The present disclosure relates to a manufacturing method for a fluid-ejection device and to a fluid-ejection device. In particular, the present disclosure regards a process for manufacturing a fluid-ejection head based upon piezoelectric technology, and to a fluid-ejection head that operates using piezoelectric technology.
Known to the prior art are multiple types of fluid-ejection devices, in particular ink-jet heads for printing applications. Similar heads, with appropriate modifications, may likewise be used for ejection of fluids other than ink, for example for applications in the biological or biomedical field, for local application of biological material (e.g., DNA) in the manufacture of sensors for biological analyses, for the decoration of fabrics or ceramics, and in applications of 3D printing and additive manufacturing.
Known manufacturing methods envisage coupling via gluing or bonding of a large number of pre-processed parts. This process proves costly and calls for high precision, and the resulting device has a large thickness.
To overcome these drawbacks, the document No. US 2014/0313264 discloses a manufacturing method for a fluid-ejection device completely obtained on a silicon substrate with technologies typical of manufacture of semiconductor devices and formed by coupling together just three wafers. According to this process, however, manufacture of the nozzle is obtained following upon coupling of the wafer bearing the nozzle to the other wafers, already coupled together. The consequence of this is a limited freedom of action on the stack thus formed, in part on account of the machines used for handling a stack of coupled wafers, and in part on account of the technological processes, which are not compatible with the adhesive material used for coupling the three wafers (e.g., high-temperature processes or processes involving use of some types of solvents). Furthermore, formation of an anti-wetting coating around the nozzle proves inconvenient.
At least some embodiments of the present disclosure provide a manufacturing method for a fluid-ejection device, and a fluid-ejection device that overcome at least some of the drawbacks of the known art.
According to the present disclosure a manufacturing method for a fluid-ejection device and a fluid-ejection device are provided.
For a better understanding of the present disclosure, preferred embodiments thereof are now described, purely by way of non-limiting example, with reference to the attached drawings, wherein:
Fluid-ejection devices based upon piezoelectric technology may be manufactured by bonding, or gluing, together a plurality of wafers previously processed employing micromachining technologies typically used for producing MEMS (Micro-Electro-Mechanical Systems) devices. In particular, with reference to
Then, the aforementioned wafers 2, 4, 8 are assembled together via soldering interface regions, and/or bonding regions, and/or gluing regions, and/or adhesive regions, for example of polymeric material, designated as a whole by the reference number 15 in
The piezoelectric actuators 3 comprise a piezoelectric region 16 arranged between a top electrode 18 and a bottom electrode 19, which are designed to supply an electrical signal to the piezoelectric region 16 for generating, in use, a deflection of the piezoelectric region 16 that consequently causes a deflection of the membrane 7 in a per se known manner. Metal paths (designated as a whole by the reference 20) extend from the top electrode 18 and the bottom electrode 19 towards an electrical contact region, provided with contact pads 21 designed to be biased through bonding wires (not illustrated).
With reference to
In particular,
In particular, with reference to
The next step is formation, on the membrane layer 7, of the bottom electrode 19 of the piezoelectric actuator 3 (formed, for example, by a TiO2 layer having a thickness comprised between 5 and 50 nm, deposited on which is a Pt layer having a thickness comprised between 30 and 300 nm).
This is followed by deposition of a piezoelectric layer on the bottom electrode 19, depositing a layer of PZT (Pb, Zr, TiO3), having a thickness comprised between 0.5 and 3.0 μm, more typically 1 or 2 μm (which will form, after subsequent definition steps, the piezoelectric region 16). Next, deposited on the piezoelectric layer is a second layer of conductive material, for example Pt or Ir or IrO2 or TiW or Ru, having a thickness comprised between 30 and 300 nm, for forming the top electrode 18.
The electrode and piezoelectric layers are subjected to lithographic and etching steps in order to pattern them according to a desired pattern thus forming the bottom electrode 19, the piezoelectric region 16, and the top electrode 18.
