Manufacturing method for white light source

Abstract
A manufacturing method for white light source utilizes an ultraviolet light source and suitable phosphors. One of the phosphors is directly excited by the ultraviolet light source and generates a radiation with longer wavelength. Other phosphors are excited by the radiation with longer wavelength and generate radiation with much longer wavelength. The lights generated by those phosphors are mixed to form a white light.
Description


FIELD OF THE INVENTION

[0001] The present invention relates to a manufacturing method for white light source, especially to a manufacturing method for high-brightness white light source by an ultraviolet light source and suitable phosphors directly or indirectly excited by the ultraviolet light source.



BACKGROUND OF THE INVENTION

[0002] A white light source is generally provided by mixing light source of different wavelength and the white light sensed by human vision is generally composed of light of at least two colors. For example, a conventional white light source can be realized by mixing red light, green light and blue light with suitable intensity ratio. Alternatively, the white light source can be realized by mixing yellow light and blue light with suitable intensity ratio.


[0003] The conventional white light source generally uses at least phosphors of different color to ensure color-rendering property. However, one of the prerequisites to provide high-efficiency white light source is that light from the exciting light source can be absorbed by all the phosphors. Moreover, all the phosphors have compatible absorption coefficients with respect to the light from the exciting light source. Furthermore, the quantum efficiencies of the phosphors should be compatible to facilitate light mixing.


[0004] As can be seen above description, the phosphors should be prudently chosen to have absorption band matched with the wavelength of the exciting radiation. Moreover, the phosphors should have compatible absorption coefficients and quantum efficiency to provide white light of high quality. Those requirements place a strict constrain to the materials of the phosphors.



SUMMARY OF THE INVENTION

[0005] It is the object of the present invention to provide a manufacturing method for high-brightness white light source by ultraviolet light source and suitable phosphors, wherein one phosphor is excited by the ultraviolet light source and other phosphors are excited by the light re-emitted from the phosphor excited by the ultraviolet light.


[0006] In one aspect of the present invention, the present invention provides a manufacturing method for white light source utilizing an ultraviolet light source and suitable phosphors. One of the phosphors is excited by the ultraviolet light source and generates a radiation with longer wavelength. Other phosphors are excited by the radiation with longer wavelength and generate radiation with much longer wavelength. The lights generated by those phosphors are mixed to form a white light.


[0007] In another aspect of the present invention, the present invention provides a manufacturing method for white light source utilizing an ultraviolet light source and suitable phosphors. The phosphors are directly and indirectly excited by the ultraviolet light source and the lights generated by those phosphors are mixed to form a white light. Therefore, the ultraviolet light source and the phosphors are packaged to form a white light source with low operation current.


[0008] The various objects and advantages of the present invention will be more readily understood from the following detailed description when read in conjunction with the appended drawing, in which:







BRIEF DESCRIPTION OF DRAWINGS

[0009]
FIG. 1 shows the excitation spectrum of the (Ba0.9Eu0.1)MgAl10O17 phosphor powder with reference to wavelength 488 nm.


[0010]
FIG. 2 shows the emission spectrum of the (Ba0.9Eu0.1)MgAl10O17 phosphor powder excited by a 382 nm ultraviolet light.


[0011]
FIG. 3 shows the color temperature variations of different BAM/YAG ratios radiated by a 382 nm ultraviolet light in the CIE chromaticity diagram.


[0012]
FIG. 4 shows the excitation spectrum of the (Y2.3Ce0.05Gd0.65)Al5O12 phosphor powder with reference to wavelength 600 nm.


[0013]
FIG. 5 shows the emission spectrum of the ((Y2.3Ce0.05Gd0.65)Al5O12 phosphor powder excited by a 470 nm ultraviolet light.







DETAILED DESCRIPTION OF THE INVENTION

[0014] The present invention is intended to provide a manufacturing method for white light source utilizing an ultraviolet light source and suitable phosphors. One of the phosphors is excited by the ultraviolet light source and generates a radiation with longer wavelength. Other phosphors are excited by the radiation with longer wavelength and generate radiation with much longer wavelength. The lights generated by those phosphors are mixed to form a white light. In the preferred embodiment of the present invention, two phosphors are used.


[0015] The ultraviolet light source can be realized by ultraviolet LED, electron beam or plasma.


[0016] The phosphor emits blue light upon excited by ultraviolet light can be selected from a group consisting of BaMgAl10O17:Eu; ZnS:Ag; and (Sr, Ca, Ba, Mg)10(PO4)6Cl2:Eu.


[0017] The phosphor emits yellow light upon excited by blue light can be selected from a group consisting of Y3Al5O12:Ce, Gd; ZnS:Mn; and 3Cd3(PO4)2CdCl2:Mn.


[0018] The method for preparing the phosphors used in the present invention are described below:


[0019] 1. Synthesizing a phosphor powder with formula BaMgAl10O17:Eu (denoted by BAM) such as (Ba0.9Eu0.1)MgAl10O17 by solid-state reaction or chemosynthesis method such as citrate sol gel or co-precipitation.


