash Nov 2005 A1
20050256461 DiFiore et al. Nov 2005 A1
20050261663 Patterson et al. Nov 2005 A1
20050267400 Haarala et al. Dec 2005 A1
20050277862 Anand Dec 2005 A1
20050288623 Hjalmarsson Dec 2005 A1
20050288706 Widomski et al. Dec 2005 A1
20060004316 Difiore et al. Jan 2006 A1
20060004325 Hamatake et al. Jan 2006 A1
20060009783 Rome et al. Jan 2006 A1
20060015072 Raulerson Jan 2006 A1
20060015130 Voorhees et al. Jan 2006 A1
20060030827 Raulerson et al. Feb 2006 A1
20060047267 Gately et al. Mar 2006 A1
20060047268 Stephens Mar 2006 A1
20060058775 Stevens et al. Mar 2006 A1
20060064072 Gately et al. Mar 2006 A1
20060095062 Stephens May 2006 A1
20060100572 DiMatteo et al. May 2006 A1
20060161100 Hamboly Jul 2006 A1
20060184142 Schon et al. Aug 2006 A1
20060189922 Amarasinghe et al. Aug 2006 A1
20060206094 Chesnin et al. Sep 2006 A1
20060251612 Kotzev et al. Nov 2006 A1
20060253063 Schweikert Nov 2006 A1
20060271012 Canaud et al. Nov 2006 A1
20070005003 Patterson et al. Jan 2007 A1
20070066964 Atkins Mar 2007 A1
20070078478 Atkins et al. Apr 2007 A1
20070106206 Appling May 2007 A1
20070129704 O'Mahony et al. Jun 2007 A1
20070167925 Jacqmein Jul 2007 A1
20070225661 Ash et al. Sep 2007 A1
20070225682 Ash et al. Sep 2007 A1
20070282274 Chesnin Dec 2007 A1
20080021417 Zawacki et al. Jan 2008 A1
20080039774 Zawacki et al. Feb 2008 A1
20080082079 Braga et al. Apr 2008 A1
20080082080 Braga Apr 2008 A1
20080097409 Stephens Apr 2008 A1
20080214980 Anand Sep 2008 A1
20080214992 Haarala et al. Sep 2008 A1
20090112153 Gregersen et al. Apr 2009 A1
20090118661 Moehle et al. May 2009 A1
20090118701 Nimkar et al. May 2009 A1
20090118707 Schweikert et al. May 2009 A1
20090192435 Gregersen Jul 2009 A1
20090204079 Nimkar et al. Aug 2009 A1
20090205189 Nimkar et al. Aug 2009 A1
20090209940 Nimkar et al. Aug 2009 A1
20100331780 Bellisario et al. Dec 2010 A1
20110020418 Bosley, Jr. et al. Jan 2011 A1
20120059304 Gregersen et al. Mar 2012 A1
20120089070 Moehle et al. Apr 2012 A1
20120203206 Nimkar et al. Aug 2012 A1
Foreign Referenced Citations (53)
Number Date Country
834211 Feb 1976 BE
1150122 Jul 1983 CA
2474351 Aug 2003 CA
2788836 Jun 2006 CN
8815869 Mar 1989 DE
9108132 Jun 1991 DE
102005051211 May 2007 DE
0030854 Jun 1981 EP
0132344 Jan 1985 EP
0301854 Feb 1989 EP
0332366 Sep 1989 EP
0386408 Sep 1990 EP
0453234 Oct 1991 EP
0476796 Mar 1992 EP
0495263 Jul 1992 EP
0 650 740 May 1995 EP
0711574 May 1996 EP
1471966 Nov 2004 EP
1599247 Nov 2005 EP
1503469 Mar 1978 GB
56-136569 Oct 1981 JP
8-510935 Nov 1996 JP
201137350 May 2001 JP
2008500081 Jan 2008 JP
4827377 Nov 2011 JP
249060 Sep 2007 MX
459237 Feb 1975 SU
45923 Nov 2004 SU
9108132 Jun 1991 WO
WO-9316741 Sep 1993 WO
WO-9316752 Sep 1993 WO
9709086 Mar 1997 WO
9717102 May 1997 WO
WO-9722374 Jun 1997 WO
9737699 Oct 1997 WO
9904844 Feb 1999 WO
0023137 Apr 2000 WO
02058776 Aug 2002 WO
02083223 Oct 2002 WO
03030960 Apr 2003 WO
03033049 Apr 2003 WO
03066148 Aug 2003 WO
2004075962 Sep 2004 WO
2004096334 Nov 2004 WO
2004112876 Dec 2004 WO
WO-2005018712 Mar 2005 WO
WO-2005023336 Mar 2005 WO
2005077449 Aug 2005 WO
2005084741 Sep 2005 WO
2005118039 Dec 2005 WO
2006034877 Apr 2006 WO
2009051967 Apr 2009 WO
2009055332 Apr 2009 WO
Non-Patent Literature Citations (198)
Entry
OriGen, “OriGen Biomedical Dual Lumen Catheter,” http://origen.net/catheter.html, Copyright 2005, 4 pages.
