MANUFACTURING METHOD OF HONEYCOMB FILTER

Abstract
A manufacturing method of a honeycomb filter includes a kneaded material preparation process, a forming process and a firing process, wherein the cordierite forming raw material contains at least one of porous silica and fused silica, particle diameters (μm) of 10% by volume, 50% by volume and 90% by volume, from a small diameter side, are denoted by D(a) 10, D(a) 50 and D(a) 90 in a cumulative particle size distribution of the cordierite forming raw material, and a particle diameter (μm) of 50% by volume from a small diameter side is denoted by D(b) 50 in a cumulative particle size distribution of the organic pore former, D(b) 50 is 40 μm or less, and a cordierite forming raw material and an organic pore former satisfy given expressions.
Description

The present application is an application based on JP 2020-034887 filed on Mar. 2, 2020 with Japan Patent Office, the entire contents of which are incorporated herein by reference.


BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to a manufacturing method of a honeycomb filter. More specifically, the present invention relates to a manufacturing method of a honeycomb filter capable of improving filtration efficiency and suppressing an increase in pressure loss when loaded with a catalyst for purifying exhaust gas.


Description of the Related Art

Hitherto, as a filter adapted to trap particulate matter in an exhaust gas emitted from an internal combustion engine, such as an automobile engine, there has been known a honeycomb filter that uses a honeycomb structure. The honeycomb structure has a porous partition wall composed of cordierite or the like, and a plurality of cells are defined by the partition wall. In the honeycomb filter, the foregoing honeycomb structure is provided with, for example, plugging portions that alternately plug the open ends on the inflow end face side of the plurality of cells and the open ends on the outflow end face side thereof. In the honeycomb filter, the porous partition wall functions as a filter that traps the particulate matter in an exhaust gas.


The honeycomb structure can be manufactured by adding a pore former, a binder and the like to a ceramic raw material powder to prepare a plastic kneaded material, forming the obtained kneaded material into a predetermined shape to obtain a formed body, and firing the obtained formed body (refer to, for example, Patent Documents 1 and 2). As a ceramic raw material powder, a cordierite forming raw material or the like is known.


[Patent Document 1] JP-A-2002-326879


[Patent Document 2] JP-A-2003-238271


According to the conventional manufacturing methods of a honeycomb filter, a method has been tried, in which, at the time of manufacturing a honeycomb structure, the particle size of a cordierite forming raw material is not controlled, and hollow resin particles of a foamable resin or the like, or water-swellable particles of crosslinked starch or the like are used for pore formers. However, it has been impossible to manufacture honeycomb filters that satisfy current exhaust gas regulations by such a conventional manufacturing method.


SUMMARY OF THE INVENTION

The present invention has been made in view of the problems with the prior arts described above. The present invention provides a manufacturing method of a honeycomb filter capable of improving filtration efficiency and suppressing an increase in pressure loss when loaded with a catalyst for purifying exhaust gas.


According to the present invention, a manufacturing method of a honeycomb filter described below is provided.


(1) A manufacturing method of a honeycomb filter including:


a kneaded material preparation process for preparing a plastic kneaded material by adding an organic pore former and a dispersing medium to a cordierite forming raw material;


a forming process for forming the obtained kneaded material into a honeycomb shape to produce a honeycomb formed body; and


a firing process for firing the obtained honeycomb formed body to obtain a honeycomb filter,


wherein the cordierite forming raw material contains at least one of porous silica and fused silica as an inorganic pore former,


a particle diameter (μm) of 10% by volume of a total volume from a small diameter side is denoted by D(a) 10, a particle diameter (μm) of 50% by volume of the total volume from a small diameter side is denoted by D(a) 50, and a particle diameter (μm) of 90% by volume of the total volume from a small diameter side is denoted by D(a) 90 in a cumulative particle size distribution of the cordierite forming raw material based on volume by a laser diffraction/scattering type particle size distribution measurement method, and


a particle diameter (μm) of 50% by volume of the total volume from a small diameter side is denoted by D(b) 50 in a cumulative particle size distribution of the organic pore former based on volume by the laser diffraction/scattering type particle size distribution measurement method,


D(b) 50 of the organic pore former is 40 μm or less, and


a cordierite forming raw material and an organic pore former that satisfy relationships of expression (1) given below and expression (2) given below are used:






D
(a)50/(D(a)90−D(a)10)≥0.30  Expression (1):





|log10 D(a)50−log10 D(b)50|≤0.60  Expression (2):


(2) The manufacturing method of a honeycomb filter according to the foregoing (1), wherein the cordierite forming raw material contains 5 to 18 parts by mass of at least one of the porous silica and the fused silica as the inorganic pore former in 100 parts by mass of the cordierite forming raw material.


(3) The manufacturing method of a honeycomb filter according to the foregoing (1) or (2), wherein 0.5 to 5 parts by mass of the organic pore former is added to 100 parts by mass of the cordierite forming raw material in the kneaded material preparation process.


(4) The manufacturing method of a honeycomb filter according to any one of the foregoing (1) to (3), wherein D(a) 50 of the cordierite forming raw material is 5 to 15 μm.


