This application claims the benefit of Korean Application No. P2003-97617 filed on Dec. 26, 2003, which is hereby incorporated by reference for all purposes as if fully set forth herein.
This application incorporates by reference two applications Ser. No. 10/184,096, filed on Jun. 28, 2002, entitled “SYSTEM AND METHOD FOR MANUFACTURING LIQUID CRYSTAL DISPLAY DEVICES” and Ser. No. 10/184,088, filed on Jun. 28, 2002, entitled “SYSTEM FOR FABRICATING LIQUID CRYSTAL DISPLAY AND METHOD OF FABRICATING LIQUID CRYSTAL DISPLAY USING THE SAME” as if fully set forth herein.
1. Field of the Invention
The present invention relates to a method of fabricating a liquid crystal display device, and more particularly, to a manufacturing line of a liquid crystal display device using a drop-filling and fabricating method thereof, by which liquid crystal alignment failure can be repaired.
2. Discussion of the Related Art
As information society rapidly develops, the demand for a display technology is increasing in various ways. A variety of flat display devices are designed to meet such a demand and many efforts are made to develop such a flat display device as LCD (liquid crystal display device), PDP (plasma display panel), ELD (electroluminescent display), VFD (vacuum fluorescent display), and the like. Some of the flat display devices are already applicable to various equipments.
By replacing CRT (cathode ray tube), which cannot be used as mobile image display devices, LCDs provide excellent features including excellent image quality, lightweight, compact size, and low power consumption, thereby becoming the most popular device of the various flat display devices. Moreover, LCDs are also applicable as a TV set to receive and display broadcast signals, a computer monitor, and the like, as well as a portable notebook computer monitor.
A liquid crystal display device mainly consists of a liquid crystal display panel and a drive unit applying a drive signal to the liquid crystal display panel. The liquid crystal display panel consists of first and second glass substrates assembled to each other to leave a predetermined distance from each other, and a liquid crystal layer injected between the first and second glass substrates.
A plurality of gate lines arranged in one direction with a predetermined distance therebetween, a plurality of data lines arranged with a predetermined interval therebetween in a direction perpendicular to the respective gate lines, a plurality of pixel electrodes formed in pixel areas provided by the crossing of the gate and data lines, respectively, and a plurality of thin film transistors for transferring signals of the data lines to the corresponding pixel electrodes by being switched by signals of the gate lines, respectively are formed on the first glass substrate (TFT array substrate).
A black matrix layer enabling light to be transmitted to the pixel areas only, an R/G/B color filter layer, and a common electrode for implementing an image are formed on the second glass substrate (color filter substrate).
The first and second glass substrates, between which a predetermined space is provided by spacers, are assembled to each other by a sealant having a liquid crystal inlet. Liquid crystals are then injected in the predetermined space via the liquid crystal injection inlet.
In doing so, when the liquid crystal inlet is dipped in liquid crystals while a vacuum state of the predetermined space is maintained, liquid crystals are injected between the two substrates by an osmotic action. After completion of the liquid crystal injection, the liquid crystal inlet is sealed with a sealant.
However, the related art fabricating method of an injection type liquid crystal display device has the following disadvantages or problems.
First, after completion of cutting into unit panels, the vacuum state of the gap between the two substrates needs to be maintained to inject liquid crystals therein by dipping the liquid crystal inlet in the liquid crystals. Hence, the liquid crystal injection takes a considerably long time to reduce productivity.
Secondly, in case of fabricating a wide liquid crystal display device, the liquid crystal injection method may not completely fill the liquid crystal panel with liquid crystals which causes failure of the device.
Thirdly, the corresponding process is complicated and requires quite a long processing time. The corresponding process requires various liquid crystal injection equipment, which occupies an excessive installation space.
Hence, much research and development has been directed to a method of fabricating a liquid crystal display device using drop-filling.
A method of fabricating a liquid crystal display device using drop-filling according to a related art is explained as follows.
First, in a method of fabricating a liquid crystal display device using drop-filling, instead of forming one liquid crystal display panel on one glass substrate, a plurality of liquid crystal display panels are preferably designed on a mother substrate greater than one unit liquid crystal display panel. A thin film transistor array is formed on each liquid crystal display panel area on a first mother substrate, and a color filter array is formed on each liquid crystal display panel area on a second mother substrate.
