MANUFACTURING METHOD OF HONEYCOMB FILTER

Abstract
A manufacturing method of a honeycomb filter includes a kneaded material preparation process, a forming process, and a firing process, wherein the cordierite forming raw material contains porous silica as an inorganic pore former, in a cumulative particle size distribution of the cordierite forming raw material, particle diameters (μm) of 10% by volume, 50% by volume, and 90% by volume of the total volume from a small diameter side, are denoted by D(a) 10, D(a) 50 and D(a) 90, respectively, and a particle diameter (μm) of 50% by volume of the total volume from the small diameter side is denoted by D(b) 50 in a cumulative particle size distribution of the organic pore former, and the cordierite forming raw material and the organic pore former satisfy given expressions.
Description

The present application is an application based on JP 2020-034886 filed on Mar. 2, 2020 with Japan Patent Office, the entire contents of which are incorporated herein by reference.


BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to a manufacturing method of a honeycomb filter. More specifically, the present invention relates to a manufacturing method that enables the manufacture of a honeycomb filter which provides high filtration efficiency and suppresses an increase in pressure loss.


Description of the Related Art

Hitherto, as a filter adapted to trap particulate matter in an exhaust gas emitted from an internal combustion engine, such as an automobile engine, there has been known a honeycomb filter that uses a honeycomb structure. The honeycomb structure has a porous partition wall composed of cordierite or the like, and a plurality of cells are defined by the partition wall. In the honeycomb filter, the foregoing honeycomb structure is provided with, for example, plugging portions that alternately plug the open ends on the inflow end face side of the plurality of cells and the open ends on the outflow end face side thereof. In the honeycomb filter, the porous partition wall functions as a filter that traps the particulate matter in an exhaust gas.


The honeycomb structure can be manufactured by adding a pore former, a binder and the like to a ceramic raw material powder to prepare a plastic kneaded material, forming the obtained kneaded material into a predetermined shape to obtain a formed body, and firing the obtained formed body (refer to, for example, Patent Documents 1 and 2). As a ceramic raw material powder, a cordierite foaming raw material or the like is known.


[Patent Document 1] JP-A-2002-326879


[Patent Document 2] JP-A-2003-238271


According to the conventional manufacturing methods of a honeycomb filter, a method has been tried, in which, at the time of manufacturing a honeycomb structure, the particle size of a cordierite forming raw material is not controlled, and hollow resin particles of a foamable resin or the like, or water-swellable particles of crosslinked starch or the like are used for pore formers. However, it has been impossible to manufacture honeycomb filters that satisfy current exhaust gas regulations by such a conventional manufacturing method.


SUMMARY OF THE INVENTION

The present invention has been made in view of the problems with the prior arts described above. The present invention provides a manufacturing method of a honeycomb filter that enables the manufacture of a honeycomb filter which provides high filtration efficiency and suppresses an increase in pressure loss.


According to the present invention, a manufacturing method of a honeycomb filter described below is provided.


(1) A manufacturing method of a honeycomb filter including:


a kneaded material preparation process for preparing a plastic kneaded material by adding an organic pore former and a dispersing medium to a cordierite forming raw material;


a forming process for forming the obtained kneaded material into a honeycomb shape to produce a honeycomb formed body; and


a firing process for firing the obtained honeycomb formed body to obtain a honeycomb filter,


wherein the cordierite forming raw material contains porous silica as an inorganic pore former,


in a cumulative particle size distribution of the cordierite forming raw material based on volume by a laser diffraction/scattering type particle size distribution measurement method, a particle diameter (μm) of 10% by volume of a total volume from a small diameter side is denoted by D(a) 10, a particle diameter (μm) of 50% by volume of the total volume from a small diameter side is denoted by D(a) 50, and a particle diameter (μm) of 90% by volume of the total volume from a small diameter side is denoted by D(a) 90, and


a particle diameter (μm) of 50% by volume of the total volume from the small diameter side is denoted by D(b) 50 in a cumulative particle size distribution of the organic pore former based on volume by the laser diffraction/scattering type particle size distribution measurement method, and


the cordierite forming raw material and the organic pore former that satisfy relationships of expression (1) given below and expression (2) given below are used:






D
(a) 50/(D(a) 90−D(a) 10)≥0.50   Expression (1):





|log10 D(a) 50−log10 D(b) 50|≤0.50   Expression (2):


(2) The manufacturing method of a honeycomb filter according to the foregoing (1), wherein the cordierite foaming raw material contains 5 to 17 parts by mass of the porous silica in 100 parts by mass of the cordierite forming raw material.


(3) The manufacturing method of a honeycomb filter according to the foregoing (1) or (2), wherein 0.5 to 5 parts by mass of the organic pore former is added to 100 parts by mass of the cordierite forming raw material in the kneaded material preparation process.


(4) The manufacturing method of a honeycomb filter according to any one of the foregoing (1) to (3), wherein D(a) 50 of the cordierite forming raw material is 5 to 10 μm.


(5) The manufacturing method of a honeycomb filter according to any one of the foregoing (1) to (4), wherein D(b) 50 of the organic pore former is 5 to 30 μm.