International Search Report & Written Opinion, PCT/US2008/078551, Issued Mar. 13, 2009, 12 pages.
International Search Report & Written Opinion, PCT/US2008/078560, Issued Mar. 16, 2009, 11 pages.
International Search Report & Written Opinion, PCT/US2008/078566, Issued Mar. 19, 2009, 11 pages.
International Search Report & Written Opinion, PCT/US2008/078571 Issued Mar. 16, 2009, 12 pages.
U.S. Appl. No. 12/244,544, filed Oct. 2, 2008, Fusion Manufacture of Multi-Lumen Catheters.
U.S. Appl. No. 12/244,554, filed Oct. 2, 2008, Catheters with Enlarged Arterial Lumens.
U.S. Appl. No. 12/244,559, filed Oct. 2, 2008, Manufacture of Fixed Tip Catheters.
Arrow Cannon II Plus brochure (2006).
Bander, et al., Central Venous Angioaccess for Hemodialysis and Its Complications, Seminars in Dialysis, 1992, vol. 5, No. 2, pp. 121-128.
Baranowski, L., Central Venous Access Devises, Journal of Intravenous Nursing, 1993, vol. 16, No. 3, pp. 167-194.
Believed to be an unpublished sketch of a conception by Dr. John Frusha; date of sketch believed to be Jun. 24, 1997.
Berkoben, et al., Maintenance of Permanent Hemodialysis Vascular Access Patency, ANNA Journal, 1995, vol. 22, No. 1, pp. 17-24.
Bolz, et al., Catheter Malfunction and Thrombus Formation on Double-Lumen Hemodialysis Catheters: An Intravascular Ultrasonographic Study, American Journal of Kidney Diseases, 1995, vol. 25, No. 4, pp. 597-602.
Bour, et al., Experience With the Double Lumen Silastic® Catheter for Hemoaccess Surgery, Gynecology & Obstetrics, 1990, vol. 171, pp. 33-39.
Campbell, et al., Radiological Insertion of Long-term Venous Access Devises, Seminars in Interventional Radiology, 1994, vol. 11, No. 4. pp. 366-375.
Canaud, B. et al., “Permanent Twin Catheter: a Vascular Access Option of Choice for Haemodialysis in Elderly Patients,” 13(7):82-88 (1998).
Claim Construction Order of Federal District Court dated May 9, 2005 in Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc. litigation (S.D. N.Y. 03 Civ. 0972).
Claim Construction Order of Federal District Court dated Oct. 31, 2006 in Arrow Int'l. Inc. and Arrow Int'l. Investment Corp. v. Spire Biomedical, Inc. litigation, (D. Mass. Civil Action No. 06-CV-11564).
Decision of Federal District Court dated Jul. 7, 2009 granting Summary Judgment of Invalidity in Arrow Int'l. Inc. and Arrow Int'l. Investment Corp. v. Spire Biomedical, Inc. litigation, (D. Mass. Civil Action No. 06-CV-11564).
