The present invention relates to manufacturing equipment and manufacturing methods for forming a metal powder sintered component by irradiating metal powder with light beams.
Equipment for manufacturing a metal powder sintered component by irradiating a powder layer, which is made of metal powder, with light beams to melt the powder layer for formation of a sintered layer and repeating the process of forming another powder layer on the sintered layer and irradiating it with light beams (hereinafter, referred to as manufacturing equipment) is known in the prior art.
The scan head 137 comprises a condenser lens 138 that collects light beams L, two rotatable scan mirrors 134 that reflect light beams L, and a scanner 135 that controls the rotation angles of the scan mirrors 134. The controller 105 causes the light beam oscillator 131 to emit light beams L and collects the emitted light beams L by the condenser lens 138. Then, the controller 105 causes the scanner 135 to rotate the scan mirrors 134 so that the scan mirrors 134 reflect the collected light beams L onto the powder layer 112 to sinter the metal powder 111 and thus form a sintered layer 113.
However, in the manufacturing equipment, if the rotation angles of the scan mirrors 134 are increased to enlarge the irradiated area, focusing and so on become difficult and thus the accuracy of light beam L scanning is reduced. Further, since the irradiation height is fixed, the accuracy of light beam L scanning cannot be adjusted.
Plotter type manufacturing equipment is also known.
However, in the manufacturing equipment 201, the accuracy of light beam L scanning is low.
Since light beams L are large in optical axis length, even a slight deviation of the irradiation angle of light beams L from the light beam oscillator 231 causes a large error in irradiation position.
Manufacturing equipment is also known in which a light beam oscillator and a scan head for directing light beams move in a single direction parallel to a powder layer for light beam scanning (see, for example, Patent Document 1).
However, in the manufacturing equipment as disclosed in Patent Document 1, the irradiated area cannot be increased because the light beam oscillator and the scan head for directing light beams move only in the single direction.
The present invention has been made to solve the above described problems. An object of the present invention is to provide manufacturing equipment and manufacturing methods for a metal powder sintered component that can provide a large irradiated area and a high accuracy in light beam scanning as well as allowing the accuracy of light beam scanning to be adjusted as the need arises.
In order to achieve the above mentioned object, according to the present invention, in a manufacturing equipment for a metal powder sintered component comprising: powder layer forming means that supplies metal powder to a substrate to form a powder layer; light beam irradiation means that irradiates a given point on the powder layer, which is formed by the powder layer forming means, with light beams so as to sinter the powder layer and thus form a sintered layer; and a controller that controls operations of the respective means, wherein a three-dimensionally shaped metal powder sintered component is manufactured by repeating formation of the powder layer and formation of the sintered layer to form a shaped object with a number of sintered layers integrated, the light beam irradiation means comprises a scan head having at least two scan mirrors that reflect and direct the light beams for scanning, angles of the scan mirrors being controllable, and the scan head moves in at least one direction of any direction parallel to a surface irradiated with the light beams and a direction normal to the irradiated surface.
According to the present invention, the irradiated area can be increased because the scan head moves parallel to the irradiated surface, and, by setting the irradiation height small, the accuracy of light beam scanning can be enhanced. Further, the scan head can move in the direction normal to the irradiated surface so as to change the irradiation height. Therefore, by changing the irradiation height of the scan head, the accuracy of light beam scanning can be adjusted.
It is preferable that the manufacturing equipment comprises cutting means that repeatedly cuts a surface layer of a surface part and an unwanted part of the shaped object at least one time in process of the formation of the shaped object, the cutting means has a milling head that moves in a direction parallel to and in a direction normal to the irradiated surface, and the scan head moves by milling head moving means that moves the milling head. Thereby, since the scan head is fixed on the milling head for movement, the configuration of the manufacturing equipment for a metal powder sintered component can be simplified and the cost can be reduced.
It is preferable that the controller has: first adjustment data to adjust, to set values, a light beam irradiation position and a diameter of focused light beams in a case where the scan head is positioned at an irradiation height closest to the irradiated surface; and second adjustment data to adjust, to set values, a light beam irradiation position and a diameter of focused light beams in a case where the scan head is positioned at an irradiation height farthest from the irradiated surface, and adjustment data for a case where the scan head is positioned at an arbitrary irradiation height is determined by interpolation from the first adjustment data and the second adjustment data, so that irradiation with light beams is performed using the determined adjustment data. This can make it easy to determine adjustment data to adjust, to set values, the light beam irradiation position and the diameter of focused light beams for an arbitrary irradiation height of the scan head, thus enhancing the accuracy of light beam scanning.