(5) The manufacturing method of a honeycomb filter according to any one of the foregoing (1) to (4),


wherein a particle diameter (μm) of 50% by volume of the total volume from a small diameter side is denoted by D(c) 50 in a cumulative particle size distribution of the porous silica and the fused silica based on volume by the laser diffraction/scattering type particle size distribution measurement method, and


D(c) 50 of the porous silica and the fused silica is 3 to 30 μm.


(6) The manufacturing method of a honeycomb filter according to any one of the foregoing (1) to (5), wherein a BET specific surface area of the porous silica measured according to JIS-R1626 is 200 to 400 m2/g.


The manufacturing method of a honeycomb filter in accordance with the present invention makes it possible to manufacture a honeycomb filter capable of improving filtration efficiency and suppressing an increase in pressure loss when loaded with a catalyst for purifying exhaust gas.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view schematically showing a honeycomb filter manufactured by an embodiment of the manufacturing method of a honeycomb filter in accordance with the present invention viewed from an inflow end face side;



FIG. 2 is a plan view of the honeycomb filter shown in FIG. 1 viewed from the inflow end face side; and



FIG. 3 is a sectional view schematically showing a section A-A′ of FIG. 2.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following will describe embodiments of the present invention; however, the present invention is not limited to the following embodiments. Therefore, it should be understood that those created by adding changes, improvements or the like to the following embodiments, as appropriate, on the basis of the common knowledge of one skilled in the art without departing from the spirit of the present invention are also covered by the scope of the present invention.


(1) Manufacturing Method of a Honeycomb Filter


An embodiment of the manufacturing method of a honeycomb filter in accordance with the present invention is a manufacturing method for manufacturing a honeycomb filter 100 as shown in FIG. 1 to FIG. 3. The honeycomb filter 100 shown in FIG. 1 to FIG. 3 includes a honeycomb structure body 4 and plugging portions 5. The honeycomb structure body 4 is a pillar-shaped structure having a porous partition wall 1 disposed so as to surround a plurality of cells 2 that serve as fluid through channels extending from a first end face 11 to a second end face 12. The honeycomb structure body 4 further has a circumferential wall 3 provided on the circumferential side face in such a manner as to encompass the partition wall 1. The plugging portions 5 are provided at open ends on the first end face 11 side or the second end face 12 side of each of the cells 2. In FIG. 1 to FIG. 3, reference numeral 2a denotes an inflow cell, and reference numeral 2b denotes an outflow cell.


The manufacturing method of a honeycomb filter of the present embodiment includes a kneaded material preparation process, a forming process, and a firing process. The kneaded material preparation process is a process for preparing a plastic kneaded material by adding an organic pore former and a dispersing medium to a cordierite forming raw material. The forming process is a process for forming the kneaded material, which has been obtained by the kneaded material preparation process, into a honeycomb shape to produce a honeycomb formed body. The firing process is a process for firing the honeycomb formed body, which has been obtained by the forming process, to obtain a honeycomb filter. According to the manufacturing method of a honeycomb filter of the present embodiment, the kneaded material preparation process constitutes an especially major part. The following will describe in more detail each process in the manufacturing method of the honeycomb filter.


(1-1) Kneaded Material Preparation Process


In the kneaded material preparation process, first, the cordierite forming raw material, the organic pore former, and the dispersing medium, which are the raw materials of the kneaded material, are prepared. The “cordierite forming raw material” is a ceramic raw material blended so as to have a chemical composition in which silica is in the range of 42 to 56% by mass, alumina is in the range of 30 to 45% by mass, and magnesia is in the range of 12 to 16% by mass, and the ceramic raw material is fired to become cordierite.


In the kneaded material preparation process, a cordierite forming raw material that contains at least one of porous silica and fused silica is used. The porous silica and the fused silica are a silicon source of a silica composition in the cordierite forming raw material, and function also as inorganic pore formers. The porous silica preferably has a BET specific surface area of 100 to 500 m2/g, and more preferably 200 to 400 m2/g, as measured according to, for example, JIS-R1626. Hereinafter, the porous silica and the fused silica contained in the cordierite forming raw material may be referred to simply as “inorganic pore formers.” In other words, an inorganic pore former contained in the cordierite forming raw material means the porous silica or the fused silica, or both the porous silica and the fused silica unless otherwise specified.


For the cordierite forming raw material, in addition to the foregoing porous silica and fused silica, a plurality of types of raw materials that become a magnesium source, a silicon source, and an aluminum source can be mixed and used so as to have a chemical composition of cordierite. Examples of the cordierite forming raw material include talc, kaolin, alumina, aluminum hydroxide, boehmite, crystalline silica, and dickite.


In the kneaded material preparation process, a cordierite forming raw material having the particle size thereof adjusted as described below is used. In the cumulative particle size distribution of the cordierite forming raw material based on volume, a particle diameter of 10% by volume of the total volume from a small diameter side is denoted by D(a) 10, a particle diameter of 50% by volume of the total volume from a small diameter side is denoted by D(a) 50, and a particle diameter of 90% by volume of the total volume from a small diameter side is denoted by D(a) 90. The unit of each of D(a) 10, D(a) 50, and D(a) 90 is “μm.” The cumulative particle size distribution of the cordierite forming raw material is to be based on values measured by a laser diffraction/scattering type particle size distribution measurement method. In the kneaded material preparation step, a cordierite forming raw material that satisfies the relationship of the following expression (1) is used.