Dialysis Vascular Access, Technological Innovations Improving Flow(AngioDynamics Inc.) brochure, 4 pages.
Donaldson, et al., Peripherally Inserted Central Venous Catheters: US-guided Vascular Access in Pediatric Patients1, Radiology, 1995, vol. 197, pp. 542-544.
Dunea, et al., A Survey of Permanent Double Lumen Catheters in Hemodialysis Patients, ASAIO Transac. 1991:37:M276-7.
Dupont et al., “Long-Term Development of Permcath Quinton Catheter” [French] Néphrologie 15: 105-10 (1994).
Gallichio, et al., Placement of a Double Lumen Silastic Catheter for Hemodialysis Access Through the Cephalic Vein, Journal of the American College of Surgeons, 1994, vol. 179, pp. 171-172.
Gravenstein, et al., In Vitro Evaluation of Relative Perforating Potential of Central Venous Catheters: Comparison of Materials, Selected Models, Number of Lumens, and Angles of Incidence to Simulated Membrane, Journal of Clinical Monitoring, 1991, vol. 7, pp. 1-6.
Haindl, H., Technical complications for port-catheter systems, Reg. Cancer Treat, 1989, 2:238-242.
Haire, et at., Thrombotic Complications of Subclavian Apheresis catheters in Cancer Patients: Prevention With Heparin Infusion, Journal of Clinical Apheresis, 1990, vol. 5, pp. 188-191.
Hull, et al., The Groshong Catheter: Initial Experience and Early Results of Imaging-guided Placement1, Radiology, 1992, vol. 185, pp. 803-807.
Ignotus, et al., Review of Radiological Insertion of Indwelling Central Venous Catheters, minimally invasive Therapy, 1992, 1:373-388.
Instructions for Use (Copyright Dated 1990) for Polycath Polyurethance Central Venous Catheter; believed to have been packaged with product believed to have been sold in the United States before Jan. 2000 and related marketing materials.
Instructions for Use (Copyright Dated 1992) for FloLock Single Lumen Bi-directional Valved Catheter; believed to have been packaged with product believed to have been sold in the United States before Jan. 2000.
Instructions for Use (not dated) for Infuse-a-Cath Polyurethance Central Venous Catheter; believed to have been packaged with product believed to have been sold in the United States before Jan. 2000.
Instructions for Use for Diatek Cannon Catheter Product First Sold in the United States Sep. 2001.
Jones, et al., Efficacy of the Supraclavicular Route for Temporary Hemodialysis Access, Southern Medical Journal, 1992, vol. 85, No. 7, pp. 725-726.
Kaupke, et al., Perforation of the Superior Vena Cava by a Subclavin Hemodialysis Catheter: early detection by angiography, The International Journal of Artificial Organs, 1992, vol. 15, No. 11, pp. 666-668.
Kelber, et al., Factors Affecting Delivery of High-Efficiency Dialysis Using Temporary Vascular Access, American Journal of Kidney Diseases, 1993, vol. 22, No. 1, pp. 24-29.
Lumsden, et al., Hemodialysis Access in the Pediatric Patient Population, The American Journal of Surgery, 1994, vol. 168, pp. 197-201.
Lund, “Percutaneous Translumber Inferior Vena Cava Cannulation and other Alternative Vascular Access Techniques” in Venous Interventional Radiology with Clinical Perspectives, Savader et al, eds, pp. 251-261 (date unknown).
Lund, et al., Percutaneous Translumber Inferior Vena Cava Cannulation for Hemodialysis, American Journal of Kidney Diseases, 1995, vol. 25, No. 5, pp. 732-737.
Maki, D., Pathogenesis, Prevention, and Management of Infections Due to Intravascular Devices Used for Infusion Therapy, in Infections Associated with Indwelling Medical Devices, Bisno et al, eds, American Society for Microbiology, 1989, pp. 161-177.