(6) The manufacturing method of a honeycomb filter according to any one of the foregoing (1) to (5), wherein, in a cumulative particle size distribution of the porous silica based on volume by the laser diffraction/scattering type particle size distribution measurement method, a particle diameter (μm) of 50% by volume of the total volume from the small diameter side is denoted by D(c) 50, and the D(c) 50 of the porous silica is 3 to 30 μm.


(7) The manufacturing method of a honeycomb filter according to any one of the foregoing (1) to (6), wherein a BET specific surface area of the porous silica measured according to JIS-R1626 is 200 to 400 m2/g.


The manufacturing method of a honeycomb filter in accordance with the present invention makes it possible to manufacture a honeycomb filter that provides high filtration efficiency and suppresses an increase in pressure loss.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view schematically showing a honeycomb filter manufactured by an embodiment of the manufacturing method of a honeycomb filter in accordance with the present invention, viewed from an inflow end face side;



FIG. 2 is a plan view of the honeycomb filter shown in FIG. 1, viewed from the inflow end face side; and



FIG. 3 is a sectional view schematically showing a section A-A′ of FIG. 2.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following will describe embodiments of the present invention; however, the present invention is not limited to the following embodiments. Therefore, it should be understood that those created by adding changes, improvements or the like to the following embodiments, as appropriate, on the basis of the common knowledge of one skilled in the art without departing from the spirit of the present invention are also covered by the scope of the present invention.


(1) Manufacturing Method of a Honeycomb Filter


An embodiment of the manufacturing method of a honeycomb filter in accordance with the present invention is a manufacturing method for manufacturing a honeycomb filter 100 as shown in FIG. 1 to FIG. 3. The honeycomb filter 100 shown in FIG. 1 to FIG. 3 includes a honeycomb structure body 4 and plugging portions 5. The honeycomb structure body 4 is a pillar-shaped structure having a porous partition wall 1 disposed so as to surround a plurality of cells 2 that serve as fluid through channels extending from a first end face 11 to a second end face 12. The honeycomb structure body 4 further has a circumferential wall 3 provided on the circumferential side face in such a manner as to encompass the partition wall 1. The plugging portions 5 are provided at open ends on the first end face 11 side or the second end face 12 side of each of the cells 2. In FIG. 1 to FIG. 3, reference numeral 2a denotes an inflow cell, and reference numeral 2b denotes an outflow cell.


The manufacturing method of a honeycomb filter of the present embodiment includes a kneaded material preparation process, a forming process, and a firing process. The kneaded material preparation process is a process for preparing a plastic kneaded material by adding an organic pore former and a dispersing medium to a cordierite forming raw material. The forming process is a process for forming the kneaded material, which has been obtained by the kneaded material preparation process, into a honeycomb shape to produce a honeycomb formed body. The firing process is a process for firing the honeycomb formed body, which has been obtained by the forming process, to obtain a honeycomb filter. According to the manufacturing method of a honeycomb filter of the present embodiment, the kneaded material preparation process constitutes an especially major part. The following will describe in more detail each process in the manufacturing method of the honeycomb filter.


(1-1) Kneaded Material Preparation Process


In the kneaded material preparation process, first, the cordierite forming raw material, the organic pore former, and the dispersing medium, which are the raw materials of the kneaded material, are prepared. The “cordierite forming raw material” is a ceramic raw material blended so as to have a chemical composition in which silica is in the range of 42 to 56% by mass, alumina is in the range of 30 to 45% by mass, and magnesia is in the range of 12 to 16% by mass, and the ceramic raw material is fired to become cordierite.


In the kneaded material preparation process, a cordierite forming raw material that contains porous silica is used. The porous silica is a silicon source of a silica composition in the cordierite forming raw material, and functions also as an inorganic pore former. The porous silica preferably has a BET specific surface area of 100 to 500 m2/g, and more preferably 200 to 400 m2/g, as measured according to, for example, JIS-R1626.


For the cordierite forming raw material, in addition to the foregoing porous silica, a plurality of types of raw materials that become a magnesium source, a silicon source, and an aluminum source can be mixed and used so as to have a chemical composition of cordierite. Examples of the cordierite forming raw material include talc, kaolin, alumina, aluminum hydroxide, boehmite, crystalline silica, fused silica, and dickite.


In the kneaded material preparation process, a cordierite forming raw material having the particle size thereof adjusted as described below is used. In the cumulative particle size distribution of the cordierite forming raw material based on volume, a particle diameter of 10% by volume of the total volume from a small diameter side is denoted by D(a) 10, a particle diameter of 50% by volume of the total volume from a small diameter side is denoted by D(a) 50, and a particle diameter of 90% by volume of the total volume from a small diameter side is denoted by D(a) 90. The unit of each of D(a) 10, D(a) 50, and D(a) 90 is “μm.” The cumulative particle size distribution of the cordierite forming raw material is to be based on values measured by a laser diffraction/scattering type particle size distribution measurement method. In the kneaded material preparation step, a cordierite forming raw material that satisfies the relationship of the following expression (1) is used.