D
(a)50/(D(a)90−D(a)10)≥0.30  Expression (1):





|log10 D(a)50−log10 D(b)50|≤0.60  Expression (2):


Further, in the kneaded material preparation process, an organic pore former having the particle size thereof adjusted as described below is used. In the cumulative particle size distribution of the organic pore former based on volume, a particle diameter of 50% by volume of the total volume from the small diameter side is denoted by D(b) 50. The unit of D(b) 50 is “μm.” The cumulative particle size distribution of the organic pore former is also to be based on values measured by the laser diffraction/scattering type particle size distribution measurement method. In the kneaded material preparation step, an organic pore former having D(b) 50 of 40 μm or less is used. Further, in the kneaded material preparation process, a cordierite forming raw material and an organic pore former that satisfy the relationship of the above expression (2) are used. In the expression (2), “log10 D(a) 50” and “log10 D(b) 50” denote logarithms with base 10. The left side of expression (2) indicates an absolute value of a difference between “log10 D(a) 50” and “log10 D(b) 50.” Hereinafter, unless otherwise specified, the unit of the particle diameters of raw materials used in the kneaded material preparation process will be “μm.” Further, in various types of raw materials used as raw materials, when simply referring to “D50,” it means a particle diameter (μm) of 50% by volume of a total volume from the small diameter side in the cumulative particle size distribution of the raw material. In other words, “D50” means a median diameter.


A honeycomb filter capable of improving filtration efficiency and suppressing an increase in pressure loss when loaded with a catalyst for purifying exhaust gas can be manufactured by using the kneaded material prepared using the cordierite forming raw material and the organic pore former described above.


The organic pore former is a pore former that contains carbon as a raw material, any such pore former may be used insofar as it has a property of being dispersed and lost by firing in the firing process described later. There is no particular restriction on the material of the organic pore former insofar as the particle size thereof satisfies the relationship in the foregoing expression (2), examples including a polymer compound such as a water absorbable polymer, starch, or foamable resin, or polymethyl methacrylate (PMMA), coke and the like. The organic pore formers include not only pore formers made mainly of organic substances but also pore formers such as charcoal, coal, and coke, which are dispersed and lost by firing.


The particle size of the cordierite forming raw material can be determined by individually measuring the cumulative particle size distribution of each raw material used as the cordierite forming raw material, and then weighting and averaging from the blending ratio of each raw material using the measurement result of the cumulative particle size distribution of each raw material. More specifically, if a cordierite forming raw material is composed of talc, kaolin, alumina, aluminum hydroxide, and porous silica, then first, for each raw material, D(a) 10, D(a) 50, and D(a) 90 are measured. Then, D(a) 10, D(a) 50, and D(a) 90 of the cordierite forming raw material can be determined by weighting and averaging from the blending ratio of each raw material. The cumulative particle size distribution of each raw material is to be based on the values measured by the laser diffraction/scattering method. For example, the cumulative particle size distribution of each raw material can be measured using a laser diffraction/scattering type particle diameter distribution measurement device (trade name: LA-960) manufactured by HORIBA, Ltd.


The particle size of an organic pore former can also be measured using the foregoing measurement device. If an organic pore former is composed of one type, then D(b) 50 can be determined from measured cumulative particle size distribution. If an organic pore former is composed of two or more types, then D(b) 50 can be determined by weighting and averaging from the blending ratio according to the same method as with a cordierite forming raw material.


There is no particular restriction on a specific D(a) 50 of a cordierite forming raw material. For example, D(a) 50 is preferably 1 to 50 μm, more preferably 3 to 30 μm, even more preferably 3 to 26 μm, and particularly preferably 5 to 15 μm. If the D(a) 50 of a cordierite forming raw material is in the foregoing numerical range, then the filtration efficiency is advantageously improved.


D(b) 50 of 40 μm or less is acceptable for an organic pore former, but preferably 1 to 40 μm, more preferably 5 to 35 μm and particularly preferably 20 to 30 μm. If the D(b) 50 of the organic pore former is in the foregoing numerical range, then the filtration efficiency is advantageously improved.


The theoretical upper limit value of “D(a) 50/(D(a) 90−D(a) 10)” of the left side in expression (1) is below 1.00. The substantial upper limit value of the left side in expression (1) is preferably, for example, 0.90 and more preferably 0.80.


There is no particular restriction on the lower limit value of “|log10 D(a) 50−log10 D(b) 50|” of the left side in expression (2). If “log10 D(a) 50” and “log10 D(b) 50” indicate the same value, then the value of the left side in expression (2) will be “0.”


There is no particular restriction on the particle diameters of the porous silica and the fused silica. In the cumulative particle size distribution based on volume of the porous silica and the fused silica by the laser diffraction/scattering type particle size distribution measurement method, if the particle diameter (μm) of 50% by volume of the total volume from the small diameter side is denoted by D(c) 50, then the D(c) 50 of each of the porous silica and the fused silica is preferably 1 to 50 μm and more preferably 3 to 30 μm.


The cordierite forming raw material preferably contains 5 to 18 parts by mass, more preferably 5 to 17 parts by mass, and particularly preferably 8 to 15 parts by mass of at least one of the porous silica and the fused silica as the inorganic pore former described above in 100 parts by mass of the cordierite forming raw material. If the content ratio of the inorganic pore former is below 5 parts by mass, then the effect of pore forming may undesirably become difficult to be exhibited. If the content ratio of the inorganic pore former exceeds 17 parts by mass, then the thermal expansion coefficient of cordierite increases, which is not desirable in terms of thermal shock resistance.