Mauro, et al., Radiologic Placement of Long-term Central Venous Catheters: A Review, JVIR, 1993, vol. 4, No. 1, pp. 127-137.
McGee, et al., Accurate placement of central venous catheters: A prospective, randomized, multicenter trial, Critical Care Medicine, 1993, vol. 21, No. 8, pp. 1118-1123.
Medcomp, “For Access via the Internal Jugular Vein . . . The Medcomp TESIO Catheter is the Solution: The Short and Long Term Solution to Subclavian Venin Stenosis and Difficult Access Problems”—Brochure, 4 pp.
Northsea, C., Using Urokinase to Restore Patency in Double Lumen Catheters, ANNA Journal 1994, vol. 21, No. 5, pp. 261-273.
Parsa, et al., Establishment of Intravenous Lines for Long-term Intravenous Therapy and Monitoring, Surgical Clinics of N. Am. 1985, vol. 65, No. 4, pp. 835-865.
Parsa, et al., Vascular Access Techniques, Monitoring, pp. 122-145 (date unknown).
Pasquale, et al., Groshong® versus Hickman® Catheters, Surgery, Gynecology & Obstetrics, 1992, vol. 174, pp. 408-410.
Passaro, et al., Long-term Silastic Catheters and Chest Pain, Journal of Parenteral andEnteral Nutrition, 1994, vol. 18, Bo. 3, pp. 240-242.
Paulsen, et al., Use of Tissue Plasminogen Activator for Reopening of Clotted Dialysis Catheters, Nephron, 1993, vol. 64, pp. 468-470.
Picture of device believed to be partial sample of a product believed to have been sold in the United States with the Polycath and/or Infuse-a-Cath Instructions for Use, 1 page.
Quinton® Catheter Products (1993).
Raaf, et al., Open Insertion of Right Atrial Catheters Through the Jugular Veins, surgery, Gynecology & Obstetrics, 1993, vol. 177, pp. 295-298.
Schwab, et al., Prospective Evaluation of a Dacron Cuffed Hemodialysis Catheter for Prolonged Use, American Journal of Kidney Diseases, 1998, vol. XI, No. 2, pp. 166-169.
Schwab, et al., Vascular Access: Case Oriented Discussions of Selected Critical Issues: Hemodialysis Catheters for Permanent Use (date unknown).
Shaffer D., lessons from Vascular Access Procedures for Hemodialysis, Surgical Oncology Clinics of North America, 1995, vol. 4, No. 3, pp. 537-549.
Shaffer, D., Catheter-Related Sepsis Complication Long-Term Tunnelled Central Venous Dialysis Catheters: Management by Guidewire Exchange, American Journal of Kidney Disease, 1995, vol. 25, No. 4. pp. 593-596.
Sioshansi, P., New Processes for Surface Treatment of Catheters, Artificial Organs, 1994, 18(4):266-271.
Swartz, et al., Successful Use of Cuffed Central venous Hemodialysis Catheters Inserted Percutaneously, J. Am. Soc. Nephrol., 1994, 4:1719-1725.
Tesio, et al., Double Catherization of the Internal Jugular Vein for Hemodialysis: Indications, Techniques, and Clinical Results, Artificial Organs, 1994, vol. 18, No. 4, pp. 301-304.
Treiman, et al., Chronic Venous Access in Patients with Cancer, Cancer, 1993, vol. 72, No. 3, pp. 760-765.
Twadorski, et al., “Blood Recirculation in Intravenous Catheters for Hemodialysis” J. am. Soc. Nephrol. 3:1978-81 (1993).
Uldall, P. Subclavian Cannulation Is No longer Necessary or justified in Patients with End-Stage Renal failure, Seminar in Dialysis, 1994, vol. 7, No. 3, pp. 161-164.
Wechsler, et al., Thrombosis and Infection Caused by Thoracic Venous Catheters: Pathogenesis and Imagings Findings, AJR, 1993; 160:467-471.