D
(a) 50/(D(a) 90−D(a) 10)≥0.50   Expression (1):





|log10 D(a) 50−log10 D(b) 50|≤0.50   Expression (2):


Further, in the kneaded material preparation process, an organic pore former having the particle size thereof adjusted as described below is used. In the cumulative particle size distribution of the organic pore former based on volume, a particle diameter of 50% by volume of the total volume from the small diameter side is denoted by D(b) 50. The unit of D(b) 50 is “μm.” The cumulative particle size distribution of the organic pore former is also to be based on values measured by the laser diffraction/scattering type particle size distribution measurement method. In the kneaded material preparation process, a cordierite forming raw material and an organic pore former that satisfy the relationship of expression (2) given above are used. In expression (2), “log10 D(a) 50” and “log10 D(b) 50” denote logarithms with base 10. The left side of expression (2) indicates an absolute value of a difference between “log10 D(a) 50” and “log10 D(b) 50.” Hereinafter, unless otherwise specified, the unit of the particle diameters of raw materials used in the kneaded material preparation process will be “μm.” Further, in various types of raw materials used as raw materials, when simply referring to “D50,” it means a particle diameter (μm) of 50% by volume of a total volume from the small diameter side in the cumulative particle size distribution of the raw material. In other words, “D50” means a median diameter.


A honeycomb filter that provides high filtration efficiency and suppresses an increase in pressure loss can be manufactured by manufacturing a honeycomb filter by using the kneaded material prepared using the cordierite forming raw material and the organic pore former that satisfy the relationships of expression (1) and expression (2) described above.


The organic pore former is a pore former that contains carbon as a raw material, any such pore former may be used insofar as it has a property of being dispersed and lost by firing in the firing process described later. There is no particular restriction on the material of the organic pore former insofar as the particle size thereof satisfies the relationship in the foregoing expression (2), examples including a polymer compound such as a water absorbable polymer, starch, or foamable resin, or polymethyl methacrylate (PMMA), coke and the like. The organic pore formers include not only pore formers made mainly of organic substances but also pore formers such as charcoal, coal, and coke, which are dispersed and lost by firing.


The particle size of the cordierite forming raw material can be determined by individually measuring the cumulative particle size distribution of each raw material used as the cordierite forming raw material, and then weighting and averaging from the blending ratio of each raw material using the measurement result of the cumulative particle size distribution of each raw material. More specifically, if a cordierite forming raw material is composed of talc, kaolin, alumina, aluminum hydroxide, and porous silica, then first, for each raw material, D(a) 10, D(a) 50, and D(a) 90 are measured. Then, D(a) 10, D(a) 50, and D(a) 90 of the cordierite forming raw material can be determined by weighting and averaging from the blending ratio of each raw material. The cumulative particle size distribution of each raw material is to be based on the values measured by the laser diffraction/scattering method. For example, the cumulative particle size distribution of each raw material can be measured using a laser diffraction/scattering type particle diameter distribution measurement device (trade name: LA-960) manufactured by HORIBA, Ltd.


The particle size of an organic pore former can also be measured using the foregoing measurement device. If an organic pore former is composed of one type, then D(b) 50 can be determined from measured cumulative particle size distribution. If an organic pore former is composed of two or more types, then D(b) 50 can be determined by weighting and averaging from the blending ratio according to the same method as with a cordierite forming raw material.


There is no particular restriction on a specific D(a) 50 of a cordierite forming raw material, but D(a) 50 is preferably, for example, 1 to 50 μm, more preferably 3 to 30 μm, even more preferably 3 to 26 μm, and particularly preferably 5 to 10 μm. If the D(a) 50 of a cordierite forming raw material is in the foregoing numerical range, then the filtration efficiency is advantageously improved.


There is no particular restriction on the specific D(b) 50 of an organic pore former, but the D(b) 50 is, for example, preferably 5 to 100 μm, more preferably 10 to 50 μm and particularly preferably 10 to 30 μm. If the D(b) 50 of an organic pore former is in the foregoing numerical range, then the filtration efficiency is advantageously improved.


The theoretical upper limit value of “D(a) 50/(D(a) 90−D(a) 10)” of the left side in expression (1) is below 1.00. The substantial upper limit value of the left side in expression (1) is preferably, for example, 0.90 and more preferably 0.80.


There is no particular restriction on the lower limit value of “|log10 D(a) 50−log10 D(b) 50|” of the left side in expression (2). If “log10 D(a) 50” and “log10 D(b) 50” indicate the same value, then the value of the left side in expression (2) will be “0.”


There is no particular restriction on the particle diameters of the porous silica. In the cumulative particle size distribution based on volume of the porous silica by the laser diffraction/scattering type particle size distribution measurement method, if the particle diameter (μm) of 50% by volume of the total volume from the small diameter side is denoted by D(c) 50, then the D(c) 50 of the porous silica is preferably 1 to 50 μm and more preferably 3 to 30 μm.


