The present invention relates to a method that enables a thermoplastic pipe in a partial or complete bellows-form, preferably having connecting elements such as clip, bracket, etc. thereon to be manufactured in a single process.
Gas/water/projectile injection techniques are manufacturing methods that are used to manufacture a hollow article by injecting a molten plastic into a mold cavity and, thanks to the faster cooling and solidification of the outer walls of the melt, forcing the not-yet solidified material in the core out of the mold by means of pressurized gas (GIT), liquid (LIT), especially water (WIT) and projectile (PIT).
Plastic molding technique by means of gas injection technology is known for a long time. In the U.S. Pat. No. 4,923,667 published in 1990, it is disclosed that hollow articles can be manufactured by supplying gas into the mold cavity filled with molten plastic.
In the Patent No. DE 19903682, it is disclosed that a liquid, especially water can be used instead of gas in order to push the molten core out of the mold cavity. A faster process is achieved as the water absorbs more heat compared to gas. In the Patent No. WO 2004113048, it is disclosed that water injection technique allows manufacturing of pipes with thinner walls in comparison to the gas injection technique. Moreover, the hesitation marks, which are surface defects causing quality problems and occurring due to the high viscosity difference between the melt material and the gas, can be eliminated by using water instead of gas.
A significant advantage of gas/water/projectile injection technology is that with this method, connecting elements like clips, brackets, etc. desired to be present on the pipe can be formed as a single piece together with the product during the injection process and thus no additional joining step is needed.
Pipes and hoses manufactured with gas/water/projectile injection technology are used especially in automotive industry in sections like engine cooling systems, radiators, fuel systems, etc. and manufactured from various thermoplastic materials, generally from fiberglass reinforced polyamide. As disclosed in the Patent Application No. US 2010294421, in such systems, pipes connect hard-to-reach points in crowded engine compartments and are exposed to a severe vibration. A bellows form that is at least regionally formed on the pipe provides a significant advantage for absorbing said vibration as well as maintaining the elasticity required for an easy installation. However, with the gas/water/projectile injection technologies, it is not possible to obtain a bellows form on a pipe of such type. Although manufacturing of a hose in bellows form with the water injection technology is disclosed in the patent application no. DE 102005033172, said hose is manufactured from a thermoplastic elastomer material and used as a sheath for protecting cables that connects the doors, tailgates and similar movable parts of motor vehicles to the vehicle body. Although it is not possible to obtain a precise inner bellows structure with the method disclosed in DE 102005033172, the product still gains a sufficient elasticity thanks to the thermoplastic elastomer material used. However, in the cooling, fuel and turbocharger systems of motor vehicles wherein the method of the present invention will be used, connecting elements that should be provided on the pipe cannot be manufactured from a thermoplastic elastomer material due to the heat resistance and mechanical strength requirements. Therefore, secondary processes will be needed for joining the connecting elements to a bellows pipe manufactured with the method disclosed in the above mentioned patent.
In the patent application no. WO 0168397, a method is disclosed for manufacturing a fuel filler pipe with a rigid and smooth portion in the middle region and a bellows portion close to an end. In this method, the plastic melt injected into the mold cavity is blown towards the walls of the mold by means of a pressurized gas. Although a bellows pipe can be manufactured with such a blow molding method, connecting elements required on the pipe cannot be manufactured and secondary processes such as welding or overmolding are needed for the elements of this type. Such secondary joining processes cause extra cost and operation time and also increase leakage possibility at welding regions.
In the present invention, a method is disclosed which enables the manufacturing of a bellows pipe that can be used in crowded engine compartments, can be easily detached and attached, and that can absorb the vibrations generated by the engine, by using fluid/projectile injection technologies.
A method enabling the manufacturing of a bellows pipe with fluid/projectile injection technologies will reduce the process time by decreasing the number of manufacturing steps, will provide an easy and simple manufacturing process and decrease the manufacturing costs.
In the first stage of the method of the present invention, the mold cavity is filled with the molten material. In this stage, a smooth slider set is present at the region of the mold that will provide the bellows form. Following the injection, the molten material in the mold cavity starts cooling first on its outer surfaces. The relatively hotter and liquid material remaining in the core is displaced from the mold cavity by means of a pressurized fluid or a projectile injected into the mold cavity. As a result of the first stage of the method, a preform without bellows is obtained. In the following stage, the smooth slider set is moved away and a second slider set which is orthogonal to the former one and which has bellows-shaped inner walls is moved in the emptied space of the former one.
Before this change, the pressure in the preform is equalized to the atmospheric pressure. Finally, by again supplying pressurized fluid into the mold cavity, the preform that is still hot is blown up to stick to the walls and thus the desired bellows form is obtained.
The present invention will be described in detail by means of the figures.
a is the isometric view of the mold used for the manufacturing of the pipe.
b is the isometric view of the halves of the mold
c is the simplified top view of the male mold portion.
a is the cross-sectional view of the mold in
b is the cross-sectional view of the mold in
a is the isometric and sideways view of the slider sets in the first stage of the method.
b is the cross-sectional view of the mold in
a is the isometric view of the slider sets during the replacement process.
b is the cross-sectional view of the slider sets during the replacement process.
a is the view of the stationary slider set used in the method when the segments are closed.
b is the view of the stationary slider set used in the method when the segments are open.
The elements related to the present invention are numbered as follows in the above-described figures:
The number of the troughs (31) and ridges (32) on the bellows portion (3) may change according to the application area of the product (1). The depths of the troughs and ridges (31, 32) may also be changed in accordance with the ambient conditions as well as the pipe material. The bellows portion (3) can be formed at any region of the pipe (1), or even the whole pipe (1) can be manufactured in bellows form.
