1. Field of the Invention
The present invention relates to a manufacturing method of common mode filters and a structure of the same, especially to a common mode filter that provides more stable support by a composite substrate and connects inductive coils with external electrodes by wafer scale packaging techniques for minimization of the volume. Once the common mode filters are of compact size, they can be mass-produced, the cost is reduced and the defect rated is decreased. At the same time, the connection and conduction between the inductive coils and the external electrode are more convenient and easier. The common mode filters are of higher practical value and the manufacturing method thereof is novel.
2. Description of Related Art
Due to compact design of various electronics such as mobile phones, cameras, etc. for easy carrying, electronic components are required to have compact volume, with high performance and high frequency. The manufacturing of the minimized components is difficult. As to small-sized common mode filters, as disclosed in U.S. Pat. No. 7,023,299 B2 published on Apr. 4, 2006, a thin-film common mode filter includes a pair of magnetic plates, and upper/lower coil conductors that are formed between the magnetic plates, spirally wound in the magnetic plate surface direction, and overlapped each other, and upper/lower lead conductors. One ends of the upper/lower lead conductors are connected electrically to one ends in centers of the upper/lower coil conductors respectively, and extended to external portions across these coil conductors. The other ends of the upper/lower lead conductors are connected to upper/lower lead drawing terminals respectively. And each of the lower lead/coil drawing terminals and the upper coil/lead drawing terminals has a structure in which at least two of conductor layers that are patterned into the upper/lower lead conductors and the upper/lower coil conductors are stacked and brought into conduction with each other.
Although the above common mode filter provides expected effects, it still has problems. In practice, a plurality of common mode filters are arranged in a sheet during manufacturing processes first and are cut into individuals by cutting tools. Then external electrodes are produced on outer sides of each common mode filter by silver dipping. However, a magnetic composite substrate of the common mode filter is easy to get cracked during clamping of manufacturing processes due to weak strength. And during the cutting process, the common mode filters are easy to get damaged and this results in additional cost/loss. Furthermore, the external electrodes are produced by silver dipping and are connected to leading-out terminals after cutting. For volume minimization, the relative size of the common mode filer is about 1.0 mm×0.5 mm×0.4 mm. Thus the formation of the external electrodes requires high precision techniques. Moreover, reliability of the external electrode is a problem. There is room for improvement and a need to provide a manufacturing method of common mode filters and a structure of the same having higher practical value.
Therefore it is a primary object of the present invention to provide a manufacturing method of common mode filters and a structure of the same. The common mode filter includes a composite substrate and a common mode choke layer produced by a wafer-level electrode leading out method. The composite substrate consists of a baser layer with an adhesive layer and a first magnetic material layer arranged over the adhesive layer. The base layer and the first magnetic material layer are sintered and connected by the adhesive layer. The common mode choke layer is composed of a plurality of inductive coils and a plurality of insulated layers while the inductive coil includes at least a pair of leading-out terminals located on sides thereof. Moreover, a second magnetic material layer is coated on an upper surface of the common mode choke layer. Then by partial cutting, sputtering, lithography, and electroplating at wafer level, external electrodes are formed on sides of the common mode choke layer, corresponding to the leading-out terminals. Thereby the composite substrate has more stable support. The volume of the common mode filter is minimized due to the inductive coils and external electrodes connected by wafer level packaging. Thus the common mode filter becomes compact and easy to be mass-produced. The cost is down and the rejection rate is also reduced. At the same time, the inductive coils and the external electrodes are connected by packaging techniques such as sputtering, lithography and electroplating at wafer level. The reliability problem of the electrodes produced by conventional silver plating is reduced. The common mode filter of the present invention is of higher practical value.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein:
Refer to
Refer to
The common mode choke layer 2 is composed of a plurality of inductive coils 21 and a plurality of insulated layers 22. The inductive coil 21 includes at least a pair of leading-out terminals 211.
The second magnetic material layer 3 is coated on a surface of the common mode choke layer 2 for increasing resistance of the common mode filter. The particle size of the second magnetic material layer 3 ranges from 30 μm to 80 μm while the thickness of the second magnetic material layer 3 is about 50˜150 μm. The larger the particle size of the material the second magnetic material layer 3 made from, the higher the permeability.
Moreover, refer to a cross sectional view of another embodiment of the present invention shown in
Refer to
Refer to
The groove 23 is formed on the common mode choke layer 2 by the cutting tool and then the external electrode 24 is formed in the groove 23 by sputtering, lithography, electroplating and stripping at wafer level. While performing the first cutting, the cutting tool is not easily damaged because the common mode choke layer 2 is made from resin. As to the second cutting, the cutting tool is replaced by a laser beam to cut the composite substrate 1. Thus the damages of cutting tools during manufacturing processes are minimized and the additional cost is significantly lowered.
Refer to
Refer to
In addition, the inductive coils 21 arranged between the insulated layers 22 of the common mode choke layer 2 can not only be wound into flat rectangular coils. Refer to
In summary, compared the present invention with the structure available now, the present invention makes the composite substrate have stronger support so as to minimize the size of the common mode filter. Thus the common mode filter becomes compact. Moreover, the base layer made from alumina or silicon has good surface properties, provides excellent flatness, and reduces electricity loss. The cost of the base layer is low and the base layer is easy to process. Furthermore, the external electrodes leading out processes are performed at the wafer level. Compared with conventional manufacturing way in which packaging is done after the wafer being cut into pieces, the wafer-level manufacturing processes are favored due to the compact size, reduced rejection rate, easy mass-production and cost reduction. At the same time, the connection and conduction between the inductive coils and the external electrodes are more simple and easier. Therefore the common mode filter of the present invention is of higher practical value.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, and representative devices shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalent.
Number | Date | Country | Kind |
---|---|---|---|
99134307 A | Oct 2010 | TW | national |
99221800 U | Nov 2010 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5552756 | Ushiro | Sep 1996 | A |
5616960 | Noda et al. | Apr 1997 | A |
6376912 | Seto | Apr 2002 | B1 |
6384705 | Huang et al. | May 2002 | B1 |
6713162 | Takaya et al. | Mar 2004 | B2 |
6998939 | Nakayama et al. | Feb 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20120086538 A1 | Apr 2012 | US |