The cordierite forming raw material preferably contains 5 to 17 parts by mass, and more preferably 8 to 15 parts by mass of porous silica in 100 parts by mass of the cordierite forming raw material. If the content ratio of the porous silica is below 5 parts by mass, then the effect of pore forming may undesirably become difficult to be exhibited. If the content ratio of the porous silica exceeds 17 parts by mass, then the thermal expansion coefficient of cordierite increases, which is not desirable in terms of thermal shock resistance.


There is no particular restriction on the addition amount of an organic pore former, and the addition amount can be determined as appropriate according to the porosity or the like of the partition wall of a honeycomb filter to be manufactured. For example, the addition amount of an organic pore former is preferably 0.5 to 5 parts by mass and more preferably 1 to 4 parts by mass for 100 parts by mass of a cordierite forming raw material.


In the kneaded material preparation process, a dispersing medium is added to the cordierite forming raw material and the organic pore former, the particle sizes of which have been adjusted as described above, and then the mixture is blended and kneaded thereby to prepare the kneaded material. The dispersing medium may be, for example, water. When preparing the kneaded material, a binder, a surfactant and the like may be further added.


Examples of the binder include hydroxypropylmethyl cellulose, methyl cellulose, hydroxyethyl cellulose, carboxylmethyl cellulose, polyvinyl alcohol and the like. These may be used by one type alone, or may be used in combination of two or more types. As the surfactant, for example, dextrin, fatty acid soap, polyether polyol, and the like can be used. These may be used alone or in combination of two or more.


There is no particular restriction on the method of preparing the kneaded material by blending and kneading a cordierite forming raw material and the like, and examples thereof include a method of blending and kneading by a kneader, a vacuum pugmill or the like.


(1-2) Forming Process


In the forming process, the kneaded material obtained in the kneaded material preparation process is formed into a honeycomb shape to produce a honeycomb formed body. There is no particular restriction on the forming method used for forming the kneaded material into a honeycomb shape, and examples thereof include conventionally known forming methods such as extrusion, injection molding, and press molding. Among these forming methods, a method of extruding the kneaded material prepared as described above by using a die corresponding to a desired cell shape, a partition wall thickness, and a cell density can be mentioned as a preferred example. The honeycomb formed body is preferably formed such that the thickness of the partition wall after the honeycomb formed body is fired ranges, for example, from 152 to 305 μm. A thickness of the partition wall below 152 μm is undesirable in terms of strength. A thickness of the partition wall exceeding 305 μm is undesirable in terms of pressure loss.


The honeycomb formed body obtained by the forming process is a pillar-shaped formed body that has a partition wall disposed to surround a plurality of cells that extend from the first end face to the second end face. The honeycomb formed body is fired so as to become the honeycomb structure body 4 in the honeycomb filter 100 shown in FIG. 1 to FIG. 3.


The obtained honeycomb formed body may be dried to obtain a honeycomb dried body from the honeycomb formed body. There is no particular restriction on the drying method, and examples thereof include hot air drying, microwave drying, dielectric drying, reduced-pressure drying, vacuum drying, and freeze drying, and among these, dielectric drying, microwave drying, and hot air drying are preferably performed alone or in combination.


In the forming process, the plugging portions are preferably formed by plugging the open ends of the cells of the honeycomb formed body. The plugging portions can be formed according to a conventional publicly known honeycomb filter manufacturing method. For example, as the method for forming the plugging portions, the following method can be mentioned. First, water and a binder or the like are added to a ceramic raw material to prepare a slurry plugging material. As the ceramic raw material, for example, the cordierite forming raw material or the like used to manufacture the honeycomb formed body can be used. Then, the plugging material is filled into the open ends of predetermined cells from the first end face side of the honeycomb formed body. When filling the plugging material into the open ends of the predetermined cells, preferably, for example, the first end face of the honeycomb formed body is provided with a mask to close the open ends of the remaining cells other than the predetermined cells, and the plugging material is selectively filled into the open ends of the predetermined cells. At this time, the slurry plugging material may be stored in a storage container, and the first end face side of the honeycomb formed body provided with the mask may be immersed in the storage container to fill the plugging material. Then, the plugging material is filled into the open ends of the remaining cells other than the predetermined cells from the second end face side of the honeycomb formed body. As the method for filling the plugging material, the same method as that for the predetermined cells described above can be used. The plugging portions may be formed before drying the honeycomb formed body or after drying the honeycomb formed body.


(1-3) Firing Process


The firing process is a process for firing the honeycomb formed body obtained in the forming process thereby to obtain a honeycomb filter. The temperature of a firing atmosphere for firing a honeycomb formed body is preferably, for example, 1300 to 1450° C., and more preferably 1400 to 1450° C. Further, the firing time is preferably set to 2 to 8 hours as the time for keeping a maximum temperature.


There is no particular restriction on the specific method of firing a honeycomb formed body, and a firing method in a conventional publicly known honeycomb filter manufacturing method can be applied. For example, the firing method can be implemented using an existing continuous firing furnace (e.g., tunnel kiln) or a batch firing furnace (e.g., shuttle kiln), which is provided with a charge port at one end and a discharge port at the other end of a firing path.


