This application is a U.S. nationalization under 35 U.S.C. § 371 of International Patent Application No. PCT/EP2018/081184, filed Nov. 14, 2018, which claims priority to EP Application No. 1718820.2, filed Nov. 14, 2017; the entire contents of each are incorporated herein by reference.
The present invention relates to an apparatus for cutting vegetable slices and to a method of producing vegetable slices for the manufacture of vegetable chips. The present invention has particular application to the manufacture of potato chips from cut potato slices.
In the manufacture of potato chips, the potatoes are cut into slices and, after cooking, for example by frying, and subsequent seasoning, potato chips are produced which then are packaged for the consumer. Chips made from other vegetables are also made using such a method.
It is well known to employ a rotary cutting apparatus for cutting potatoes, or other vegetables, into fine slices for the manufacture of potato or vegetable chips. A well-known cutting apparatus, which has been used for more than 50 years, comprises an annular-shaped cutting head and a central impeller assembly coaxially mounted for rotation within the cutting head to deliver food products, such as potatoes, radially outwardly toward the cutting head.
A series of knives is mounted annularly around the cutting head and the knife cutting edges extend substantially circumferentially but slightly radially inwardly towards the impeller assembly. Each knife blade is clamped to the cutting head to provide a gap, extending in a radial direction, between the cutting edge of the blade and the head. The gap defines the thickness of the potato slices formed by the cutter.
Referring to
A central impeller 14, shown separately in
When the central impeller 14 and cutting head 4 are assembled together, the cylindrical wall 6, base 16 and cover 20 define a central cavity 24. In use, potatoes are supplied into the central cavity 24 through the potato supply opening 22. A typical potato supply rate is 2500 kg of potatoes per hour. The impeller 14 rotates at a high angular velocity, for example about 235 rpm, relative to the cutting head 4 to deliver the potatoes radially outwardly toward the cutting head 4 by a centrifugal force. Each potato is engaged by a front face 28 of a rotating impeller blade 26 which moves the potato circumferentially around the cutting head 4. Each potato is cut into a plurality of slices by the plurality of knives 8. The potato is cut by one knife 8 to cut off one slice as the potato rotates past that knife 8, and then the potato is rotated by the impeller 14 to the rotationally adjacent knife 8 and a subsequent slice is cut off by that knife 8. Centrifugal force radially outwardly advances each potato into a cutting position prior to a subsequent slice cutting action. Each potato is successively cut by the sequence of knives 8 as the potato rotates around the annular array of knives 8. This forms a plurality of slices from each potato.
The cutting operation suffers from yield loss caused by damage to the potato cell walls by the knives which then results in starch granules being released from the cut potato surface. It is the release of these starch granules that is referred to by those skilled in the art as yield loss. Typically, during potato slicing for potato chip (crisp) manufacture, this yield loss ranges from 9% to 16 wt % of the dry weight of the potato. This can represent a significant loss in productivity, and an associated commercial loss.
There is a general need in the art to achieve a reduction in the yield loss, which in turn would directly relate to a reduction in the weight of potatoes required for a given potato chip (crisp) output and therefore achieve a significant improvement in productivity.
In order to reduce the yield loss a water supply is typically used within the slicing operation. A stream of water is directed downwardly into the centre of the impeller 14 together with the supply of potatoes to be sliced. The water supply is provided in order to clean the slicer head during the cutting operation and to lubricate the cutting function.
As shown in
In use, the stream of water is directed downwardly into the central conical depression 32. As the water impacts the inner wall 34, and typically also at least partly the outer wall 38, the water is splashed upwardly and outwardly towards the knives 8. The delivery of high velocity water to the knives 8 provides the desired cleaning of the cutting head 4 during the cutting operation and lubrication of the cutting function.
One particular problem with the known apparatus as described above is the requirement for a high volume rate of water delivery in order to provide effective cleaning of the cutting head during the cutting operation and lubrication of the cutting function, in order to control yield loss. A typical known commercial apparatus as described above with reference to
There is a need in the art to achieve a reduction in the water usage of the apparatus while still providing effective cleaning and lubrication of the cutting surfaces and without negatively impacting on (i.e. increasing) yield loss.