There is no particular restriction on the addition amount of an organic pore former, and the addition amount can be determined as appropriate according to the porosity or the like of the partition wall of a honeycomb filter to be manufactured. For example, the addition amount of an organic pore former is preferably 0.5 to 5 parts by mass and more preferably 1 to 4 parts by mass for 100 parts by mass of a cordierite forming raw material.


In the kneaded material preparation process, a dispersing medium is added to the cordierite forming raw material and the organic pore former, the particle sizes of which have been adjusted as described above, and then the mixture is blended and kneaded thereby to prepare the kneaded material. The dispersing medium may be, for example, water. When preparing the kneaded material, a binder, a surfactant and the like may be further added.


Examples of the binder include hydroxypropylmethyl cellulose, methyl cellulose, hydroxyethyl cellulose, carboxylmethyl cellulose, polyvinyl alcohol and the like. These may be used by one type alone, or may be used in combination of two or more types. As the surfactant, for example, polyether polyol, dextrin, fatty acid soap, and the like can be used. These may be used alone or in combination of two or more.


There is no particular restriction on the method of preparing the kneaded material by blending and kneading a cordierite forming raw material and the like, and examples thereof include a method of blending and kneading by a kneader, a vacuum pugmill or the like.


(1-2) Forming Process


In the forming process, the kneaded material obtained in the kneaded material preparation process is formed into a honeycomb shape to produce a honeycomb formed body. There is no particular restriction on the forming method used for forming the kneaded material into a honeycomb shape, and examples thereof include conventionally known forming methods such as extrusion, injection molding, and press molding. Among these forming methods, a method of extruding the kneaded material prepared as described above by using a die corresponding to a desired cell shape, a partition wall thickness, and a cell density can be mentioned as a preferred example. The honeycomb formed body is preferably formed such that the thickness of the partition wall after the honeycomb formed body is fired ranges, for example, from 152 to 305 μm. A thickness of the partition wall below 152 μm is undesirable in terms of strength. A thickness of the partition wall exceeding 305 μm is undesirable in terms of pressure loss.


The honeycomb formed body obtained by the forming process is a pillar-shaped formed body that has a partition wall disposed to surround a plurality of cells that extend from the first end face to the second end face. The honeycomb formed body is fired so as to become the honeycomb structure body 4 in the honeycomb filter 100 shown in FIG. 1 to FIG. 3.


The obtained honeycomb formed body may be dried to obtain a honeycomb dried body from the honeycomb formed body. There is no particular restriction on the drying method, and examples thereof include hot air drying, microwave drying, dielectric drying, reduced-pressure drying, vacuum drying, and freeze drying, and among these, dielectric drying, microwave drying, and hot air drying are preferably performed alone or in combination.


In the forming process, the plugging portions are preferably formed by plugging the open ends of the cells of the honeycomb formed body. The plugging portions can be formed according to a conventional publicly known honeycomb filter manufacturing method. For example, as the method for forming the plugging portions, the following method can be mentioned. First, water and a binder or the like are added to a ceramic raw material to prepare a slurry plugging material. As the ceramic raw material, for example, the cordierite forming raw material or the like used to manufacture the honeycomb formed body can be used. Then, the plugging material is filled into the open ends of predetermined cells from the first end face side of the honeycomb formed body. When filling the plugging material into the open ends of the predetermined cells, preferably, for example, the first end face of the honeycomb formed body is provided with a mask to close the open ends of the remaining cells other than the predetermined cells, and the plugging material is selectively filled into the open ends of the predetermined cells. At this time, the slurry plugging material may be stored in a storage container, and the first end face side of the honeycomb formed body provided with the mask may be immersed in the storage container to fill the plugging material. Then, the plugging material is filled into the open ends of the remaining cells other than the predetermined cells from the second end face side of the honeycomb formed body. As the method for filling the plugging material, the same method as that for the predetermined cells described above can be used. The plugging portions may be formed before drying the honeycomb formed body or after drying the honeycomb formed body.


(1-3) Firing Process


The firing process is a process for firing the honeycomb formed body obtained in the forming process thereby to obtain a honeycomb filter. The temperature of a firing atmosphere for firing a honeycomb formed body is preferably, for example, 1300 to 1450° C., and more preferably 1400 to 1450° C. Further, the firing time is preferably set to 2 to 8 hours as the time for keeping a maximum temperature.


There is no particular restriction on the specific method of firing a honeycomb formed body, and a firing method in a conventional publicly known honeycomb filter manufacturing method can be applied. For example, the firing method can be implemented using an existing continuous firing furnace (e.g., tunnel kiln) or a batch firing furnace (e.g., shuttle kiln), which is provided with a charge port at one end and a discharge port at the other end of a firing path.