An alignment layer for liquid crystal alignment is formed on each of the first and second mother substrates. Rubbing is then performed on the alignment layer. Liquid crystals are dropped on the corresponding liquid crystal display panel areas of the first or second mother substrate. A sealant and Ag dots are dispensed on a periphery of the liquid crystal display panel area. The first and second mother substrates are then assembled to each other. The assembled substrates are cut into unit liquid crystal display panels to be processed.
Namely, a manufacturing line for drop-filling according to a related art, as illustrated in
A process carried out in the vacuum alignment equipment 10 is explained in detail by referring to
In
The first glass substrate 3 is loaded on a horizontally movable table 4 within a vacuum chamber ‘C’. A lower surface of the first glass substrate 3 is held by a first vacuum holder 5 using vacuum suction to be fixed thereto.
Referring to
Referring to
Referring to
The assembled substrates are taken out of the vacuum alignment equipment 10 and are then transferred to the UV-sealant hardener 20. A masking is formed on the assembled substrates to expose the sealant 1 only. UV light is applied to the sealant 1 only to perform a first hardening on the sealant 1.
The assembled substrates are moved to the thermosetting equipment 30 from the UV-sealant hardener 20. The sealant 1 is then thermoset for about 60 minutes at 120° C. in the thermosetting equipment 30.
The assembled substrates are then transferred to the cutter 40 to be cut into a plurality of unit liquid crystal display panels. Although not shown in the drawings, the unit liquid crystal display panels are then further processed by other processing equipment. A test process is also performed on the processed panels by test equipment.
By the test process, various characteristics of the liquid crystal display panel are checked. In doing so, a domain failure (alignment failure) is checked. Namely, in the rubbing process, a surface of the alignment layer formed on the substrate is rubbed by a rubbing cloth that rotates at a uniform pressure and speed so that polymer chains on the surface of the alignment layer can be aligned in one direction to determine an alignment direction of liquid crystal molecules. In doing so, the alignment direction of one portion having a weak alignment force deviates at a different angle from that of the other portion, whereby the domain failure takes place.
Hence, a worker manually sorts the liquid crystal display panel. After aging has been performed on the sorted panel, the aged panel is put on an iron plate to be rapidly cooled. And, the domain failure is checked again.
However, the related art method of fabricating the liquid crystal display device using drop-filling has the following problem or disadvantage.
First of all, after the assembled substrate have been cut into the unit liquid crystal display panels, each of the unit liquid crystal display panels is tested by a worker. If the domain failure is found, the worker manually sorts the domain-failing liquid crystal display panel. After aging has been performed on the sorted panel, the aged panel is put on an iron plate to be rapidly cooled. And, the domain failure is checked again. Such a process is repeated until the domain failure is overcome.
Hence, the domain failure test is performed on each liquid crystal display panel, thereby needing a long test time and more manpower.
Accordingly, the present invention is directed to a manufacturing line of a liquid crystal display device and fabricating method thereof that substantially obviate one or more problems due to limitations and disadvantages of the related art.
An advantage of the present invention is to provide a manufacturing line of a liquid crystal display device and fabricating method thereof by which domain failure (alignment failure) can be previously repaired by a mother substrate unit by adding a step of cooling a thermoset substrate rapidly prior to cutting.
Additional advantages and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a manufacturing line of a liquid crystal display device according to the present invention includes a vacuum alignment equipment assembling a first mother substrate having either liquid crystals dropped thereon or a sealant formed thereon and a second mother substrate having either the sealant formed thereon or the liquid crystals thereon, a UV-sealant hardener performing UV-hardening on the sealant of the assembled substrates, a thermosetter thermosetting the UV-hardened substrates, a rapid cooler rapidly cooling the thermoset substrates, and a cutter cutting the rapidly cooled substrates into a plurality of unit liquid crystal display panels.
Preferably, the rapid cooler includes a cooling table provided with an internal space for a coolant flow to have the thermoset substrates loaded thereon, a coolant inlet part at one side of the cooling table to supply the coolant to the cooling table, and a coolant outlet part for discharging the coolant from the cooling table.