The present invention at least partially aims to meet this need in the art for methods and apparatus for manufacturing vegetable, e.g. potato, slices and chips made therefrom.
The present invention aims in particular to provide a method and apparatus for manufacturing vegetable, e.g. potato, slices and chips made therefrom which can achieve the combination of low yield loss and low water usage.
The present invention aims further to provide a method and apparatus for manufacturing vegetable, e.g. potato, slices and chips made therefrom which employ a rotary cutting apparatus, which apparatus comprises an annular-shaped cutting head and a central impeller assembly coaxially mounted for rotation within the cutting head, which has a lower water usage than known rotary cutting apparatus, yet without compromising productivity or yield loss.
The present invention aims also to provide a method and apparatus for manufacturing vegetable, e.g. potato, slices and chips made therefrom which employs such a rotary cutting apparatus which has a lower water usage than known rotary cutting apparatus and without significantly increasing production or equipment costs.
Accordingly, the present invention provides an apparatus for cutting vegetable slices, the apparatus comprising: an annular-shaped cutting head, a plurality of knives serially mounted around the cutting head, each knife having a cutting edge extending substantially upwardly and spaced from the cutting head to provide a gap, extending in a radial direction, between the cutting edge and the cutting head, a central impeller coaxially mounted with the cutting head for rotation about an axis within the cutting head for delivering vegetables radially outwardly form a centre of the impeller toward the cutting head, the impeller having a base with an upper surface across which vegetables are, in use, delivered to the cutting head, a cover having a vegetable supply opening fitted above the base, and a plurality of radial orientation elements serially mounted within the impeller between the base and the cover to define a plurality of cutting zones located around the impeller, each cutting zone being between adjacent orientation elements, and a water jet spray device mounted at the base of the impeller and aligned with the axis, the water jet spray device comprising a raised mound having an outer wall surrounding an inner wall defining a central depression, the outer wall extending downwardly and outwardly from an annular rim between the central depression and the outer wall, and a plurality of substantially radially oriented channels serially provided around the raised mound, each channel extending outwardly from an inlet within the central depression and an outlet in the outer wall.
The present invention further provides a method of producing vegetable slices for the manufacture of vegetable chips, the method comprising the steps of:
Preferred features of the apparatus and method of the present invention are defined in the dependent claims.
The preferred embodiments of the present invention provide a number of technical and commercial advantages and benefits over the known methods and apparatus for manufacturing vegetable, e.g. potato, slices and chips made therefrom.
First, the method and apparatus of the present invention can achieve the combination of low yield loss and low water usage in the manufacture of vegetable, e.g. potato, slices and chips made therefrom.
Second, the method and apparatus of the present invention can provide a rotary cutting apparatus which has a lower water usage than known rotary cutting apparatus without compromising productivity or yield loss.
Third, the lower water usage can be achieved without significantly increasing production or equipment costs.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
As shown in
A central impeller 64, shown separately in
The apparatus further comprises a motor (not shown) for rotating the impeller 64. The motor has a rotational velocity typically of from 180 to 260 rpm, typically from 220 to 250 rpm, and typically the impeller 64 when in operation has an angular velocity of from 17.5 to 27.5 radians/second.
A cover 70 having a vegetable supply opening 72 is fitted above the base 66. A plurality of impeller blades 76 are fitted between the base 66 and cover 70. The impeller blades 76 are radially oriented and have a front face 78 which acts to push the potatoes around the cylindrical wall 56 as the impeller 64 rotates relative to the cutting head 54. The impeller 64 is typically composed of stainless steel.
When the central impeller 64 and cutting head 54 are assembled together, the cylindrical wall 56, base 66 and cover 70 define a central cavity 74.
In use to make potato slices for the manufacture of potato chips, potatoes are supplied into the central cavity 74 through the vegetable supply opening 72. As described above, alternatively other vegetables can be supplied and cut. A typical potato supply rate is 2500 kg of potatoes per hour.