(1-4) Honeycomb Filter


A honeycomb filter manufactured by the manufacturing method of a honeycomb filter according to the present embodiment will now be described with reference to FIG. 1 to FIG. 3. The honeycomb filter 100 shown in FIG. 1 to FIG. 3 includes the honeycomb structure body 4 and the plugging portions 5. The honeycomb structure body 4 is a pillar-shaped structure having the porous partition wall 1 disposed in such a manner as to surround the plurality of cells 2 that serve as fluid through channels extending from the first end face 11 to the second end face 12. The plugging portions 5 are provided at the open end of the first end face 11 side or the second end face 12 side of each of the cells 2.


In the honeycomb filter 100, the thickness of the partition wall 1 is preferably 152 to 305 μm, and more preferably 203 to 254 μm. A thickness of the partition wall 1 that is below 152 μm is not desirable in respect of strength. A thickness of the partition wall 1 that exceeds 305 μm is not desirable in terms of pressure loss.


The cell density of the honeycomb structure body 4 is preferably, for example, 23 to 62 cells/cm2, and more preferably 27 to 47 cells/cm2.


The porosity of the partition wall 1 of the honeycomb structure body 4 is preferably, for example, 50 to 80%, more preferably 55 to 70%. The porosity of the partition wall 1 is based on a value measured by the mercury press-in method, and can be measured using, for example, Autopore IV (trade name) manufactured by Micromeritics. To measure the porosity, a part of the partition wall 1 is cut out as a test piece from the honeycomb filter 100, and the obtained test piece can be used for the measurement.


The average pore diameter of the partition wall 1 of the honeycomb structure body 4 is preferably, for example, 10 to 40 μm, and more preferably 15 to 30 μM. The average pore diameter of the partition wall 1 is based on values measured by the mercury press-in method, and can be measured using, for example, Autopore IV (trade name) manufactured by Micromeritics.


The honeycomb filter 100 is preferably used with the partition wall 1, which defines the plurality of cells 2, loaded with a catalyst for purifying exhaust gas. Loading the partition wall 1 with a catalyst refers to coating the catalyst onto the surface of the partition wall 1 and the inner walls of the pores formed in the partition wall 1. This configuration makes it possible to turn CO, NOx, HC and the like in exhaust gas into harmless substances by catalytic reaction. In addition, the oxidation of PM of trapped soot or the like can be accelerated. The honeycomb filter 100 of the present embodiment can enhance and improve the coatability of a catalyst in the loading of a catalyst for purifying exhaust gas. Consequently, the filtration efficiency can be effectively enhanced and an increase in pressure loss can be effectively suppressed by the loading of a catalyst for purifying exhaust gas.


There is no particular restriction on the catalyst with which the partition wall 1 is loaded. For example, such a catalyst can be a catalyst which contains a platinum group element and which contains an oxide of an element of at least one of aluminum, zirconium, and cerium. The loading amount of the catalyst is preferably 100 to 150 g/L, and more preferably 100 to 130 g/L. In the present specification, the loading amount of a catalyst (g/L) indicates the amount (g) of a catalyst loaded per unit volume (L) of the honeycomb filter.


The following will describe in more detail the present invention by examples, but the present invention is not at all limited by the examples.


Example 1

For the cordierite forming raw material, talc, kaolin, alumina, aluminum hydroxide, and porous silica were prepared. Then, the cumulative particle size distribution of each raw material was measured using the laser diffraction/scattering type particle diameter distribution measurement device (trade name: LA-960) manufactured by HORIBA, Ltd. In Example 1, the raw materials were blended to prepare the cordierite forming raw materials such that the blending ratios (parts by mass) of the raw materials exhibited the values shown in Table 1. In Table 1, the row in the horizontal direction of “Particle size D50 (μm)” shows the particle diameter of 50% by volume (i.e., a median diameter) of each raw material. A porous silica having a BET specific surface area of 200 to 400 m2/g measured in accordance with JIS-R1626 was used. In Table 1, the column of “BET specific surface area (m2/g)” shows the BET specific surface areas of the porous silica and the fused silica as the inorganic pore formers. Further, “Particle size D 50 (μm)” of the porous silica and the fused silica means the particle size (D(c) 50) of 50% by volume of the porous silica and the fused silica as the inorganic pore formers.


Next, 3.0 parts by mass of a water absorbable polymer as an organic pore former, 6.0 parts by mass of a binder, 1 part by mass of a surfactant, and 77 parts by mass of water were added to 100 parts by mass of a cordierite forming raw material to prepare a kneaded material. As the water absorbable polymer, a water absorbable polymer, the particle diameter of 50% by volume of which was 30 μm, was used. Table 2 shows the blending ratio (parts by mass) of the organic pore formers and other raw materials. In Table 2, the row in the horizontal direction of “Particle size D50 (μm)” shows the particle diameter (i.e., the median diameter) of 50% by volume of the organic pore formers. Further, the blending ratio (parts by mass) shown in Table 2 shows the ratio with respect to 100 parts by mass of the cordierite forming raw material.


From the measurement results of the cumulative particle size distribution of each raw material used as the cordierite forming raw material, D(a) 10, D(a) 50, and D(a) 90 as the cordierite forming raw material were calculated. The results are shown in Table 3. The calculation of D(a) 10, D(a) 50, and D(a) 90 was performed by weighting and averaging the blending ratio of each raw material. Further, the values of D(b) 50 of the organic pore formers are shown in Table 3. From the values shown in Table 3, the values of the left sides of expression (1) and expression (2) described above were calculated. The results are shown in Table 3. In Table 3, the column of “Value of expression (1)” shows the values of “D(a) 50/D(a) 90−D(a) 10,” and the column of “Value of expression (2)” shows the values of “|log10 D(a) 50−log10 D(b) 50|.”










