The present application is an application based on JP2014-057746 filed with Japan Patent Office on Mar. 20, 2014, the entire contents of which are incorporated herein by reference.
The present invention relates to a manufacturing method of a honeycomb formed body and a manufacturing method of a honeycomb structure. More specifically, the present invention relates to the manufacturing method of the honeycomb structure used, for example, as a filter or a catalyst carrier for purifying exhaust gas.
A honeycomb structure whose main constituent is ceramic has been widely used as a filter and a catalyst carrier for purifying exhaust gas. Manufacture of the honeycomb structure involves performing a step of extruding a forming raw material containing a ceramic raw material from a die (honeycomb body forming die) with slits cut into a grid pattern (forming step).
The above-described forming step employs a method of preparing a plurality of billets (forming raw material billets) of a forming raw material containing the ceramic raw material and consecutively extruding these plurality of forming raw material billets while sequentially coupling the forming raw material billets (see, for example, Patent Document 1).
[Patent Document 1] JP-A-2006-289953
However, once the forming raw material billets are extruded, it is difficult to identify a joint portion of the forming raw material billets in the obtained honeycomb formed body, and the honeycomb formed body including the joint portion is likely to have a poor quality. Here, it is true that it is possible to address this problem by means of separating and eliminating a honeycomb formed body which is presumed to include the joint portion. However, in order to reliably eliminate the honeycomb formed body including the joint portion, it is unavoidable to eliminate unnecessarily honeycomb formed body that does not include the joint portion. Accordingly, it is difficult for the conventional technique to efficiently obtain honeycomb formed bodies with high qualities from a predetermined amount of forming raw material.
The present invention has been developed in view of the abovementioned problems, and an object thereof is to provide a technique for obtaining a large number of honeycomb formed bodies and honeycomb structures from a predetermined amount of forming raw material while suppressing occurrence of defective products.
The present invention is the following manufacturing method of the honeycomb formed body and the manufacturing method of the honeycomb structure.
[1] A manufacturing method of a honeycomb formed body, including a forming step of extruding a coupled forming raw material billet from a honeycomb body forming die to obtain a honeycomb-shaped formed product, the coupled forming raw material billet being formed by coupling a plurality of forming raw material billets each of which contains a ceramic raw material, and having a colorant applied on at least one of coupling surfaces between each forming raw material billets to be coupled; a cutting step of cutting the formed product to obtain a plurality of honeycomb formed bodies so that cut surfaces are formed perpendicularly to a direction in which the formed product is extruded from the honeycomb body forming die; and a separating step of separating the plurality of honeycomb formed bodies into a colorant-containing honeycomb formed bodies each having the cut surface on which the colorant appears, and a colorant non-containing honeycomb formed bodies each having no cut surface on which the colorant appears.
[2] A manufacturing method of a honeycomb structure, including the manufacturing method of the honeycomb formed body according to above-mentioned [1], wherein the manufacturing method of the honeycomb structure includes a step of firing only the colorant non-containing honeycomb formed body separated by the separating step, to obtain a honeycomb structure.
[3] The manufacturing method of the honeycomb formed body according to above-mentioned [1], wherein the cutting step is a step of cutting the formed product to obtain the plurality of honeycomb formed bodies in such a manner that each of the plurality of honeycomb formed bodies has a length of 83 to 360 mm.
[4] The manufacturing method of the honeycomb structure according to above-mentioned [2], wherein the cutting step is a step of cutting the formed product to obtain the plurality of honeycomb formed bodies in such a manner that each of the plurality of honeycomb formed bodies has a length of 83 to 360 mm.
According to the manufacturing method of honeycomb formed body of the present invention, it is possible to visualize a portion derived from the coupling surfaces of the forming raw material billets with the colorant. Consequently, according to the manufacturing method of honeycomb formed body of the present invention, the honeycomb formed body that does not include the portion derived from the coupling surfaces of the forming raw material billets can be easily and efficiently separated. In addition, according to the honeycomb structure of the present invention, since only the honeycomb formed body that does not include the portion derived from the coupling surfaces of the forming raw material billets are separated and fired, it is possible to obtain a large number of honeycomb structures from the predetermined amount of forming raw material while suppressing occurrence of defective products.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added to the embodiments without departing from the gist of the present invention.
The manufacturing method of honeycomb formed body of one embodiment of the present invention includes a forming step, a cutting step, and a separating step. The forming step includes extruding a coupled forming raw material billet 19, which is formed by coupling a plurality of forming raw material billets 11 each containing a ceramic raw material, from a honeycomb body forming die 41 to obtain a honeycomb-shaped formed product 20. A colorant 15 is applied on at least one of coupling surfaces 13 between each forming raw material billets 11 to be coupled. The cutting step includes cutting the formed product 20 to obtain a plurality of honeycomb formed bodies 30 so that cut surfaces 21 are formed perpendicularly to a direction (hereinafter referred to as a “Z direction”) in which the formed product 20 is extruded from the honeycomb body forming die 41. The separating step includes separating the plurality of honeycomb formed bodies 30 obtained by the cutting step into colorant-containing honeycomb formed bodies 35 and colorant non-containing honeycomb formed bodies 37. Here, the colorant-containing honeycomb formed bodies 35 are the honeycomb formed bodies 30 each having the cut surface 21 on which the colorant 15 appears. Meanwhile, the colorant non-containing honeycomb formed bodies 37 are the honeycomb formed bodies 30 each having no cut surface 21 on which the colorant 15 appears.