The impeller 64 rotates about an axis at a high angular velocity relative to the cutting head 54 to deliver the potatoes radially outwardly toward the cutting head 54 by a centrifugal force. Each potato is engaged by a front face 78 of a rotating impeller blade 76 which moves the potato circumferentially around the cutting head 54. Each potato is cut into a plurality of slices by the plurality of knives 58. The potato is cut by one knife 58 to cut off one slice as the potato rotates past that knife 58, and then the potato is rotated by the impeller 64 to the rotationally adjacent knife 58 and a subsequent slice is cut off by that knife 58. Centrifugal force radially outwardly advances each potato into a cutting position prior to a subsequent slice cutting action. Each potato is successively cut by the sequence of knives 58 as the potato rotates around the annular array of knives 58. This forms a plurality of slices from each potato.
A stream of water is directed downwardly into the centre of the impeller 64, typically through the vegetable supply opening 72, together with the supply of vegetables to be sliced. The water supply is provided in order to clean the slicer head during the cutting operation and to lubricate the cutting function. The water may be pure water or may be an aqueous dispersion of an anti-foam additive as disclosed in WO-A-2015/067528.
As shown in
The water jet spray device 80 comprises a raised mound 82 having an outer wall 84 surrounding an inner wall 86 which defines a central depression 88. The raised mound 82 is circular in plan. The raised mound 82 is typically composed of stainless steel, or alternatively a rigid polymeric material. The outer wall 84 extends downwardly and outwardly from an annular rim 90 between the central depression 88 and the outer wall 84. The outer wall 84 is frustoconical, and may have an upper surface 85 which is planar or upwardly convex in cross-section. The inner wall 86 is frustoconical, and preferably has an upper surface 87 which is planar in cross-section. The central depression 88 has a substantially planar central bottom wall 92 which has an upper surface 94 defining the centre of the central depression 88. However, the central bottom wall 92 may be three-dimensionally profiled so as to be convex or concave.
A plurality of substantially radially oriented channels 96 is serially provided around the raised mound 82. In the present invention there are from 4 to 10 channels 96, optionally from 5 to 9 channels 96. In the illustrated embodiment of
Each channel 96 extends outwardly from a channel inlet 98 within the central depression 88 to a channel outlet 100 in the outer wall 84. The channel outlet 100 is radially outwardly of the annular rim 90. Each channel 96 is an open-topped channel 96, and the annular rim 90 is divided into a series of annular rim portions 102 by the channels 96. The channels 96 have a part-cylindrical inner surface 104.
In the illustrated embodiment, the channels 96 are straight and extend in a radial direction. In addition, in the illustrated embodiment the channels 96 have a lower surface 106 which is upwardly inclined relative to a plane orthogonal to the axis, which plane is typically parallel to the upper surface 68 of the base 66. The lower surface 106 may have a constant angle relative to the axis or may be upwardly curved, and in either case optionally the upward inclination angle is from 5 to 30° to the plane orthogonal to the axis.
In a second embodiment, as shown in
In a third embodiment, as shown in
In a fourth embodiment, as shown in
In any of the embodiments, the channels may have a lower surface which is substantially orthogonal to the axis. Alternatively, in any of the embodiments, the channels may have an inner portion which has a first angle relative to the axis and an outer portion which has a second angle relative to the axis, the first and second angles being different, and the first angle is typically at a greater acute angle relative to the axis than the second angle.
In any of the embodiments in which the channels have a lower surface which is upwardly inclined relative to a plane orthogonal to the axis, which plane is typically parallel and to the upper surface of the base, and the lower surface has a constant angle relative to the axis, the lower surface is upwardly inclined relative to a plane orthogonal to the axis at an angle of from 5 to 30°, optionally from 10 to 20°.
Typically, the frustoconical inner wall is an angle of from 50 to 80°, optionally from 60 to 70°, to the axis.