TABLE 1








Blending ratio (parts by mass) of cordierite forming raw material

















Aluminium
Fused




Talc
Kaolin
Alumina
hydroxide
silica
Porous silica




















Particle size D50 (μm)
10
20
 5
 6
 1
 3
25
20
26
30









[D(c)50]
[D(c)50]
[D(c)50]
[D(c)50]


BET specific surface area







356 
321 
298 


(m2/g)












Example 1
40

19
14

15

12




Example 2
40

19
14

15

12




Example 3
40

19
14

15

12




Example 4

40
11
26

 5

18




Example 5

40
11
26

 5


18



Example 6

40
11
26

 5
18





Example 7

40
11
26

 5



18


Comparative Example 1

40
16
10
22

12





Comparative Example 2
40

19
14

15

12



















TABLE 2








Material










Blending ratio (parts by mass)




of organic pore former
Blending ratio (parts by mass)












Water absorbable
of other raw materials













Foamable resin
polymer
Binder
Surfactant
Water

















Particle size D50 (μm)
45
25
30  
50  





Example 1


3.0

6.0
1
77


Example 2


3.0

6.0
1
78


Example 3


4.0

6.0
1
86


Example 4

  3.5


6.0
1
86


Example 5


3.5

6.0
1
83


Example 6


3.5

6.0
1
66


Example 7


3.5

6.0
1
86


Comparative Example 1
  9.0
  0.5


6.0
1
26


Comparative Example 2



4.0
6.0
1
86





















TABLE 3







Cordierite






forming raw
Organic pore



material
former
Value of
Value of



D(a)50
D(b)50
Expression
Expression



(μm)
(μm)
(1) (*1)
(2) (*2)




















Example 1
8.3
30.0
0.47
0.56


Example 2
8.3
30.0
0.47
0.56


Example 3
8.3
30.0
0.47
0.56


Example 4
12.1
25.0
0.35
0.37


Example 5
12.5
30.0
0.33
0.39


Example 6
13.5
30.0
0.43
0.36


Example 7
14.3
30.0
0.31
0.33


Comparative
14.3
44.0
0.29
0.49


Example 1


Comparative
14.3
50.0
0.47
0.63


Example 2






(*1) Value of Expression (1) denotes “D (a) 50/(D (a) 90 − D (a) 10)”




(*2) Value of Expression (2) denotes “|log10 D (a) 50 − log10 D (b) 50|”



















TABLE 4







Thickness of
Cell

Average



partition wall
density
Porosity
pore dia.



(mm)
(cells/cm2)
(%)
(μm)




















Example 1
0.20
45.5
63.4
15.1


Example 2
0.23
38.8
62.6
15.5


Example 3
0.24
45.5
65.1
17.9


Example 4
0.25
46.5
65.3
20.0


Example 5
0.25
46.5
63.8
24.1


Example 6
0.25
46.5
61.3
24.0


Example 7
0.25
46.5
66.4
30.0


Comparative
0.30
35.7
65.2
20.9


Example 1


Comparative
0.25
46.5
64.5
24.3


Example 2









Next, the obtained kneaded material was molded using a continuous extrusion molding machine to manufacture a honeycomb formed body. Next, plugging portions were formed on the obtained honeycomb formed body. First, a mask was applied to the first end face of the honeycomb formed body so as to close the open ends of the remaining cells other than the predetermined cells. Next, the masked end portion (the end portion on the first end face side) was immersed in a slurry plugging material to fill the open ends of the predetermined cells, which were not masked, with the plugging material. Thereafter, a mask was applied to the second end face of the honeycomb formed body so as to close the open ends of the predetermined cells, and the open ends of the remaining cells other than the predetermined cells were filled with the plugging material in the same manner as described above.


Next, the honeycomb formed body with the plugging portions formed therein was fired such that the maximum temperature was 1420° C., thereby manufacturing the honeycomb filter.


The honeycomb filter manufactured by the manufacturing method of Example 1 had a diameter of the end face of 132 mm and a length of 102 mm in the extending direction of the cells. The cell shape in the cross section orthogonal to the extending direction of the cells was quadrangular. The partition wall thickness of the honeycomb filter was 0.20 mm, and the cell density was 46.5 cells/cm2. Table 4 shows the partition wall thickness (mm) and the cell density (cells/cm2) of the honeycomb filter. Hereinafter, a honeycomb filter manufactured by the manufacturing method of Example 1 may be referred to simply as “the honeycomb filter of Example 1.”


Further, on the honeycomb filter of Example 1, the porosity and the average pore diameter of the partition wall were measured. The results are shown in Table 4. The porosity and the average pore diameter were measured using Autopore IV (trade name) manufactured by Micromeritics. A part of the partition wall was cut out from the honeycomb filter to obtain a test piece, and the porosity was measured using the obtained test piece. The test piece was a rectangular parallelepiped having a length, a width, and a height of approximately 10 mm, approximately 10 mm, and approximately 20 mm, respectively. The sampling location of the test piece was set in the vicinity of the center of the honeycomb structure body in the axial direction. When determining the porosity and the average pore diameter, the true density of cordierite was set to 2.52 g/cm3.