(1-4) Honeycomb Filter


A honeycomb filter manufactured by the manufacturing method of a honeycomb filter according to the present embodiment will now be described with reference to FIG. 1 to FIG. 3. The honeycomb filter 100 shown in FIG. 1 to FIG. 3 includes the honeycomb structure body 4 and the plugging portions 5. The honeycomb structure body 4 is a pillar-shaped structure having the porous partition wall 1 disposed in such a manner as to surround the plurality of cells 2 that serve as fluid through channels extending from the first end face 11 to the second end face 12. The plugging portions 5 are provided at the open end of the first end face 11 side or the second end face 12 side of each of the cells 2.


In the honeycomb filter 100, the thickness of the partition wall 1 is preferably 152 to 305 μm, and more preferably 203 to 254 μm. A thickness of the partition wall 1 that is below 152 μm is not desirable in respect of strength. A thickness of the partition wall 1 that exceeds 305 μm is not desirable in terms of pressure loss.


The cell density of the honeycomb structure body 4 is preferably, for example, 23 to 62 cells/cm2, and more preferably 27 to 47 cells/cm2.


The porosity of the partition wall 1 of the honeycomb structure body 4 is preferably, for example, 45 to 70%, more preferably 55 to 65%. The porosity of the partition wall 1 is based on a value measured by the mercury press-in method, and can be measured using, for example, Autopore IV (trade name) manufactured by Micromeritics. To measure the porosity, a part of the partition wall 1 is cut out as a test piece from the honeycomb filter 100, and the obtained test piece can be used for the measurement.


The average pore diameter of the partition wall 1 of the honeycomb structure body 4 is preferably, for example, 5 to 20 μm, and more preferably 5 to 15 μm. The average pore diameter of the partition wall 1 is based on values measured by the mercury press-in method, and can be measured using, for example, Autopore IV (trade name) manufactured by Micromeritics.


The following will describe in more detail the present invention by examples, but the present invention is not at all limited by the examples.


EXAMPLE 1

For the cordierite forming raw material, talc, kaolin, alumina, aluminum hydroxide, and porous silica were prepared. Then, the cumulative particle size distribution of each raw material was measured using the laser diffraction/scattering type particle diameter distribution measurement device (trade name: LA-960) manufactured by HORIBA, Ltd. In Example 1, the raw materials were blended to prepare the cordierite forming raw materials such that the blending ratios (parts by mass) of the raw materials exhibited the values shown in Table 1. In Table 1, the horizontal row of “Particle size D50 (μm)” shows the particle diameter of 50% by volume (i.e., a median diameter) of each raw material. Porous silica having a BET specific surface area of 200 to 400 m2/g measured in accordance with JIS-R1626 was used.


Next, 1.5 parts by mass of a water absorbable polymer as an organic pore former, 6.0 parts by mass of a binder, 1 part by mass of a surfactant, and 57 parts by mass of water were added to 100 parts by mass of a cordierite forming raw material to prepare a kneaded material. As the water absorbable polymer, a water absorbable polymer, the particle diameter of 50% by volume of which was 10 μm, was used. Table 2 shows the blending ratio (parts by mass) of the organic pore formers and other raw materials. In Table 2, the horizontal row of “Particle size D50 (μm)” shows the particle diameter (i.e., the median diameter) of 50% by volume of the organic pore formers. Further, the blending ratio (parts by mass) shown in Table 2 shows the ratio with respect to 100 parts by mass of the cordierite forming raw material.


From the measurement results of the cumulative particle size distribution of each raw material used as the cordierite forming raw material, D(a) 10, D(a) 50, and D(a) 90 as the cordierite forming raw material were calculated. The results are shown in Table 3. The calculation of D(a) 10, D(a) 50, and D(a) 90 was performed by weighting and averaging the blending ratio of each raw material. Further, the values of D(b) 50 of the organic pore formers are shown in Table 3. From the values shown in Table 3, the values of the left sides of expression (1) and expression (2) described above were calculated. The results are shown in Table 3. In Table 3, the column of “Value of expression (1)” shows the values of “D(a) 50/D(a) 90−D(a) 10,” and the column of “Value of expression (2)” shows the values of “|log10 D(a) 50−log10 D(b) 50|.”











TABLE 1









Blending ratio (parts by mass) of cordierite forming raw material











Aluminium
Fused















Talc
Kaolin
Alumina
hydroxide
silica
Porous silica
























Particle size
10
20
 5
 5
 6
 3
25
 5
10
13
14
20
26


D50 (μm)


Example 1
40

19
14

15


12






Example 2
40

19
14

15

12







Example 3
40

19
14

15



12





Example 4
40

19
14

15



12





Example 5
40

 8
17

18


17






Example 6
40

19

14
15




12




Example 7
40

19

14
15



12





Example 8
20
20
19

14
15





12



Comparative
20
20
19

14
15
12








Example 1


Comparative
40

19

14
15
12








Example 2


Comparative
40

19
14

15





12



Example 3


Comparative
40

19
14

15

12







Example 4


Comparative

40
19

14
15






12


Example 5


Comparative
20
20
19

14
15





12



Example 6


Comparative
40

19

14
15





12



Example 7



















TABLE 2









Blending ratio (parts by mass)
Blending ratio (parts by mass)



of organic pore former
of other raw materials












Material
Water absorbable polymer
Coke
Binder
Surfactant
Water

















Particle size
10  
25  
30  
15  





D50 (μm)