Weitzel, et al., Successful use if Indwelling Cuffed Femoral Vein Catheters in Ambulatory Hemodialysis Patients, America Journal of Kidney diseases, 1993, vol. 22, No. 3, pp. 426-429.
PCT/US2008/082106 filed Oct. 31, 2008 Written Opinion dated Jan. 12, 2009.
Raaf Dual Lumen Right Atrial Catheters Brochure—Quinton Instrument Co., 6 pages, 1993.
Rawn, et al., The Hemodialysis Access, Chapter 9, pp. 9.1-9.11.
Tal, Michael G. Comparison of Recirculation Percentage of the Palindrome Catheter and Standard Hemodialysis Catheters in a Swine Model, J Vasc Interv Radiol, pp. 1237-1240, vol. 16, No. 9, 2005.
The Groshong™ Peripherally Inserted Central Venous Catheter Brochure—Cath-tech®, 4 pages, 1988.
Transcript of Videotaped Deposition of Gregory Haas (Excerpt), Sep. 23, 2003, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y).
Transcript of Videotaped Deposition of Thierry Pourchez, vol. 1, Oct. 16, 2003, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y).
Transcript of Videotaped Deposition of Thierry Pourchez, vol. 2, Oct. 17, 2003, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.n. Y).
Twardowski et al. “Side Holes at the Tip of Chronic Hemodialysis Catehters are Harmful,” The Journal of Vascular Access 2001; 2:8-16.
Twardowski, et al., Side Holes at the Tip of Chronic Hemodialysis Catheters are Harmful, The Journal of Vascular Access 2001; 2: 8 16.
TYCO Healthcare, MAHURKAR Dual Lumen Catheters, Informational Brochure, 2 pages, 2004.
TYCO Healthcare, MAHURKAR QPlus High Flow Acute Care Catheter, Informational Brochure, 2 pages, 2004.
TYCO Healthcare, Tal PALINDROME™ Dual Lumen Catheters Order Information, Features and Benefits, Frequently Asked Questions, printed from http://www.kendallvasculartherapy.com/VascularTherapy, 6 pages, on Mar. 1, 2007.
U.S. Appl. No. 10/445,731, filed May 27, 2003 Non-Final Office Action dated Apr. 13, 2007.
U.S. Appl. No. 10/445,731, filed May 27, 2003 Non-Final Office Action dated Dec. 12, 2008.
U.S. Appl. No. 10/445,731, filed May 27, 2003 Non-Final Office Action dated May 30, 2008.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Advisory Action dated Feb. 19, 2009.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Final Office Action dated Jul. 15, 2008.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Final Office Action dated Jul. 7, 2010.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Aug. 18, 2011.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Dec. 30, 2009.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Feb. 2, 2011.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated Jul. 23, 2009.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated May 23, 2006.
U.S. Appl. No. 10/874,298, filed Jun. 9, 2004 Non-Final Office Action dated May 24, 2007.
U.S. Appl. No. 11/859,106, filed Sep. 21, 2007 Final Office Action dated Sep. 1, 2009.
U.S. Appl. No. 11/859,106, filed Sep. 21, 2007 Non-Final Office Action dated Mar. 30, 2011.
U.S. Appl. No. 11/859,106, filed Sep. 21, 2007 Non-Final Office Action dated Jun. 25, 2008.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Final Office Action dated Jan. 20, 2011.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated Jan. 7, 2010.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated Jul. 7, 2010.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Non-Final Office Action dated May 12, 2009.
U.S. Appl. No. 12/244,544, filed Oct. 2, 2008 Final Office Action dated Jul. 11, 2011.
U.S. Appl. No. 12/244,544, filed Oct. 2, 2008 Non-Final Office Action dated Dec. 22, 2010.
U.S. Appl. No. 12/244,554, filed Oct. 2, 2008 Final Office Action dated Dec. 27, 2010.
U.S. Appl. No. 12/244,554, filed Oct. 2, 2008 Non-Final Office Action dated Jul. 6, 2010.