In another aspect of the present invention, a method of fabricating a liquid crystal display device includes the steps of preparing a first mother substrate having a plurality of thin film transistor arrays formed in a plurality of panel areas, respectively and a second mother substrate having a plurality of color filter arrays formed in a plurality of the panel areas, respectively, dropping a predetermined amount of liquid crystals in each of the panel areas of the first or second mother substrate and coating a sealant on each of the panel areas of the second or first mother substrate, assembling the first and second mother substrates, UV-hardening the sealant between the assembled mother substrates, thermosetting the UV-hardened sealant, cooling the thermoset mother substrates rapidly, and cutting the rapidly cooled mother substrates into a plurality of unit liquid crystal display panels.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention.
In the drawings:
Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
First of all, an alignment layer is formed on each of a first mother substrate having thin film transistor arrays formed on panel areas, respectively, and a second mother substrate having color filter arrays formed on panel areas, respectively. Rubbing is performed on the alignment layer.
A predetermined amount of liquid crystals is dropped on each of the panel areas of the first or second mother substrate. A sealant is coated on the corresponding mother substrate. Thus, the first and second mother substrates are prepared to be assembled.
A manufacturing line of a drop-filling type liquid crystal display device according to the present invention, as illustrated in
The rapid cooler 400, as illustrated in
A method of fabricating a drop-filling type liquid crystal display device according to the present invention is explained as follows.
Referring to
Meanwhile, a plurality of color filter arrays are formed on a plurality of panel areas of a second mother substrate, respectively (5S). An alignment layer is formed on the second mother substrate and rubbing is then performed on the alignment layer (6S). Alternatively, photo-alignment can be performed on the alignment layer instead of rubbing.
Of course, spacers are provided on the first or second mother substrates to maintain a cell gap between the first and second mother substrates prior to the formation of the alignment layers.
After the first and second mother substrates have been cleansed (3S, 7S), a predetermined amount of liquid crystal is dropped on each of the panel areas of the first or second mother substrates and a sealant coating is performed on the first or second mother substrate (4S, 8S).
Namely, an appropriate amount of liquid crystals is dropped or applied on each of the liquid crystal display panel areas of the first mother substrate according to a size of the corresponding liquid crystal display panel area, and Ag dots and sealant are coated on peripheries of the respective liquid crystal display panel areas. Of course, the sealant and Ag dots can be coated on the second mother substrate and the liquid crystals can be applied on the first mother substrate.
Thus, the first and second mother substrates, on which the liquid crystals and the Ag dots and sealant are formed, are loaded on the vacuum alignment equipment 100 and are then assembled to each other to have a predetermined cell gap via the spacers (9S).
The first and second mother substrates assembling method is explained in detail as follows.
First of all, the sealant-coated second mother substrate is loaded in the vacuum alignment equipment 100 by a robot (not shown in the drawing) so that a sealant-coated side faces downward. While this state is maintained, an upper stage (not shown in the drawing) of the vacuum alignment equipment 100 is lowered. The lowered upper stage picks up the second mother substrate via vacuum suction and is then lifted upward.
The first mother substrate having liquid crystals dropped thereon is placed on a lower stage (not shown in the drawing) within the vacuum alignment equipment by the robot.
When a predetermined vacuum state is maintained within the vacuum alignment equipment 100, the upper stage is lowered to pressurize the first and second mother substrates to assemble to each other.
Thereafter, the vacuum suction power of the upper stage is released to separate the assembled substrates from the upper stage. The assembled substrates are unloaded from the vacuum alignment equipment 100.
The assembled substrates unloaded from the vacuum alignment equipment 100 are loaded on the UV-hardener 200 to UV-harden the sealant (10S).
In doing so, the sealant is first hardened in a manner of placing a mask over the substrates to expose the sealant between the assembled substrates only and applying UV light to the substrates.
Subsequently, the UV-hardened substrates are loaded in the thermosetter 300 to thermally harden the sealant (11S). In doing so, thermosetting is carried out for about 60 minutes at about 120° C., and the liquid crystals uniformly spread.