Example 1
1.5



6.0
1
57


Example 2
4.0



6.0
1
72


Example 3
1.5



6.0
1
57


Example 4
3.0



6.0
1
77


Example 5
0.5



6.0
1
55


Example 6

3.0


6.0
1
77


Example 7

3.0


6.0
1
77


Example 8

3.0


6.0
1
77


Comparative


1.0

6.0
1
32


Example 1


Comparative



3.0
6.0
1
32


Example 2


Comparative
1.5



6.0
1
57


Example 3


Comparative

4.0


6.0
1
72


Example 4


Comparative


3.0

6.0
1
77


Example 5


Comparative


3.0

6.0
1
77


Example 6


Comparative


3.0

6.0
1
77


Example 7




















TABLE 3









Cordierite forming raw material
Organic


















Value of
pore former
Value of



D(a)10
D(a)50
D(a)90
Expression (1)
D(b)50
Expression (2)



(μm)
(μm)
(μm)

(*1)

(μm)

(*2)


















Example 1
2.7
7.7
15.4
0.61
10.0
0.12


Example 2
2.5
6.3
14.9
0.51
10.0
0.20


Example 3
2.7
7.9
16.8
0.56
10.0
0.10


Example 4
2.7
7.9
16.8
0.56
10.0
0.10


Example 5
2.9
7.7
14.9
0.64
10.0
0.11


Example 6
2.8
8.1
17.2
0.56
25.0
0.49


Example 7
2.7
7.9
16.8
0.56
25.0
0.50


Example 8
2.8
8.1
19.1
0.50
25.0
0.49


Comparative
2.7
9.2
29.1
0.35
30.0
0.51


Example 1


Comparative
2.8
8.2
21.8
0.43
15.0
0.26


Example 2


Comparative
2.7
8.0
19.7
0.47
10.0
0.10


Example 3


Comparative
2.5
6.3
14.9
0.51
25.0
0.60


Example 4


Comparative
2.7
10.8
34.9
0.33
30.0
0.44


Example 5


Comparative
2.8
8.1
19.1
0.50
30.0
0.57


Example 6


Comparative
2.8
8.3
22.1
0.43
30.0
0.56


Example 7






(*1) Value of Expression (1) denotes “D(a) 50/(D(a) 90 − D(a) 10)”




(*2) Value of Expression (2) denotes “| log10 D(a) 50 − log10 D(b) 50 |”







Next, the obtained kneaded material was molded using a continuous extrusion molding machine to manufacture a honeycomb formed body. Next, plugging portions were formed on the obtained honeycomb formed body. First, a mask was applied to the first end face of the honeycomb formed body so as to close the open ends of the remaining cells other than the predetermined cells. Next, the masked end portion (the end portion on the first end face side) was immersed in a slurry plugging material to fill the open ends of the predetermined cells, which were not masked, with the plugging material. Thereafter, a mask was applied to the second end face of the honeycomb formed body so as to close the open ends of the predetermined cells, and the open ends of the remaining cells other than the predetermined cells were filled with the plugging material in the same manner as described above.


Next, the honeycomb formed body with the plugging portions formed therein was fired such that the maximum temperature was 1420° C., thereby manufacturing the honeycomb filter.


The honeycomb filter manufactured by the manufacturing method of Example 1 had an end face diameter of 132 mm and a length of 102 mm in the extending direction of the cells. The cell shape in the cross section orthogonal to the extending direction of the cells was quadrangular. The partition wall thickness of the honeycomb filter was 203 μm, and the cell density was 31.0 cells/cm2. Table 4 shows the partition wall thickness (μm) and the cell density (cells/cm2) of the honeycomb filter. Hereinafter, a honeycomb filter manufactured by the manufacturing method of Example 1 may be referred to simply as “the honeycomb filter of Example 1.”


Further, on the honeycomb filter of Example 1, the porosity and the average pore diameter of the partition wall were measured. The results are shown in Table 4. The porosity and the average pore diameter were measured using Autopore IV (trade name) manufactured by Micromeritics. A part of the partition wall was cut out from the honeycomb filter to obtain a test piece, and the porosity was measured using the obtained test piece. The test piece was a rectangular parallelepiped having a length, a width, and a height of approximately 10 mm, approximately 10 mm, and approximately 20 mm, respectively. The sampling location of the test piece was set in the vicinity of the center of the honeycomb structure body in the axial direction. When determining the porosity and the average pore diameter, the true density of cordierite was set to 2.52 g/cm3.