U.S. Appl. No. 12/253,870, filed Oct. 17, 2008 Non-Final Office Action dated Jan. 21, 2011.
U.S. Appl. No. 12/253,870, filed Oct. 17, 2008 Notice of Allowance dated Aug. 19, 2011.
U.S. Appl. No. 12/262,820, filed Oct. 31, 2008 Non-Final Office Action dated Feb. 18, 2011.
U.S. Appl. No. 12/263,141, filed Oct. 31, 2008 Advisory Action dated Aug. 17, 2011.
U.S. Appl. No. 12/263,141, filed Oct. 31, 2008 Final Office Action dated May 26, 2011.
U.S. Appl. No. 12/263,141, filed Oct. 31, 2008 Non-Final Office Action dated Jan. 5, 2011.
U.S. Appl. No. 12/414,467, filed Mar. 30, 2009 Non-Final Office Action dated Aug. 11, 2011.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Advisory Action dated Oct. 9, 2008.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Final Office Action dated May 25, 2010.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Final Office Action dated Jul. 29, 2008.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Non-Final Office Action dated Jan. 7, 2008.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Non-Final Office Action dated Jun. 16, 2009.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Non-Final Office Action dated Nov. 13, 2008.
U.S. Appl. No. 10/842,586, filed May 10, 2004 Non-Final Office Action dated Nov. 23, 2009.
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Declaration of Dr. Karim Valji (Jul. 17, 2008).
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Declaration of Kenneth Todd Cassidy (Jul. 16, 2008).
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Declaration of Rebecca R. Eisenberg in Opposition to Defendant's Motion for Partial Summary Judgment of Invalidity (Jun. 8, 2009).
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Memorandum of Law in Support of Defendant's Motion for Summary Judgment on Invalidity [Redacted Pursuant to Jun. 10, 2008 Order on Motion to Seal].
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Memorandum of Law in Support of Defendant's Motion for Summary Judgment on Invalidity Exhibit A (Jul. 10, 2009).
Arrow International, Inc. et al v. Spire Biomedical, Inc., U.S. Dist Ct Dist MA CA No. 06-CV-11564-DPW, Plaintiff's Memorandum in Opposition to Defendant's Motion for Summary Judgement on Non-Infringement (Jul. 17, 2008).
Arrow International, Inc. et al. v. Spire Biomedical, Inc., U.S. Dist. Ct. Dist. MA CA No. 06-CV-11564-DPW, Defendant's Omnibus Statement of Material Facts in Support of its Motions for Summary Judgment [Redacted Pursuant to Jun. 10, 2007 Order on Motion to Seal].
BARD Access Systems Hickman®, Leonard®, and Broviac® Central Venous Catheters (Long Term), Instructions for Use, 31 pages, 1999.
BARD Access Systems Hickman®, Leonard®, and Broviac® Central Venous Catheters, Nursing Procedural Manual, 52 pages, Jun. 1994.
BARD Davol® Hickman® Round Dual Lumen Catheters for Central Venous Access Informational Brochure, 2 pages, 1994.
BARD Hickman® Catheters Informational Brochure, 3 pages, 1994.
CAMP, “Care of the Groshong Catheter”, Oncol Nurs Forum, vol. 15, No. 6, 1988.
Declaration of Gregory S. Haas (Plaintiff's Exhibit 88 in Haas Deposition), Mar. 13, 2003, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.).
Defendant's Exhibits DX78-DX114, Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.).
Defendants' Reponses and Objections to Plaintiffs' Second Set of Interrogatories (Excerpt), Thierry Pourchez and Bard Access Systems, Inc. v. Diatek, Inc. and Arrow International, Inc., Civil Action No. 03-CV-0972 (S.D.N.Y.) (Oct. 8, 2003).
Delmore et al., “Experience with the Groshong Long-Term Central Venous Catheter”, Gynecologic Oncology 34, 216-218 (1989).
Dialysis Vascular Access, SchonXL® Temporary Dialysis (AngioDynamics Inc.) brochure.