On the honeycomb filter of Example 1, the filtration efficiency and the pressure loss were evaluated according to the following method. In the evaluation of each of the filtration efficiency and the pressure loss, each honeycomb filter to be evaluated was loaded with a catalyst containing a platinum group element by the following method, and measurement was performed before and after the loading of the catalyst. In Table 5, the column of “Before loading of catalyst” shows the evaluation result of each honeycomb filter before the loading of the catalyst, and the column of “After loading of catalyst” shows the evaluation result of the honeycomb filter after the loading of the catalyst. The results are shown in Table 5.


(Catalyst Loading Method)


First, a catalyst slurry containing aluminum oxide having an average particle diameter of 30 μm was prepared. Then, using the prepared catalyst slurry, the honeycomb filter was loaded with the catalyst. To be specific, the loading of the catalyst was performed by dipping the honeycomb filter, then excess catalyst slurry was blown away by air so as to load the partition wall of the honeycomb filter with a predetermined amount of the catalyst. Thereafter, the honeycomb filter loaded with the catalyst was dried at a temperature of 100° C. and was further subjected to heat treatment at 500° C. for two hours so as to obtain a honeycomb filter with the catalyst. The loading amount of catalyst with which the honeycomb filter of Example 1 was loaded was 100 g/L.


(Filtration Efficiency)


First, exhaust gas purification devices were fabricated by using the honeycomb filters (or honeycomb filters with catalysts) of the examples and the comparative examples as the filters for purifying exhaust gas. Then, each of the fabricated exhaust gas purification devices was connected to an outlet side of an engine exhaust manifold of a 1.2 L direct injection type gasoline engine vehicle, and the number of soot particles contained in the gas emitted from the outlet port of the exhaust gas purification device was measured by a PN measurement method. As for the driving mode, a driving mode (RTS95) that simulates the worst of RDE driving was implemented. The total number of soot particles emitted after the driving in the mode was taken as the number of soot particles of the exhaust gas purification device to be evaluated, and the filtration efficiency (%) was calculated from the number of soot particles. Further, the column of “Filtration efficiency ratio” of Table 5 shows the values of the filtration efficiency (%) of the exhaust gas purification device using the honeycomb filter with the catalyst of each of the examples and the comparative examples when the value of the filtration efficiency of the exhaust gas purification device using the honeycomb filter with the catalyst of Comparative Example 1 is defined as 100%. In the evaluation of the filtration efficiency, the honeycomb filter of each of the examples and the comparative examples was evaluated according to the following evaluation standard.


Evaluation “Excellent”: If the value of the filtration efficiency ratio (%) exceeds 110%, then the evaluation is determined as “Excellent.”


Evaluation “Good”: If the value of the filtration efficiency ratio (%) is greater than 105% and equal to or less than 110%, then the evaluation is determined as “Good.”


Evaluation “Acceptable”: If the value of the filtration efficiency ratio (%) is greater than 100% and equal to or less than 105%, then the evaluation is determined as “Acceptable.”


Evaluation “Fail”: If the value of the filtration efficiency ratio (%) is equal to or less than 100%, then the evaluation is determined as “Fail.”


(Pressure Loss)


The exhaust gas emitted from a 1.2 L direct injection type gasoline engine was introduced at a flow rate of 600 m3/h at 700° C., and the pressures on the inflow end face side and the outflow end face side of each of the honeycomb filters (or the honeycomb filters with the catalyst) were measured. Then, the pressure loss (kPa) of each of the honeycomb filters was determined by calculating the pressure difference between the inflow end face side and the outflow end face side. The column of “Pressure loss ratio” of Table 5 shows the value (%) of the pressure loss of the honeycomb filter with the catalyst of each of the examples and the comparative examples when the value of the pressure loss of the honeycomb filter with the catalyst of Comparative Example 1 is defined as 100%. In the evaluation of the pressure loss, the honeycomb filter of each example was evaluated according to the following evaluation standard.


Evaluation “Excellent”: If the value of the pressure loss ratio (%) is equal to or less than 90%, then the evaluation is determined as “Excellent.”


Evaluation “Good”: If the value of the pressure loss ratio (%) is greater than 90% and equal to or less than 95%, then the evaluation is determined as “Good.”


Evaluation “Acceptable”: If the value of the pressure loss ratio (%) is greater than 95% and equal to or less than 100%, then the evaluation is determined as “Acceptable.”


Evaluation “Fail”: If the value of the pressure loss ratio (%) exceeds 100%, then the evaluation is determined as “Fail.”