The thermoset substrates are loaded on the cooler to be rapidly cooled (12S). In doing so, even if the alignment power of a predetermined portion is weak due to the poor rubbing of the alignment layer, the alignment failure is repaired.
Namely, the liquid crystal layer is heated at high temperature during the thermosetting, the liquid crystal viscosity is lowered so that liquid crystal molecules can freely move. In the case that the substrates are rapidly cooled, for example, cooled to below approximately 30° C. in about 10-20 seconds. The free liquid crystal molecules are aligned according to the alignment direction of the alignment layer. In doing so, the liquid crystals at the portion of the weak alignment power are aligned in the same direction by the instant turning force of other liquid crystals.
Thus, the rapidly cooled mother substrates are cut into a plurality of unit liquid crystal display panels (S13). After completion of grinding (S14), the corresponding panels are finally tested (S15) to be marketed (S16).
Accordingly, a manufacturing line of a liquid crystal display device and fabricating method thereof provide the following effect or advantage.
Namely, since the heated substrates unloaded from the thermosetter are put on the cooler to be rapidly cooled, the domain failure can be repaired by substrate unit without worker's manual handling. Therefore, the present invention saves time and manpower.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2003-0097617 | Dec 2003 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
3978580 | Leupp et al. | Sep 1976 | A |
4094058 | Yasutake et al. | Jun 1978 | A |
4653864 | Baron et al. | Mar 1987 | A |
4691995 | Yamazaki et al. | Sep 1987 | A |
4775225 | Tsuboyama et al. | Oct 1988 | A |
5170195 | Akiyama et al. | Dec 1992 | A |
5247377 | Omeis et al. | Sep 1993 | A |
5263888 | Ishihara et al. | Nov 1993 | A |
5379139 | Sato et al. | Jan 1995 | A |
5406989 | Abe | Apr 1995 | A |
5499128 | Hasegawa et al. | Mar 1996 | A |
5507323 | Abe | Apr 1996 | A |
5511591 | Abe | Apr 1996 | A |
5539545 | Shimizu | Jul 1996 | A |
5548429 | Tsujita | Aug 1996 | A |
5621553 | Nishiguchi et al. | Apr 1997 | A |
5642214 | Ishii | Jun 1997 | A |
5680189 | Shimizu et al. | Oct 1997 | A |
5742370 | Kim | Apr 1998 | A |
5757451 | Miyazaki | May 1998 | A |
5764314 | Narayan et al. | Jun 1998 | A |
5852484 | Inoue et al. | Dec 1998 | A |
5854664 | Inoue et al. | Dec 1998 | A |
5861932 | Inata | Jan 1999 | A |
5875922 | Chastine et al. | Mar 1999 | A |
5952676 | Sato | Sep 1999 | A |
5956112 | Fujimori | Sep 1999 | A |
6001203 | Yamada | Dec 1999 | A |
6011609 | Kato | Jan 2000 | A |
6016178 | Kataoka | Jan 2000 | A |
6016181 | Shimada | Jan 2000 | A |
6055035 | Von Gutfeld | Apr 2000 | A |
6163357 | Nakamura | Dec 2000 | A |
6219126 | Von Gutfeld | Apr 2001 | B1 |
6226067 | Nishiguchi | May 2001 | B1 |
6236445 | Foschaar | May 2001 | B1 |