It is preferable that the scan head irradiates a surface portion of a shaped object with light beams from a position close to the irradiated surface, and irradiates a center portion of a shaped object with light beams from a position far from the irradiated surface. Thereby, since the surface portion of a shaped object is irradiated with light beams from a position close to the irradiated surface, the accuracy of light beam scanning can be enhanced. This can reduce the cutting amount of the surface of a shaped object, thus decreasing the cutting time to shorten the machining time. Further, for the center portion of a shaped object, the scan accuracy and the sintered density can be low. Therefore, the portion can be irradiated from a position far from the irradiated surface so as to increase the scanning speed and thus shorten the machining time.
It is preferable that the controller causes the scan head to perform irradiation with light beams from a number of irradiation heights set in advance based on adjustment data according to the respective irradiation heights to adjust light beam irradiation positions and diameters of focused light beams to set values. Thereby, since irradiation with light beams is performed from a number of irradiation heights set in advance, the condition of irradiation with light beams can be easily changed according to the need for the accuracy and speed of scanning of a shaped object, so that the machining time can be shortened.
It is preferable that the irradiated surface is divided into a number of formation areas, and the scan head is moved to formation areas not adjacent to each other in turn within the divided formation areas, for irradiation with light beams. Thereby, since formation areas not adjacent to each other are irradiated with light beams in turn, sintering heat is prevented from accumulating in the shaped object so as to prevent heat strain of the shaped object and thus enhance the processing accuracy of the shaped object.
It is preferable that the irradiated surface is divided into a number of formation areas, and the scan head is moved in turn in the divided formation areas for irradiation with light beams, and the division is made so that a boundary between formation areas of a sintered layer formed under an irradiated surface does not overlap a boundary between formation areas of the irradiated surface. Thereby, since the irradiated surface is divided so that a boundary between formation areas of a sintered layer formed under the irradiated surface does not overlap a boundary between formation areas of the irradiated surface, the strength between the formation areas in the shaped object can be increased.
It is preferable that the irradiated surface is sectionalized into configuration areas corresponding to a center portion, a surface portion, and an intermediate portion between the center portion and the surface portion, respectively, of a shaped object to be formed, each of the configuration areas sectionalized is further divided into a number of formation areas, and the scan head is moved to formation areas not adjacent to each other in turn within the divided formation areas, for irradiation with light beams. Thereby, since the irradiated surface is divided into a number of formation areas and the irradiation height can be set according to the formation areas, the scan accuracy for the surface portion of a shaped object can be increased by setting the irradiation height small. Further, since formation areas not adjacent to each other are irradiated with light beams in turn, sintering heat is prevented from accumulating in the shaped object so as to prevent heat strain of the shaped object. Accordingly, a large object can be formed with a high degree of accuracy.
It is preferable that the irradiated surface is sectionalized into configuration areas corresponding to a center portion, a surface portion, and an intermediate portion between the center portion and the surface portion, respectively, of a shaped object to be formed, each of the configuration areas sectionalized is further divided into a number of formation areas, and the scan head is moved to formation areas not adjacent to each other in turn within the divided formation areas, for irradiation with light beams, and the division is made so that a boundary between formation areas of a sintered layer formed under the irradiated surface does not overlap a boundary between formation areas of the irradiated surface. This can increase the strength between the formation areas, thus making the shaped object firm.