TABLE 5









Evaluation of pressure loss













Evaluation of filtration efficiency

Before
After


















Before
After


loading
loading





loading
loading
Filtration

of
of





of
of
efficiency

catalyst
catalyst
Pressure



Determination
catalyst
catalyst
ratio
Determination
(kPa)
(kPa)
loss ratio





Example 1
Excellent
71%
74%
112%
Good
4.69
5.23
92%


Example 2
Excellent
73%
77%
117%
Excellent
4.36
4.79
84%


Example 3
Good
67%
73%
110%
Acceptable
5.05
5.60
98%


Example 4
Good
66%
73%
110%
Excellent
4.62
5.15
90%


Example 5
Good
64%
72%
109%
Excellent
4.23
4.69
82%


Example 6
Good
62%
70%
106%
Excellent
4.10
4.55
80%


Example 7
Acceptable
60%
68%
103%
Excellent
4.04
4.48
79%


Comparative Example 1
Reference
66%
66%
100%
Reference
4.96
5.70
100% 


Comparative Example 2
Fail
60%
62%
 94%
Good
4.37
5.26
92%









Examples 2 to 7

In Examples 2 to 7, the blending ratios (parts by mass) of the raw materials used for the cordierite forming raw material were changed as shown in Table 1. In addition, the blending ratios (parts by mass) of the organic pore former and other raw materials were also changed as shown in Table 2. Except that these raw materials were used to prepare the kneaded material, the honeycomb filters were manufactured by the same method as that of Example 1. The cordierite forming raw materials used for Examples 2 to 7 satisfied expression (1) described above.


Comparative Examples 1 and 2

In Comparative Examples 1 and 2, the blending ratios (parts by mass) of the raw materials used for the cordierite forming raw material were changed as shown in Table 1. In addition, the blending ratios (parts by mass) of the organic pore former and other raw materials were also changed as shown in Table 2. Except that these raw materials were used to prepare the kneaded material, the honeycomb filters were manufactured by the same method as that of Example 1. In Comparative Example 1, in addition to the water absorbable polymer as the organic pore former, a foamable resin having a particle size D50 of 45 μm was used as a pore former. In Table 2, the column of “organic pore former” shows the blending ratio (parts by mass) of the foamable resin as the pore former.


On the honeycomb filters manufactured by the manufacturing methods of Examples 2 to 7 and Comparative Examples 1 and 2, the filtration efficiency and the pressure loss were evaluated by the same method as that of Example 1. The results are shown in Table 5.


(Results)


The evaluation results of the filtration efficiency and the pressure loss of the honeycomb filters manufactured by the manufacturing methods of Examples 1 to 7 were better than those of the honeycomb filters manufactured by the manufacturing methods of Comparative Examples 1 and 2.


INDUSTRIAL APPLICABILITY

The manufacturing method of a honeycomb filter in accordance with the present invention can be used as a manufacturing method of a trapping filter for removing particulates and the like contained in exhaust gas.


DESCRIPTION OF REFERENCE NUMERALS






    • 1: partition wall; 2: cell; 2a: inflow cell; 2b: outflow cell; 3: circumferential wall; 4: honeycomb structure body; 5: plugging portion; 11: first end face; 12: second end face; and 100: honeycomb filter.




Claims
  • 1. A manufacturing method of a honeycomb filter, comprising: a kneaded material preparation process for preparing a plastic kneaded material by adding an organic pore former and a dispersing medium to a cordierite forming raw material;a forming process for forming the obtained kneaded material into a honeycomb shape to produce a honeycomb formed body; anda firing process for firing the obtained honeycomb formed body to obtain a honeycomb filter,wherein the cordierite forming raw material contains at least one of porous silica and fused silica as an inorganic pore former,a particle diameter (μm) of 10% by volume of a total volume from a small diameter side is denoted by D(a) 10, a particle diameter (μm) of 50% by volume of a total volume from a small diameter side is denoted by D(a) 50, and a particle diameter (μm) of 90% by volume of a total volume from a small diameter side is denoted by D(a) 90 in a cumulative particle size distribution of the cordierite forming raw material based on volume by a laser diffraction/scattering type particle size distribution measurement method, anda particle diameter (μm) of 50% by volume of a total volume from a small diameter side is denoted by D(b) 50 in a cumulative particle size distribution of the organic pore former based on volume by a laser diffraction/scattering type particle size distribution measurement method,D(b) 50 of the organic pore former is 40 μm or less, anda cordierite forming raw material and an organic pore former that satisfy relationships of expression (1) given below and expression (2) given below are used: D(a)50/(D(a)90−D(a)10)≥0.30  Expression (1):|log10 D(a)50−log10 D(b)50|≤0.60  Expression (2):
  • 2. The manufacturing method of a honeycomb filter according to claim 1, wherein the cordierite forming raw material contains 5 to 18 parts by mass of at least one of the porous silica and the fused silica as the inorganic pore former in 100 parts by mass of the cordierite forming raw material.
  • 3. The manufacturing method of a honeycomb filter according to claim 1, wherein 0.5 to 5 parts by mass of the organic pore former is added to 100 parts by mass of the cordierite forming raw material in the kneaded material preparation process.
  • 4. The manufacturing method of a honeycomb filter according to claim 1, wherein D(a) 50 of the cordierite forming raw material is 5 to 15 μm.
  • 5. The manufacturing method of a honeycomb filter according to claim 1, wherein a particle diameter (μm) of 50% by volume of a total volume from a small diameter side is denoted by D(c) 50 in a cumulative particle size distribution of the porous silica and the fused silica based on volume by a laser diffraction/scattering type particle size distribution measurement method, andD(c) 50 of the porous silica and the fused silica is 3 to 30 μm.
  • 6. The manufacturing method of a honeycomb filter according to claim 1, wherein a BET specific surface area of the porous silica measured according to JIS-R1626 is 200 to 400 m2/g.
Priority Claims (1)
Number Date Country Kind
2020-034887 Mar 2020 JP national