On the honeycomb filter of Example 1, the filtration efficiency and the pressure loss were evaluated according to the method described below. Further, based on the evaluation results of the filtration efficiency and the pressure loss, comprehensive evaluation was performed on the basis of the evaluation standard described below. The results are shown in Table 4.


(Filtration Efficiency)


First, exhaust gas purification devices were fabricated by using the honeycomb filters of the examples and the comparative examples as the filters for purifying exhaust gas. Then, each of the fabricated exhaust gas purification devices was connected to an outlet side of an engine exhaust manifold of a 1.2 L direct injection type gasoline engine vehicle, and the number of soot particles contained in the gas emitted from the outlet port of the exhaust gas purification device was measured by a PN measurement method. As for the driving mode, a driving mode (RTS95) that simulates the worst of RDE driving was implemented. The total number of soot particles emitted after the driving in the mode was taken as the number of soot particles of the exhaust gas purification device to be evaluated, and the filtration efficiency (%) was calculated from the number of soot particles. Based on the value of the calculated filtration efficiency (%), the evaluation was performed according to the following evaluation standard.


(Evaluation Standard)


Evaluation “Excellent”: The filtration efficiency is 90% or more and 100% or less.


Evaluation “Good”: The filtration efficiency is 85% or more and below 90%.


Evaluation “Acceptable”: The filtration efficiency is 80% or more and below 85%.


Evaluation “Fail”: The filtration efficiency is below 80%.


(Pressure Loss)


The pressure loss (kPa) of each of the honeycomb filters was measured using a large wind tunnel tester. The measurement conditions for the pressure loss were a gas temperature of 25° C. and a gas flow rate of 10 Nm3/min. Based on the measured pressure loss (kPa) values, the evaluation of Examples 1 to 5 and Comparative Examples 1 to 4 was performed according to the following evaluation standard (1). Further, the evaluation of Examples 6 to 8 and Comparative Examples 5 to 7 was performed according to the following evaluation standard (2).


(Evaluation Standard (1))


Evaluation “Excellent”: The pressure loss is 3.0 kPa or less.


Evaluation “Good”: The pressure loss exceeds 3.0 kPa and is 3.6 kPa or less.


Evaluation “Acceptable”: The pressure loss exceeds 3.6 kPa and is 4.2 kPa or less.


Evaluation “Fail”: The pressure loss exceeds 4.2 kPa.


(Evaluation Standard (2))


Evaluation “Excellent”: The pressure loss is 6.6 kPa or less.


Evaluation “Good”: The pressure loss exceeds 6.6 kPa and is 7.4 kPa or less.


Evaluation “Acceptable”: The pressure loss exceeds 7.4 kPa and is 8.2 kPa or less.


Evaluation “Fail”: The pressure loss exceeds 8.2 kPa.


(Comprehensive Evaluation)


Evaluation “Excellent”: The evaluation results of both filtration efficiency and pressure loss are “Excellent.”


Evaluation “Good”: The evaluation results of both filtration efficiency and pressure loss are “Good” or higher, or the evaluation result of one of the filtration efficiency and the pressure loss is “Excellent” and the other is “Acceptable” (except a case where the comprehensive evaluation is “Excellent”).


Evaluation “Acceptable”: The evaluation results of both filtration efficiency and pressure loss are “Acceptable” or higher (except a case where the comprehensive evaluations are “Excellent” and “Good”).


Evaluation “Fail”: The evaluation results of the filtration efficiency and the pressure loss include “Fail.”











TABLE 4









Results related to characteristics











Structure
Characteristics of













Partition

pore













wall

Average
Evaluation item















thickness
Cell density
Porosity
pore dia.
Filtration
Pressure
Comprehensive



(μm)
(cells/cm2)
(%)
(μm)
efficiency
loss
Evaluation


















Example 1
203
31.0
57.0
6.4
Excellent
Good
Good


Example 2
229
31.0
60.1
6.8
Excellent
Good
Good


Example 3
203
31.0
56.9
7.9
Excellent
Excellent
Excellent


Example 4
203
31.0
61.1
8.2
Good
Good
Good


Example 5
229
27.0
55.5
6.0
Excellent
Acceptable
Good


Example 6
305
46.5
64.2
11.6
Good
Good
Good


Example 7
305
46.5
63.1
10.2
Excellent
Good
Good


Example 8
305
46.5
64.6
13.6
Good
Good
Good


Comparative
229
31.0
48.3
12.8
Fail
Acceptable
Fail


Example 1


Comparative
254
31.0
55.6
12.8
Fail
Acceptable
Fail


Example 2


Comparative
203
31.0
53.1
7.8
Excellent
Fail
Fail


Example 3


Comparative
203
31.0
62.4
10.8
Good
Acceptable
Acceptable


Example 4


Comparative
203
46.5
63.4
18.4
Fail
Good
Fail


Example 5


Comparative
203
46.5
63.1
16.8
Fail
Good
Fail


Example 6


Comparative
203
46.5
63.4
15.1
Acceptable
Good
Acceptable


Example 7









EXAMPLE 2 TO 8

In Examples 2 to 8, the blending ratios (parts by mass) of the raw materials used for the cordierite forming raw material were changed as shown in Table 1. In addition, the blending ratios (parts by mass) of the organic pore former and other raw materials were also changed as shown in Table 2. Except that these raw materials were used to prepare the kneaded material, the honeycomb filters were manufactured by the same method as that of Example 1.