Difiore, “Central Venous Dialysis Catheter Evaluatio in Swine”, Journal of Vascular Access Devices, Fall 2000.
Dupont et al, Long-term development of Permacath Quinton catheters used as a vascular access route for extra-renal detoxification; Néphrologie, vol. 15, pp. 105-110, 1994.
EP 04712925.9 filed Feb. 19, 2004 Office Action dated Nov. 7, 2008.
EP 08839196.6 filed Oct. 2, 2008 Search Opinion dated Jul. 12, 2011.
EP 08839196.6 filed Oct. 2, 2008 Search Report dated Jul. 12, 2011.
JP App. No. 2003-565569 filed Feb. 7, 2003, Translated Decision of Refusal mailed Dec. 24, 2009.
JP App. No. 2003-565569 filed Feb. 7, 2003, Translated Official Action mailed May 28, 2009.
JP App. No. 2003-565569 filed Feb. 7, 2003, Translated Official Action mailed Nov. 7, 2008.
Kapoian et al. Dialysis as Treatment of End-Stage Renal Disease, Chapter 5: Dialysis Access and Recirculation.
Malviya et al., “Vascular Access in Gynecological Cancer Using the Groshong Right Atrial Catheter”, Gynecological Oncology 33, 313-316 (1989).
Medcomp® Brochure , “Ash Split Cath™ XL”, Dec. 2001, PN 2291.
Medcomp® Brochure , “Ash Split Cath™”, Guidewire Weave Insertion Technique, Jan. 2002, PN 2296.
Medcomp® Brochure , “Ash Split Cath™”, Jul. 2001, PN 2114.
Medcomp® Brochure , “Ash Split Cath™”, Nov. 1997, PN 2050.
Medcomp® Brochure , “Ash Split Cath® II”, Aug. 2002, PN 2334.
Medcomp® Brochure , “Magna™ High Flow Catheter”, Mar. 2002, PN 2321.
Moss, et al., Use of a Silicone Catheter With a Dacron Cuff for Dialysis Short-Term Vascular Access, American Journal of Kidney Diseases, 1988, vol. XII, No. 6, pp. 492-498.
Myers, R.D. et al, New Double-lumen Polyethylene Cannula for Push-pull Perfusion of Brain Tissue in Vivo, Journal of Neuroscience Methods, pp. 205-218, vol. 12, 1985.
Patel et al., “Sheathless Technique of Ash Split-Cath Insertion”, 12 JVIR 376-78 (Mar. 2001).
PCT/US2003/003751 filed Feb. 7, 2003 Preliminary Examination Report dated May 5, 2004.
PCT/US2003/003751 filed Feb. 7, 2003 Search Report dated Jul. 3, 2003.
PCT/US2004/005102 filed Feb. 19, 2004 Preliminary Report Patenability dated Aug. 29, 2005.
PCT/US2004/005102 filed Feb. 19, 2004 Search Report dated Dec. 27, 2004.
PCT/US2008/078551 filed Oct. 2, 2008 International Preliminary Report on Patentability dated Apr. 20, 2010.
PCT/US2008/078560 filed Oct. 2, 2008 Preliminary Report on Patentability dated Aug. 26, 2010.
PCT/US2008/078566 filed Oct. 2, 2008 International Preliminary Report on Patentability dated Apr. 20, 2010.
PCT/US2008/078571 filed Oct. 2, 2008 Preliminary Report on Patentability dated Aug. 26, 2010.
PCT/US2008/080463 filed Oct. 20, 2008 Preliminary Report on Patentability dated Apr. 27, 2010.
PCT/US2008/080463 filed Oct. 20, 2008 Search Report dated Mar. 16, 2009.
PCT/US2008/080463 filed Oct. 20, 2008 Written Opinion dated Apr. 16, 2009.
PCT/US2008/082106 filed Oct. 31, 2008 International Preliminary Report on Patentability dated May 4, 2010.
PCT/US2008/082106 filed Oct. 31, 2008 Search Report dated Jan. 12, 2009.