One or more passivation layers 17 are then deposited on the bottom electrode 19, the piezoelectric region 16, and the top electrode 18. The passivation layers include dielectric materials used for electrical insulation of the electrodes, for example, SiO2 or SiN or Al2O3 layers whether single or stacked on top of one another, having a thickness comprised between 10 nm and 1000 nm. The passivation layers are then etched in selective regions to create access trenches towards the bottom electrode 19 and the top electrode 18. This is then followed by a step of deposition of conductive material, such as metal (e.g., aluminum or else gold, possibly together with barrier and bonding layers such as Ti, TiN, TiW or Ta, TaN), inside the trenches thus created and on the passivation layers 17. A subsequent patterning step enables formation of conductive paths 23, 25 that enable selective access to the top electrode 18 and to the bottom electrode 19 to enable electrical biasing thereof in use. It is further possible to form further passivation layers (e.g., SiO2 or SiN layers, not illustrated) for protecting the conductive paths 23, 25. Conductive pads 21 are likewise formed alongside the piezoelectric actuator, electrically coupled to the conductive paths 23, 25.
Finally, the membrane layer 7 is selectively etched in a region thereof that extends alongside, and at a distance from, the piezoelectric actuator 3 for exposing a surface region 11′ of the underlying substrate 11. A through hole 14 is thus formed through the membrane layer 7, which enables, in subsequent manufacturing steps, formation of a fluid path on the outside of the fluid-ejection device 1 towards the reservoir 10, through the inlet hole 9, as illustrated in
With reference to the second wafer 4, illustrated in
Then, processing steps are carried out on the bottom face, opposite to the top face of the second wafer 4. In particular, the second wafer 4 is etched in the region where the inlet hole 9 is to be formed by removing selective portions of the dielectric layer 29b and of the substrate 22 throughout the thickness thereof and digging a deep trench (with etch stop on the dielectric layer 29a).
By a further step of etching of the bottom face of the second wafer 4 there are formed a recess 27a, which, in subsequent steps, will form the containment chamber 5, and a recess 27b, which, in subsequent steps, will be arranged facing the region of the first wafer 2 that houses the conductive pads 21. According to one aspect of the present disclosure, the recesses 27a, 27b thus formed have a depth, along Z, comprised between 50 and 300 μm.
The first and second wafers 2, 4 thus produced are then coupled together (e.g., by the wafer-to-wafer bonding technique, as illustrated in
The substrate 11 of the wafer 2 is then etched for forming a cavity on the side opposite to the side that houses the piezoelectric actuator 3, through which the silicon-oxide layer that forms the membrane 7 is exposed. This step enables release of the membrane 7, making it suspended.
There now follows a description, according to one aspect of the present disclosure, of steps of processing of the third wafer 8.
With reference to
According to a further embodiment of the present disclosure, illustrated in
Formed on the first interface layer 33 (or on the one or more further anti-wetting layers, if present) is a first nozzle layer 35, made for example of epitaxially grown polysilicon, having a thickness comprised between approximately 10 and 75 μm.
The first nozzle layer 35 may be of a material different from polysilicon, for example silicon or some other material still, provided that it may be removed in a selective way in regard to the material of which the first interface layer 33 (or the anti-wetting layer, if present) is made.
Next (
Etching is carried out using an etching chemistry capable of removing selectively the material of which the first nozzle layer 35 is made (here, polysilicon), but not the material of which the interface layer 33 is made (here, silicon oxide). The etching profile of the intermediate layer 35 may be controlled by choosing an etching technology and an etching chemistry in order to obtain the desired result.
For example, with reference to
The coating layer 42 is, in particular, a layer having good characteristics of wettability, for example a silicon-oxide (SiO2). The coating layer 42 is considered to have good characteristics of wettability when it presents a small contact angle with a drop of liquid (typically, water) deposited thereon. The solid-liquid interaction, as is known, may be evaluated in terms of contact angle of a drop of water deposited on the surface considered, measured as angle formed at the surface-liquid interface. A small contact angle is due to the tendency of the drop to flatten out on the surface, and vice versa. In general, a surface having characteristics of wettability such that, when a drop is deposited thereon, the contact angle between the surface and the drop (angle θ) has a value of less than 90°, in particular equal to or less than approximately 40°, is considered a hydrophilic surface. Instead, a surface having characteristics of wettability such that, when a drop is deposited thereon, the contact angle between the surface and the drop (angle θ) has a value greater than 90° is considered a hydrophobic surface.