6304306 | Shiomi | Oct 2001 | B1 |
6304311 | Egami | Oct 2001 | B1 |
6337730 | Ozaki | Jan 2002 | B1 |
6355125 | Tahon et al. | Mar 2002 | B1 |
6414733 | Ishikawa | Jul 2002 | B1 |
Number | Date | Country |
---|---|---|
1439921 | Sep 2003 | CN |
1 003 066 | May 2000 | EP |
51-65656 | Jun 1976 | JP |
57-038414 | Mar 1982 | JP |
57-088428 | Jun 1982 | JP |
58-027126 | Feb 1983 | JP |
59-057221 | Apr 1984 | JP |
59-195222 | Nov 1984 | JP |
60-111221 | Jun 1985 | JP |
60-164723 | Aug 1985 | JP |
60-217343 | Oct 1985 | JP |
61-007822 | Jan 1986 | JP |
61-055625 | Mar 1986 | JP |
S62-054225 | Mar 1987 | JP |
S62-054228 | Mar 1987 | JP |
62-089025 | Apr 1987 | JP |
62-090622 | Apr 1987 | JP |
62-205319 | Sep 1987 | JP |
63-109413 | May 1988 | JP |
63-110425 | May 1988 | JP |
63-128315 | May 1988 | JP |
63-311233 | Dec 1988 | JP |
H03-009549 | Jan 1991 | JP |
H05-036425 | Feb 1993 | JP |
H05-036426 | Feb 1993 | JP |
H05-107533 | Apr 1993 | JP |
05-127179 | May 1993 | JP |
05-154923 | Jun 1993 | JP |
05-265011 | Oct 1993 | JP |
05-281557 | Oct 1993 | JP |
05-281562 | Oct 1993 | JP |
H06-018829 | Jan 1994 | JP |
06-051256 | Feb 1994 | JP |
H06-064229 | Mar 1994 | JP |
06-148657 | May 1994 | JP |
06-160871 | Jun 1994 | JP |
H06-194637 | Jul 1994 | JP |
06-235925 | Aug 1994 | JP |
06-265915 | Sep 1994 | JP |
06-313870 | Nov 1994 | JP |
07-084268 | Mar 1995 | JP |
07-128674 | May 1995 | JP |
07-181507 | Jul 1995 | JP |
H07-275770 | Oct 1995 | JP |
H07-275771 | Oct 1995 | JP |
07-318952 | Dec 1995 | JP |
H08-076133 | Mar 1996 | JP |
08-095066 | Apr 1996 | JP |
08-101395 | Apr 1996 | JP |
08-106101 | Apr 1996 | JP |
H08-110504 | Apr 1996 | JP |
H08-136937 | May 1996 | JP |
08-171094 | Jul 1996 | JP |
08-190099 | Jul 1996 | JP |
H08-173874 | Jul 1996 | JP |
08-240807 | Sep 1996 | JP |
09-005762 | Jan 1997 | JP |
09-026578 | Jan 1997 | JP |
H09-001026 | Jan 1997 | JP |
09-311340 | Feb 1997 | JP |
09-61829 | Mar 1997 | JP |
09-073075 | Mar 1997 | JP |
09-073096 | Mar 1997 | JP |
H09-094500 | Apr 1997 | JP |
09-127528 | May 1997 | JP |
09-230357 | Sep 1997 | JP |
09-281511 | Oct 1997 | JP |
10-123537 | May 1998 | JP |
10-123538 | May 1998 | JP |
10-142616 | May 1998 | JP |
10-177178 | Jun 1998 | JP |
H10-174924 | Jun 1998 | JP |
10-221700 | Aug 1998 | JP |
10-282512 | Oct 1998 | JP |
10-333157 | Dec 1998 | JP |
10-333159 | Dec 1998 | JP |
11-014953 | Jan 1999 | JP |
11-038424 | Feb 1999 | JP |
11-064811 | Mar 1999 | JP |
11-109388 | Apr 1999 | JP |
11-133438 | May 1999 | JP |
11-142864 | May 1999 | JP |
11-174477 | Jul 1999 | JP |
11-212045 | Aug 1999 | JP |
11-248930 | Sep 1999 | JP |
H11-262712 | Sep 1999 | JP |
H11-264991 | Sep 1999 | JP |
11-326922 | Nov 1999 | JP |
11-344714 | Dec 1999 | JP |
2000-002879 | Jan 2000 | JP |
2000-029035 | Jan 2000 | JP |
2000-056311 | Feb 2000 | JP |
2000-066165 | Mar 2000 | JP |
2000-066218 | Mar 2000 | JP |
2000-093866 | Apr 2000 | JP |