Referring to
The powder layer forming portion 2 has a material tank 21 that supplies metal powder, a material table 22 that moves metal powder in the material tank 21 upward, a substrate 23 on which a powder layer 12 is placed, a formation table 24 that holds the substrate 23 and moves up and down, a formation tank 25 that surrounds the formation table 24, a wiper 26 that spreads the metal powder contained in the material tank 21 onto the substrate 23, and a wiper moving shaft 27 that moves the wiper 26. The light beam irradiator 3 has a light beam oscillator 31 that emits light beams, an optical fiber 32 that transmits light beams L emitted, and an optical component 33 that includes a condenser lens (not shown) and collects light beams L received from the optical fiber 32. The light beam oscillator 31 is an oscillator for e.g., carbon dioxide laser, YAG laser, or fiber laser. The light beam irradiator 3 further comprises two rotatable scan mirrors 34 that reflect light beams L from the optical component 33, and a scanner 35 that controls the rotation angles of the scan mirrors 34. The controller 5 adjusts the rotation angles of the scan mirrors 34 via the scanner 35 to direct light beams L over a powder layer 12 for scanning. The optical component 33, the scan mirrors 34, and the scanner 35 are covered by an optical cover 36 and make up a scan head 37 together with the optical cover 36.
The scan head 37 moves in a direction parallel to the surface irradiated with light beams by a scan head X shaft 37x, which is parallel to the irradiated surface and moves in the X direction, and a scan head Y shaft 37y, which is parallel to the irradiated surface and moves in the Y direction. The cutter 4 comprises a cutting tool 41 that cuts a shaped object and a milling head 42 that rotates and holds the cutting tool 41. The milling head 42 is fixed on a milling head Z shaft 42z, and moves in a direction normal to and in a direction parallel to the surface irradiated with light beams by the milling head Z shaft 42z, a milling head X shaft 42x, and a milling head Y shaft 42y. The milling head Z shaft 42z, the milling head X shaft 42x, and the milling head Y shaft 42y make up a milling head moving portion (milling head moving means) 43. The surface irradiated with light beams is covered by a chamber (not shown), which is filled with inert gas such as nitrogen gas so as to prevent oxidation of metal powder. The supply of inert gas is controlled by measuring the level of oxygen or the like within the chamber.
The operation of the manufacturing equipment 1 configured as described above is described.
Subsequently, the scan head 37 rotates the scan mirrors to direct light beams L over an area of the powder layer 12 for scanning so that the powder layer 12 is melted to form a sintered layer 13 (
According to the manufacturing equipment 1, since the scan head 37 can be moved in a direction parallel to the irradiated surface, a large area can be scanned while a short distance is maintained between the scan head 37 and the irradiated surface. Thus, a large metal powder sintered component can be manufactured. The short distance between the scan head 37 and the irradiated surface can prevent a reduction in the accuracy of light beam L scanning, thus enhancing the dimensional accuracy of a shaped object. Since the dimensional accuracy of a shaped object is high, the amount of cutting by the cutting tool 41 can be reduced so that the cutting time can be reduced to shorten the machining time.
Referring to
The operation of the manufacturing equipment 1 configured as described above is described.
Subsequently, the scan head 37 rotates scan mirrors to direct light beams L over the powder layer 12 for scanning so that the powder layer 12 is melted to form a sintered layer 13 (
By varying the irradiation height of the scan head 37 in this manner, the accuracy of light beam L scanning can be varied. If scanning with a high degree of accuracy is needed, the irradiation height H of the scan head 37 is set small. If high scanning accuracy is not needed, the irradiation height H of the scan head 37 is set large for irradiation with light beams L.
Referring to
Referring to
As described above, the scan head 37 is fixed on the milling head 42 for movement. This can eliminate the need for a scan head X shaft, a scan head Y shaft, and a scan head Z shaft to move the scan head 37, thus simplifying the configuration of the manufacturing equipment and reducing the cost. Further, since the scan head 37 is not needed during the process of cutting a surface part or the like of a shaped object, it can be detached from the milling head 42 before the start of the cutting process and can be attached to the milling head 42 before irradiation with light beams L after the completion of the cutting process. If the scan head 37 is detached during the cutting process in this manner, the scan head 37 is less likely to be damaged by a rapidly accelerated motion of the milling head 42 during the cutting process.