[0020] 2. Synthesizing a phosphor powder with formula Y3Al5O12:Ce, Gd (denoted by YAG) such as (Y2.3Ce0.05Gd0.65)Al5O12 by solid-state reaction or chemosynthesis method such as citrate sol gel or co-precipitation.


[0021] 3. Measuring the excitation spectrum of the (Ba0.9Eu0.1)MgAl10O17 phosphor powder with reference to wavelength 488 nm. As shown in FIG. 1, the (Ba0.9Eu0.1)MgAl10O17 phosphor powder can be excited by an ultraviolet light.


[0022] 4. Measuring the emission spectrum of the (Ba0.9Eu0.1)MgAl10O17 phosphor powder excited by a 382 nm ultraviolet light. As shown in FIG. 2, the (Ba0.9Eu0.1)MgAl10O17 phosphor powder emits a blue light after being excited by a 382 nm ultraviolet light. The color coordinate of the blue light is determined with reference to 1931 CIE (commission internationale del'Eclairage) chromaticity diagram and is marked by letter “A” in FIG. 3.


[0023] 5. Measuring the excitation spectrum of the (Y2.3Ce0.05Gd0.65)Al5O12 phosphor powder with reference to wavelength 600 nm. As shown in FIG. 4, the YAG phosphor powder can be excited by a blue light with wavelength 400-490 nm.


[0024] 6. Measuring the emission spectrum of the (Y2.3Ce0.05Gd0.65)Al5O12 phosphor powder excited by a 470 nm light. As shown in FIG. 5, the (Y2.3Ce0.05Gd0.65)Al5O12 phosphor powder emits a yellow light after being excited by a blue light. The color coordinate of the blue light is determined with reference to 1931 CIE chromaticity diagram and is marked by letter “B” in FIG. 3.


[0025] 7. Mixing the above BAM phosphor powder and YAG phosphor powder in different ratios (BAM/YAG=3.3, 5.0, 7.1 and 9.3, respectively) and a 382 nm ultraviolet LED is used as exciting radiation. The color temperature variations for different BAM/YAG ratios are shown in FIG. 3.


[0026] 8. Drawing a dashed straight line connecting points A and B in FIG. 3. As can be seen from FIG. 3, the dashed straight line passes a white light region in the CIE chromaticity diagram. Moreover, the color temperature variations for different BAM/YAG ratios are also located along the dashed straight line.


[0027] The above BAM phosphor powder and YAG phosphor powder can be mixed in different ratio and packaged with an ultraviolet light source as exciting radiation, thus forming a white light source such as a white light LED. The package of the white light LED can be implemented in one of the forms including lamp, SMD (surface mount device) and COB (chip on board).


[0028] To sum up, the white light source provided by the present invention has peculiar advantages over prior art white light source in following aspects:


[0029] 1. The phosphor in the present invention can be excited by light emitted from another phosphor. Therefore, the phosphors used in the present invention are not constrained to be excited by same light source. The applicability of phosphors is enhanced.


[0030] 2. The white light source can be formed by wide variety of phosphors; the color-rendering property and efficiency are enhanced.


[0031] Although the present invention has been described with reference to the preferred embodiment thereof, it will be understood that the invention is not limited to the details thereof. Various substitutions and modifications have suggested in the foregoing description, and other will occur to those of ordinary skill in the art. For example, the present invention can use phosphors directly or indirectly excited by an ultraviolet light source and mixed in suitable ratio to provide uniform and high-brightness white light source. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.


Claims
  • 1. A manufacturing method for white light source including following steps: providing an ultraviolet light source; directly exciting a first phosphor by the ultraviolet light source to generate a first emitted light; exciting a second phosphor by the first emitted light to generate a second emitted light; mixing the first phosphor and the second phosphor in suitable ratio to mix the first emitted light and the second emitted light into a white light.
  • 2. The manufacturing method for white light source as in claim 1, wherein the ultraviolet light source is one of a LED, electronic beam and plasma.
  • 3. The manufacturing method for white light source as in claim 1, wherein the first emitted light is a blue light and the second emitted light is a yellow light.
  • 4. The manufacturing method for white light source as in claim 3, wherein the first phosphor emitting blue light upon excited by ultraviolet light is selected from a group consisting of BaMgAl10O17:Eu; ZnS:Ag; and (Sr, Ca, Ba, Mg)10(PO4)6 Cl2:Eu; and the second phosphor emitting yellow light upon excited by blue light is selected from a group consisting of Y3Al5O12:Ce, Gd; ZnS:Mn; and 3Cd3(PO4)2CdCl2:Mn.
  • 5. The manufacturing method for white light source as in claim 1, wherein the phosphors are made by one of solid-state reaction and chemosynthesis method.
  • 6. The manufacturing method for white light source as in claim 1, wherein the phosphors are mixed in a predetermined ratio and packaged with an ultraviolet light source to form a white light source
  • 7. The manufacturing method for white light source as in claim 6, wherein the white light source is packaged in one of the forms including lamp, SMD (surface mount device) and COB (chip on board).