CN 200880121182.0 filed Oct. 20, 2008 First Office Action dated May 2, 2012.
CN 200880121183.5 filed Oct. 2, 2008 First Office Action dated Mar. 28, 2012.
CN 200880121183.5 filed Oct. 2, 2008 Second Office Action dated Aug. 17, 2012.
CN 200880121183.5 filed Oct. 2, 2008 Third Office Action dated Dec. 11, 2012.
CN 200880123095.9 filed Oct. 20, 2008 First Office Action dated Feb. 13, 2012.
CN 200880123095.9 filed Oct. 20, 2008 Second Office Action dated Dec. 18, 2012.
CN 200880123533.1 filed Jun. 30, 2008 First Office Action dated May 28, 2012.
CN 200880123533.1 filed Jun. 30, 2008 Notice of Grant dated Dec. 24, 2012.
EP 08839196.6 filed Oct. 2, 2008 Examination Report dated Jan. 16, 2013.
EP 08872340.8 filed Oct. 2, 2008 Extended European Search Report and an Opinion dated Apr. 19, 2012.
JP 2010-532299 filed Apr. 30, 2010 Final Notice of Reason for Rejection dated Feb. 8, 2013.
JP 2010-532299 filed Apr. 30, 2010 Official Action dated Apr. 23, 2012. X.
Septum, Wikipedia, The Free Encyclopedia, hhtp://en.wikipedia.org/wiki/Septum (last visited Dec. 18, 2012) (defining “septum” as “A wall, dividing a cavity or structure into smaller ones”).
Taber's Cyclopedic Medical Dictionary 1662 (16th ed. 1989) (defining “septum” as a “wall dividing two cavities”).
U.S. Appl. No. 10/371,774, filed Feb. 21, 2003 Final Office Action dated Jan. 19, 2007.
U.S. Appl. No. 10/371,774, filed Feb. 21, 2003 Final Office Action dated Mar. 7, 2007.
U.S. Appl. No. 10/371,774, filed Feb. 21, 2003 Non-Final Office Action dated Jul. 17, 2006.
U.S. Appl. No. 10/371,774, filed Feb. 21, 2003 Notice of Allowance dated Jun. 1, 2007.
U.S. Appl. No. 11/859,106, filed Aug. 21, 2007 Non-Final Office Action dated Feb. 5, 2009.
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Decision on Appeal dated Dec. 26, 2012.
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Examiner's Answer dated Apr. 28, 2010.
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Final Office Action dated Jul. 22, 2009.
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Non-Final Office Action dated Jan. 6, 2009.
U.S. Appl. No. 11/874,447, filed Oct. 18, 2007 Non-Final Office Action dated Jul. 9, 2008.
U.S. Appl. No. 12/048,871, filed Mar. 14, 2008 Examiner's Answer dated Feb. 9, 2012.
U.S. Appl. No. 12/244,559, filed Oct. 2, 2009 Final Office Action dated Jul. 3, 2012.
U.S. Appl. No. 12/244,559, filed Oct. 2, 2009 Non-Final Office Action dated Mar. 14, 2012.
U.S. Appl. No. 12/262,820, filed Oct. 31, 2008 Notice of Allowance dated Sep. 28, 2011.
U.S. Appl. No. 12/414,467, filed Mar. 30, 2009 Final Office Action dated Feb. 7, 2012.
U.S. Appl. No. 12/414,467, filed Mar. 30, 2009 Notice of Allowance dated May 31, 2012.
U.S. Appl. No. 13/445,713, filed Apr. 12, 2012 Non-Final Office Action dated Jan. 2, 2013.
US Patent File History USPN 5,403,291 (Abrahamson).
US Patent File History USPN 5,489,278 (Abrahamson).
US Patent File History USPN 5,685,867 (Twardowski et al.).
Related Publications (1)
Number Date Country
20090204052 A1 Aug 2009 US
Provisional Applications (1)
Number Date Country
60980633 Oct 2007 US