Consequently, assuming a through hole 35′ having a circular shape, in top plan view, the diameter d1 thereof is chosen larger than the desired diameter for the ejection nozzle, according to the thickness envisaged for the coating layer on the inner walls of the through hole 35′.
Alternatively, as illustrated in
After the step of formation of the through hole 35′ or 35″, according to the respective embodiments, there follows removal of the photoresist mask and, if necessary, a step of cleaning of the top surface 35a of the first nozzle layer 35 and of the side walls within the through hole 35′, 35″. This step, carried out by removal in oxidizing environments at high temperature (>250° C.), and/or in aggressive solvents, has the function of removing undesired polymeric layers that may have formed during the previous etching step.
In what follows, a through hole 35′ of the type shown in
Then (
The oxide layer 42 extends over the top face of the wafer 8 and within the through hole 35′, coating the side walls thereof. The thickness of the oxide layer 42 is between 0.2 μm and 2 μm.
The diameter d3 of the through hole 35′ resulting after the step of formation of the oxide layer 42 has a value comprised between 10 μm and 100 μm, for example 20 μm.
Next (
The next step is formation of a feed channel 48 of the nozzle and removal of the polysilicon that, in the previous step, had filled the through hole 35′. For this purpose, an etching mask 50 is laid on the second nozzle layer, and this is followed by a step of etching (indicated by the arrows 51) in the region where the through hole 35′ was previously formed. Etching is carried out with an etching chemistry designed to remove the polysilicon with which the second nozzle layer 45 is formed, but not the silicon oxide of the layer 42. Etching proceeds up to complete removal of the polysilicon that extends inside the through hole 35′, to form the feed channel 48 through the second nozzle layer 45 in fluid communication with the through opening 35′, as illustrated in
The feed channel 48 has, in top plan view, a diameter d4 greater than the diameter d1; for example, d4 is between 50 μm and 200 μm, in particular 80 μm.
As illustrated in
In particular, the third wafer 8 is coupled to the first wafer 2 so that the feed channel 48 is in fluidic connection with the containment chamber 10.
Then (
According to the embodiment of
According to one aspect of the present disclosure, the layer 33 is removed on the layer 35 only at the nozzles for outlet of the ink.
What is described applies, in a similar way, also in the case where on the oxide layer 33 (or as an alternative thereto) one or more further anti-wetting layers are present. In this case, however, the step of removal of the structural layer 31 or 33 stops at the anti-wetting layer, which is not removed, or else is removed only along the walls of the nozzle 13 in the case where they are present.
Once again with reference to
Finally, a step of partial sawing of the second wafer 4, along the scribe line 57 shown in
In a first step (
Then (
Then (
Actuation of the piezoelectric element by biasing the top and bottom electrodes 18, 19 is per se known and not described in detail herein.
From an examination of the characteristics of the disclosure provided according to the present disclosure, the advantages that it affords are evident.
In particular, the steps for manufacture of the nozzle are carried out on the third wafer 8 prior to coupling of the latter to the first wafer 2. This enables use of a wide range of micromachining technologies without the risk of damaging the coupling layers between the first and second wafers 2, 4. In addition, it is possible to form a layer with high wettability (e.g., silicon oxide) within the hole that defines the nozzle 13 in a simple and inexpensive way.
Furthermore, it should be noted that the steps for manufacturing the liquid-ejection device according to the present disclosure do not require coupling of more than three wafers, thus reducing the risks of misalignment in so far as just two steps of coupling the wafers together are performed, thus limiting the manufacturing costs.
Finally, it is clear that modifications and variations may be made to what has been described and illustrated herein, without thereby departing from the scope of the present disclosure.
The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
102015000088567 | Dec 2015 | IT | national |
Number | Date | Country | |
---|---|---|---|
Parent | 15179096 | Jun 2016 | US |
Child | 15812960 | US |