2000-137235 | May 2000 | JP |
2000-147528 | May 2000 | JP |
2000-193988 | Jul 2000 | JP |
2000-241824 | Sep 2000 | JP |
2000-284295 | Oct 2000 | JP |
2000-292799 | Oct 2000 | JP |
2000-310759 | Nov 2000 | JP |
2000-310784 | Nov 2000 | JP |
2000-338501 | Dec 2000 | JP |
2001-005401 | Jan 2001 | JP |
2001-005405 | Jan 2001 | JP |
2001-013506 | Jan 2001 | JP |
2001-033793 | Feb 2001 | JP |
2001-042341 | Feb 2001 | JP |
2001-051284 | Feb 2001 | JP |
2001-066615 | Mar 2001 | JP |
2001-091727 | Apr 2001 | JP |
2001-117105 | Apr 2001 | JP |
2001-117109 | Apr 2001 | JP |
2001-133745 | May 2001 | JP |
2001-133794 | May 2001 | JP |
2001-133799 | May 2001 | JP |
2001-142074 | May 2001 | JP |
2001-147437 | May 2001 | JP |
2001-154211 | Jun 2001 | JP |
2001-166272 | Jun 2001 | JP |
2001-166310 | Jun 2001 | JP |
2001-183683 | Jul 2001 | JP |
2001-201750 | Jul 2001 | JP |
2001-209052 | Aug 2001 | JP |
2001-209056 | Aug 2001 | JP |
2001-209057 | Aug 2001 | JP |
2001-209058 | Aug 2001 | JP |
2001-209060 | Aug 2001 | JP |
2001-215459 | Aug 2001 | JP |
2001-222017 | Aug 2001 | JP |
2001-235758 | Aug 2001 | JP |
2001-255542 | Sep 2001 | JP |
2001-264782 | Sep 2001 | JP |
2001-272640 | Oct 2001 | JP |
2001-281675 | Oct 2001 | JP |
2001-281678 | Oct 2001 | JP |
2001-282126 | Oct 2001 | JP |
2001-305563 | Oct 2001 | JP |
2001-330837 | Nov 2001 | JP |
2001-330840 | Nov 2001 | JP |
2001-356353 | Dec 2001 | JP |
2001-356354 | Dec 2001 | JP |
2002-014360 | Jan 2002 | JP |
2002-023176 | Jan 2002 | JP |
2002-049045 | Feb 2002 | JP |
2002-079160 | Mar 2002 | JP |
2002-080321 | Mar 2002 | JP |
2002-082340 | Mar 2002 | JP |
2002-090759 | Mar 2002 | JP |
2002-090760 | Mar 2002 | JP |
2002-107740 | Apr 2002 | JP |
2002-122870 | Apr 2002 | JP |
2002-122872 | Apr 2002 | JP |
2002-122873 | Apr 2002 | JP |
2002-131762 | May 2002 | JP |
2002-139734 | May 2002 | JP |
2002-156518 | May 2002 | JP |
2002-169166 | Jun 2002 | JP |
2002-169167 | Jun 2002 | JP |
2002-182222 | Jun 2002 | JP |
2002-202512 | Jul 2002 | JP |
2002-202514 | Jul 2002 | JP |
2002-214626 | Jul 2002 | JP |
2002-229042 | Aug 2002 | JP |
2002-236276 | Aug 2002 | JP |
2002-258299 | Aug 2002 | JP |
2002-236292 | Sep 2002 | JP |
2002-277865 | Sep 2002 | JP |
2002-277866 | Sep 2002 | JP |
2002-277881 | Sep 2002 | JP |
2002-287156 | Oct 2002 | JP |
2002-296605 | Oct 2002 | JP |
2002-311438 | Oct 2002 | JP |
2002-311440 | Oct 2002 | JP |
2002-311442 | Oct 2002 | JP |
2002-323687 | Nov 2002 | JP |
2002-323694 | Nov 2002 | JP |
2002-333628 | Nov 2002 | JP |
2002-333635 | Nov 2002 | JP |
2002-333843 | Nov 2002 | JP |
2002-341329 | Nov 2002 | JP |
2002-341355 | Nov 2002 | JP |
2002-341356 | Nov 2002 | JP |
2002-341357 | Nov 2002 | JP |
2002-341358 | Nov 2002 | JP |
2002-341359 | Nov 2002 | JP |
2002-341362 | Nov 2002 | JP |
1995-33588 | Dec 1995 | KR |
2000-0035302 | Jun 2000 | KR |
Number | Date | Country | |
---|---|---|---|
20050140921 A1 | Jun 2005 | US |