COMPARATIVE EXAMPLES 1 TO 7

In Comparative Examples 1 to 7, the blending ratios (parts by mass) of the raw materials used for the cordierite forming raw material were changed as shown in Table 1. In addition, the blending ratios (parts by mass) of the organic pore former and other raw materials were also changed as shown in Table 2. Except that these raw materials were used to prepare the kneaded material, the honeycomb filters were manufactured by the same method as that of Example 1. In Comparative Example 2, instead of the water absorbable polymer as the organic pore former, coke having a particle size D50 of 15 μm was used as a pore former. In Table 2, the column of “organic pore former” shows the blending ratio (parts by mass) of the coke as the pore former.


On the honeycomb filters manufactured by the manufacturing methods of Examples 2 to 8 and Comparative Examples 1 to 7, the filtration efficiency and the pressure loss were evaluated by the same method as that of Example 1. Further, based on the evaluation results of the filtration efficiency and the pressure loss, the comprehensive evaluation was performed according to the foregoing evaluation standard. The results are shown in Table 4.


RESULTS

The evaluation results of the filtration efficiency and the pressure loss of the honeycomb filters manufactured by the manufacturing methods of Examples 1 to 8 were both “Acceptable” or higher, and the comprehensive evaluation thereof also showed good results. On the other hand, the honeycomb filters manufactured by the manufacturing methods of Comparative Examples 1 to 7 exhibited inferior evaluation results of the filtration efficiency and the pressure loss in comparison with the honeycomb filters manufactured by the manufacturing methods of Examples 1 to 8.


INDUSTRIAL APPLICABILITY

The manufacturing method of a honeycomb filter in accordance with the present invention can be used as a manufacturing method of a trapping filter for removing particulates and the like contained in exhaust gas.


DESCRIPTION OF REFERENCE NUMERALS


1: partition wall; 2: cell; 2a: inflow cell; 2b: outflow cell; 3: circumferential wall; 4: honeycomb structure body; 5: plugging portion; 11: first end face; 12: second end face; and 100: honeycomb filter.

Claims
  • 1. A manufacturing method of a honeycomb filter, comprising: a kneaded material preparation process for preparing a plastic kneaded material by adding an organic pore former and a dispersing medium to a cordierite forming raw material;a forming process for forming the obtained kneaded material into a honeycomb shape to produce a honeycomb formed body; anda firing process for firing the obtained honeycomb formed body to obtain a honeycomb filter,wherein the cordierite forming raw material contains porous silica as an inorganic pore former,in a cumulative particle size distribution of the cordierite forming raw material based on volume by a laser diffraction/scattering type particle size distribution measurement method, a particle diameter (μm) of 10% by volume of a total volume from a small diameter side is denoted by D(a) 10, a particle diameter (μm) of 50% by volume of the total volume from a small diameter side is denoted by D(a) 50, and a particle diameter (μm) of 90% by volume of the total volume from a small diameter side is denoted by D(a) 90, anda particle diameter (μm) of 50% by volume of the total volume from the small diameter side is denoted by D(b) 50 in a cumulative particle size distribution of the organic pore former based on volume by the laser diffraction/scattering type particle size distribution measurement method, andthe cordierite forming raw material and the organic pore former that satisfy relationships of expression (1) given below and expression (2) given below are used: D(a) 50/(D(a) 90−D(a) 10)≥0.50   Expression (1):|log10 D(a) 50−log10 D(b) 50|≤0.50   Expression (2):
  • 2. The manufacturing method of a honeycomb filter according to claim 1, wherein the cordierite forming raw material contains 5 to 17 parts by mass of the porous silica in 100 parts by mass of the cordierite forming raw material.
  • 3. The manufacturing method of a honeycomb filter according to claim 1, wherein 0.5 to 5 parts by mass of the organic pore former is added to 100 parts by mass of the cordierite forming raw material in the kneaded material preparation process.
  • 4. The manufacturing method of a honeycomb filter according to claim 1, wherein D(a) 50 of the cordierite forming raw material is 5 to 10 μm.
  • 5. The manufacturing method of a honeycomb filter according to claim 1, wherein D(b) 50 of the organic pore former is 5 to 30 μm.
  • 6. The manufacturing method of a honeycomb filter according to claim 1, wherein, in a cumulative particle size distribution of the porous silica based on volume by the laser diffraction/scattering type particle size distribution measurement method, a particle diameter (μm) of 50% by volume of the total volume from the small diameter side is denoted by D(c) 50, andD(c) 50 of the porous silica is 3 to 30 μm.
  • 7. The manufacturing method of a honeycomb filter according to claim 1, wherein a BET specific surface area of the porous silica measured according to JIS-R1626 is 200 to 400 m2/g.
Priority Claims (1)
Number Date Country Kind
2020-034886 Mar 2020 JP national