As shown in
At some part of the mold cavity (23), the two slider sets (25, 26) oriented orthogonal to each other as in
In the first stage of the process, the melt injected through the nozzle (8) fills in the whole mold cavity (23) except the extra mold cavity (24) since the valve (9) is closed. After the mold cavity (23) is filled, the valve (9) connected to the extra mold cavity (24) is opened. As the outer surfaces of the molten plastic filling the mold cavity (23) starts cooling, a pressurized fluid, preferably water is injected through the injector (7). On one hand the pressurized fluid accelerates the cooling of the melt, on the other hand it pushes the hot and liquid material in the core out of the mold cavity (23). The displaced plastic material fills in the extra mold cavity (24). In this process, the molten core can also be expelled by injecting a projectile instead of pressurized fluid.
In order to prevent undesired deformations during the replacement of the sliders (25, 26), the pressure inside the preform (2) which is not entirely cold and stiff yet is equalized to the atmospheric pressure before any replacement of the sliders (25, 26).
After the corrugated slider set (26) is attached, the pressurized fluid is once again supplied into the preform (2). The plastic material which is still in half-molten state is blown by the pressure to stick to the bellows shaped walls of the slider (26) so that it takes the intended bellows form (3).
The bellows portion (3) is obtained by means of the troughs and ridges (31, 32) formed at both the inner and outer surfaces of the pipe (1) by means of the blowing method with pressurized fluid applied in the second stage of the method. The outer diameter (d2) of the bellows portion (3) is larger than the outer diameter (d1) of the smooth tubular portion (4). By leaving a space (6) between the corrugated slider set (26) and the preform (2), the bellows portion (3) is inflated, and while its outer diameter (d2) increases, its wall thickness (t2) decreases. Thus, the bellows portion (3) the walls of which are thinner with respect to the walls of the smooth tubular portion (4) gives the desired elasticity to the pipe (1). The said difference of wall thicknesses may change in accordance with the volume of the space (6) between the slider set (26) and the preform (2). Moreover, the slider sets (25, 26) can be heated or cooled in order to obtain a much better bellows form (3).
The replacement of the sliders (25, 26) between the first stage and the second stage of the method is not limited to the displacement and replacement of the first and second slider sets (25, 26).
The slider (25, 26) replacement operations performed in the said inflation method realized by using fluid/projectile technologies can be diversified beyond the examples given herein. For example, each of the smooth and figured slider sets (25, 26) can be composed of three or more pieces instead of two halves. Alternatively, a bellows form (3) covering a certain angle can be formed on the pipe (1) instead of an all-around, 360° form. In this case, rather than using slider sets (25, 26), a single movable smooth slider and a single movable corrugated slider can be used at the region where the figure will be formed.
The disclosed method used for manufacturing bellows pipes can also be used for manufacturing a variable diameter pipe with a substantially uniform wall thickness distribution. As is known, the thinnest wall thickness that can be obtained by the pressurized fluid injection technologies proportionately changes with the outer diameter of the pipe. For this reason, a pipe manufactured with the pressurized fluid injection technologies must have different wall thicknesses at different diameter sections. Thus, s pipe (1″) depicted in
Besides variations in diameters, it is frequently encountered, especially in automotive fluid lines, that the pipe cross-section is not circular at certain regions. In the above-mentioned conventional pressurized fluid injection technologies, the hollow section emptied by the pressurized fluid cannot follow the changing outer cross-section of the pipe due to the nature of the process. For this reason, for example although the pipe starting with a circular cross-section becomes elliptic at its middle portion, the inner volume emptied by the fluid maintains its circular structure. As a result of this, wall thickness of the pipe gets dangerously narrow along the long side of the elliptic cross-section, while being improperly thicker along the short side. By means of the manufacturing method of the present invention, pipes of this type having a cross-section varying regionally can also be manufactured in a single process with relatively uniform wall thickness distribution.
In the second stage of the method, the preform (2) is blown towards the walls of the slider (25′) by means of the pressurize fluid, but this time, a smooth but larger diameter section (4′) is formed on the pipe (1′) instead of a bellows portion (3).
Even if the final wall thickness of the large diameter smooth portion (4′) is thinner with respect to the rest of the pipe (1′), this difference is much smaller than the wall thickness difference than can be obtained with the state of the art methods. In this manner, manufacturing of a pipe with changing cross-section but uniform wall thickness is made possible by means of fluid injection techniques. Similarly, in order to diversify pipe forms that can be obtained by means of the method of the present invention, sliders in different forms other than corrugated or smooth can be used. Moreover, the number of the slider sets, the number of the sliders in the sets, the positions and angles of the sliders with respect to each other and to the mold, and the shapes and the inner wall forms of the sliders can also be altered according to the characteristics of the pipe to be manufactured and the manufacturing resources.
Alternatively, the manufacturing method of the present invention can also be used for manufacturing products with smaller or larger wall thicknesses at the region where the cross-section is different.
The method of the present invention can be used for shaping polypropylene (PP), polyethylene (PE) or similar polyolefins or engineering plastics such as polybutylene terephthalate (PBT), thermoplastic elastomer (TPE), polyphenylene sulfide (PPS) or nylon. Moreover, said method is also suitable for shaping pipes manufactured from multi-layered or successively-different materials.
The disclosed method of manufacturing enables the attachments like clips, clamps, brackets etc that are conventionally manufactured in a separate step and then joined with the pipe by a welding operation, to be manufactured together with the product in a single operation.
Number | Date | Country | Kind |
---|---|---|---|
2011/12134 | Dec 2011 | TR | national |
2012/14076 | Dec 2012 | TR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2012/002638 | 12/7/2012 | WO | 00 | 6/4/2014 |