The water jet spray device 80 may have an external dimension in plan, for example an external diameter, of from 20 to 200 mm, typically from 50 to 150 mm. The water jet spray device 80 may have a height of from 10 to 50 mm, optionally from 15 to 25 mm.
In any of the embodiments, typically, the central depression 88 has a width or diameter of from 10 to 50 mm, optionally from 25 to 45 mm, typically from 30 to 40 mm, and/or the central bottom wall 92, if present, which may be planar or three dimensionally profiled, has a width or diameter of from 5 to 20 mm, optionally about 15 mm.
In any of the embodiments, typically, (i) the channels 96, 116, 126, 136 have a width and/or height and/or diameter of from 3 to 10 mm, optionally from 4 to 7 mm, and/or (ii) the channels 96, 116, 126, 136 have a length of from 10 to 40 mm, optionally from 15 to 25 mm. The arc-shaped channels 116, and the arc-shaped curved outer portion 134 of each channel 136, may have a radius of the arc of from 20 to 40 mm.
The apparatus is used in a method of producing vegetable slices for the manufacture of vegetable chips, typically potatoes.
In the method, the vegetables, such as potatoes, are fed into the impeller 64 through the vegetable supply opening 72. The impeller 64 rotates to deliver the vegetables radially outwardly toward the cutting head 54 by a centrifugal force into the cutting zones 65. Typically, the impeller 64 is rotated at a rotational velocity of from 180 to 260 rpm or from 220 to 250 rpm, for example to be rotated at an angular velocity of from 17.5 to 27.5 radians/second. Each vegetable is cut into slices by the plurality of knives 8, and the slices outwardly exit the cutting head 54.
A stream of water is fed into the impeller 64 to direct the stream downwardly onto the water jet spray device 80 and into the central depression 88. Typically, the stream of water exits a nozzle 69 located at a distance of from 100 to 300 mm above the water jet spray device 80. Typically, the stream of water has a volume flow rate of from 1 to 15 litres/minute, optionally from 2 to 6 litres/minute. Typically, the stream of water has a velocity of from 0.5 to 15 metre/second on impacting the water jet spray device 80. Typically, the stream of water has a mass flow rate which is from 5 to 15% of the mass flow rate of the vegetables fed into the impeller 64.
The stream of water impacts the inner wall 86, and typically also at least partly the outer wall 84. The water impacts the central depression 88 to form a plurality of water jets, each water jet passing radially outwardly through a respective channel 96, 116, 126, 136. The water is jetted upwardly and radially outwardly towards the knives 8. Each water jet includes a flow of water which entered the channel inlet 100 within the central depression 88 at a relatively low velocity in a radial direction and exited the channel outlet 100 in the outer wall 84 at a relatively high velocity in a radial direction. In other words, the channels are 96, 116, 126, 136 located and configured to increase the velocity of the water jets in a radial direction. The plurality of water jets individually impact an internal cylindrical surface of the cutting head 4. Alternatively, the plurality of water jets merge to form a merged jet which impacts an internal cylindrical surface of the cutting head 4.
The constricted channel 96, 116, 126, 136 causes the water to form high velocity water jets. The inclination of the channels 96, 116, 126, 136 to the plane orthogonal to the axis can cause the jet to be directed upwardly at a desired minimum angle of inclination to the base 66 of the impeller 64. This provides controlled delivery of high velocity water jets towards the knives 8.
The impeller 64 rotates at a high angular velocity, and correspondingly the water jets have a high angular velocity. Each water jet forms a rotating radial curtain of water which rapidly rotates to clean successive knives 8 to provide the desired cleaning of the cutting head 4 during the cutting operation and lubrication of the cutting function.
In the preferred embodiments, a particular cutting head 4 is disclosed. However, the present invention can be utilized with a wide variety of different cutting head shapes and dimensions.
In addition, in the illustrated embodiment of the invention, the cutting head 4 is stationary and the impeller 64 rotates within the stationary cutting head 4. In alternative embodiments of the invention, the cutting head also rotates, and the impeller rotates within the rotating cutting head, with the cutting head and impeller either rotating in the same rotational direction but at different rotational speeds or rotating in opposite rotational directions.