Referring to
In this embodiment, adjustment data (ΔX, ΔY) on the irradiation position and adjustment data (ΔZ) on the diameter of focused light beams at the position with the largest irradiation height H and the position with the smallest irradiation height H are determined. The adjustment data at the position with the largest irradiation height H is set as a first adjustment data, and the adjustment data at the position with the smallest irradiation height H is set as a second adjustment data. The adjustments are made with the same irradiated area R and diameter of focused light beams. Then, adjustment data for an arbitrary height H of the scan head 37 is determined by interpolation from the first adjustment data and the second adjustment data, according to the height. For example, when ΔX of the first adjustment data is 0.1 mm and ΔX of the second adjustment data is 0.2 mm, adjustment data ΔX for the case where the irradiation height is just intermediate between the highest and the lowest is 0.15 mm. In this manner, adjustment data to adjust, to set values, the light beam L irradiation position and the diameter of focused light beams for an arbitrary irradiation height H of the scan head 37 can be easily determined, which can enhance the accuracy of light beam L scanning.
Referring to
The irradiation height for the surface portion V1 is set small because the portion should be scanned with a high degree of accuracy in order to reduce the amount of surface cutting after the formation. By setting the irradiation height small to reduce the diameter of focused light beams, the irradiation energy per unit area is increased to increase the sintered density. For the center portion V3, the irradiation height is set large because the dimensional accuracy of the shaped object is not affected even if the irradiation position deviates and thus the scan accuracy can be low. By setting the irradiation height large to increase the diameter of focused light beams, the irradiation energy per unit area is decreased to decrease the sintered density. Further, since the irradiation height is large, the light beam scanning speed is high so as to decrease the sintered density even if the angular velocity of rotation of the scan mirrors is the same as that in the case where the irradiation height is small. The intermediate portion V2 is irradiated with an irradiation height between the irradiation height for the irradiation of the surface portion V1 and the irradiation height for the irradiation of the center portion V3. The sintered density may also be varied by the laser output, the scanning speed, or the scanning pitch.
As described above, for the surface portion of a shaped object, the accuracy of light beam scanning is high because the irradiation is performed with the small irradiation height. Since scanning with a high degree of accuracy reduces the surface cutting amount, the cutting time can be reduced to shorten the machining time. Further, for the center portion of a shaped object, the scan accuracy and the sintered density can be low. Therefore, the irradiation height can be set large to increase the scanning speed so that the machining time can be shortened.
Referring to
As described above, since irradiation with light beams is performed from a number of irradiation heights set in advance, the condition of irradiation with light beams can be easily changed according to the need for the accuracy and speed of scanning of a shaped object. Thus, the machining time can be shortened.
Referring to
Referring to
Referring to
In this modified example, irradiation with light beams is repeated in the order of, for example, the formation areas “1”, “6”, “9”, “2”, “8”, “10”, “4”, “7”, “12”, “3”, “5”, and “11”. Further, the sintered density is varied depending on the configuration areas so that the density in the surface portion is 98% or more, the density in the intermediate portion is 70-90%, and the density in the center portion is 60-80%. With respect to the irradiation height of light beams, a small irradiation height is set for the surface portion, a large irradiation height is set for the center portion, and an intermediate irradiation height is set for the intermediate portion, like the above described sixth embodiment. Thus, for the surface portion, since the irradiation height is small, the scan accuracy is high to decrease the diameter of focused light beams and thus increase the sintered density. For the center portion, since the irradiation height is large, the scanning speed is increased while the sintered density is decreased. Accordingly, since heat strain of a shaped object can be prevented and the accuracy of light beam scanning for a surface portion of the shaped object can be increased, a large object can be formed with a high degree of accuracy.
In this second modified example, the formation may be made so that a boundary between formation areas in a sintered layer already formed under the irradiated surface does not vertically overlap a boundary between formation areas in the irradiated surface to be irradiated with light beams, like the first modified example.
In addition, the present invention is not limited to the configurations of the above described embodiments, and various kinds of modification can be done in a scope without changing the purpose of the invention. For example, the inside of a chamber covering an irradiated surface may be under vacuum atmosphere. In this case, effects similar to those in the case where the chamber is filled with inert gas can be also achieved.
This application involves claim of priority based on Japanese Patent Application No. 2007-279551 and Japanese Patent Application No. 2007-279567. Entirety of description of the application is incorporated in this application by reference.
Number | Date | Country | Kind |
---|---|---|---|
2007-279551 | Oct 2007 | JP | national |
2007-279567 | Oct 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/069215 | 10/23/2008 | WO | 00 | 5/18/2010 |