Furthermore, the present invention can be utilized with various blade shapes and configuration, and accordingly the cutting head can be used with linear planar blades, such as for manufacturing conventional potato chips, or profiled blades, such as for manufacturing crinkle cut or other three dimensionally-shaped potato chips.
The cutting head of the preferred embodiments of the invention may be of the two ring or single ring type.
The present invention will now be illustrated further with reference to the following non-limiting Examples.
A potato slice cutting apparatus having the structure of
The impeller was rotated at an angular velocity of 235 rpm. Peeled potatoes were supplied into the central cavity at a rate of 2500 kg/hr and a stream of water was directed downwardly onto the centre of the splash cone at a water flow rate of 11 litres/minute. The water stream hitting the splash cone was directed radially outwardly and upwardly to form a continuous high velocity water spray against the inside cylindrical surface of the impeller, which thereby supplied water to the cutting blades. The water flow rate of 11 litres/minute was found to be the minimum flow rate to achieve a desired minimum yield loss, and to achieve effective blade cleaning and lubrication during the cutting process.
The potato slice cutting apparatus used in Comparative Example 1 was modified by replacing the conical splash cone having the structure of
The water jet spray device had 9 straight channels extending radially outwardly from the central depression defined by a frustoconical inner wall. The channel lower surface was upwardly inclined relative to a plane orthogonal to the axis at an angle of about 15°. The frustoconical inner wall was at an angle of about 75 ° to the axis. The water jet spray device had an external diameter of about 110 mm and a height of about 18 mm. The central depression had a diameter of about 35 mm, and the central bottom wall was planar and had a diameter of about 15 mm. The channels were open topped and part-cylindrical with a diameter of about 5 mm and a length of about 20 mm.
The impeller was again rotated at an angular velocity of 235 rpm. Peeled potatoes were again supplied into the central cavity at a rate of 2500 kg/hr and a stream of water was directed downwardly onto the centre of the water jet spray device.
However, in Example 1 the stream of water was directed downwardly onto the centre of the water jet spray device at a water flow rate of only 4 litres/minute.
The water stream hitting the water jet spray device was directed radially outwardly and upwardly to form an array of radially oriented high velocity water spray jets which impacted against the inside cylindrical surface of the impeller, which thereby supplied water to the cutting blades.
Using the water jet spray device, the water flow rate of 4 litres/minute was found to be the minimum flow rate to achieve the same desired minimum yield loss, and to achieve the same effective blade cleaning and lubrication during the cutting process as achieved using the higher water flow of 4 litres/minute using the conical splash cone of
Therefore the water jet spray device of the present invention was found to achieve a 63 vol % reduction in water usage for cutting the potato slices without compromising productivity or yield loss.
For a large potato chip manufacturing operation, this reduction in the water usage would provide a significant saving in the natural resource of water, which is environmentally desirable, and would also contribute to significantly reduced production costs at low capital cost.
Other modifications to the potato slice cutting apparatus of the preferred embodiments of the present invention will be readily apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
1718820 | Nov 2017 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/081184 | 11/14/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/096819 | 5/23/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4604925 | Wisdom | Aug 1986 | A |
9517572 | Michel | Dec 2016 | B2 |
10265877 | Bucks | Apr 2019 | B2 |
20070240550 | Jacko | Oct 2007 | A1 |
20080022822 | Jacko | Jan 2008 | A1 |
20090202694 | Julian | Aug 2009 | A1 |
20140116213 | King | May 2014 | A1 |
20140230620 | Bucks | Aug 2014 | A1 |
20170225348 | Jacko | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
102015213139 | Jan 2017 | DE |
Entry |
---|
International Search Report and Written Opinion of PCT/EP2018/081184 dated Mar. 6, 2019. |
Number | Date | Country | |
---|---|---|---|
20200361108 A1 | Nov 2020 | US |