According to the manufacturing method of the honeycomb formed body of the embodiment, it is possible to visualize, by the colorant 15, a portion derived from the coupling surface 13 of the forming raw material billets 11. Consequently, according to the manufacturing method of the honeycomb formed body of the embodiment, by separating the above-described colorant non-containing honeycomb formed bodies 37, the honeycomb formed bodies 30 each of which does not include the portion derived from the coupling surface 13 of the forming raw material billets 11 can be easily and efficiently separated (see
As raw materials other than the ceramic raw material which can be contained in the forming raw material billet 11, a dispersing medium, an organic binder, an inorganic binder, a pore former, a surfactant, and the like can be used. A composition ratio of the respective raw materials in the forming raw material billet is not especially limited, and may be a composition ratio according to a structure, a material, and the like of a honeycomb structure body to be fabricated.
When obtaining the forming raw material billet 11, a kneaded material may be obtained by kneading the above-described various raw materials. There is not any special restriction on a method of forming the kneaded material, and an example of the method can be a method in which a kneader, a vacuum pugmill, and the like are used.
The forming step in the manufacturing method of the honeycomb formed body of the embodiment, the plurality of forming raw material billets 11 are coupled as described above to fabricate the coupled forming raw material billet 19. To fabricate the coupled forming raw material billet 19, for example, as shown in
As the colorant 15 possibly used in the embodiment, a pigment and a dye, which are used for usual coloration, can be used. The colorant 15 may have a property of losing its color when firing the honeycomb formed body 30 at a high temperature or may have a property of leaving its color on a honeycomb structure 1 (see
Assume that the formed product 20 shown in
The manufacturing method of honeycomb structure of the embodiment includes the above-described manufacturing method of honeycomb formed body (manufacturing method of honeycomb formed body of the present invention), and further includes firing only the colorant non-containing honeycomb formed bodies 37 separated by the separating step, to obtain the honeycomb structure 1 (see
Before firing (main firing) the honeycomb formed body 30, calcinating the honeycomb formed body 30 is preferable. The calcination is performed for degreasing, and the method is not especially limited as long as organic matters (the organic binder, the dispersing agent, the pore former, and the like) in the honeycomb formed body 30 can be removed. Generally, since a combustion temperature of the organic binder is approximately 100 to 300° C. and a combustion temperature of the pore former is approximately 200 to 800° C., as conditions for the calcination, the honeycomb formed body 30 is preferably heated at approximately 200 to 1000° C. for 3 to 100 hours in oxidation atmosphere.
The honeycomb formed body 30 is fired (main firing) in order to sinter the forming raw material which constitutes the calcinated honeycomb formed body 30, to be densified and ensure predetermined strength. Since the firing conditions (temperature, time, and atmosphere) differ depending on the kind of the forming raw material, appropriate conditions may be selected according to the kind. For example, in the case of using the cordierite raw material, the firing temperature is preferable to be 1410 to 1440° C. In the case of using the cordierite raw material, the firing time is preferable to be four to six hours as keeping time of the maximum temperature.
The following describes the present invention further in detail based on examples. The present invention is not limited to these examples.
First, using the forming raw material containing the ceramic raw material, a kneaded material to form the honeycomb formed body was prepared. As the ceramic raw material, the cordierite raw material was used. As the cordierite raw material, talc, kaolin, alumina, and silica were compounded to realize a composition of MgO of 13.5 mass %, Al2O3 of 36.0 mass %, and SiO2 of 50.5 mass %. A dispersing medium, an organic binder, a dispersing agent, and a pore former were added to the cordierite raw material to prepare a kneaded material for forming. An amount of added dispersing medium was 3 parts by mass with respect to 100 parts by mass of the cordierite raw material. An amount of added organic binder was 5 parts by mass with respect to 100 parts by mass of the cordierite raw material. An amount of added pore former was 10 parts by mass with respect to 100 parts by mass of the cordierite raw material. The obtained ceramic-formed raw material was kneaded with a kneader to obtain a plurality of kneaded materials (forming raw material billets). The kneaded material (forming raw material billet) had a round pillar shape with a length of 1250 mm, and a diameter of the end face of 300 mm (see Table 1).
Aizen methylene blue FZ (Hodogaya Chemical Co., Ltd.) was applied as a colorant over one end face of each of the plurality of kneaded materials (forming raw material billets). The kneaded materials (forming raw material billets) were put into an extruder. When the kneaded material (forming raw material billet) is put into the extruder, the kneaded material (forming raw material billet) was arranged such that a longitudinal direction of the kneaded material (forming raw material billet) was aligned to the Z direction (extrusion direction) and the end face on which the colorant was applied faces toward the front side in the Z direction (extrusion direction), that is, the side close to the honeycomb body forming die. Furthermore, the end face on the rear side of the kneaded material (the forming raw material billet) put into the extruder, that is, the end face on which the colorant was not applied, was press-bonded to the end face of another kneaded material (forming raw material billet) on which the colorant was applied. Thus, the coupled forming raw material billets were sequentially formed in the extruder. Then, the coupled forming raw material billets were extruded by using the extruder, to obtain a round pillar-shaped honeycomb-shaped formed product.
The formed product had a length in the Z direction of 2880 mm, a cross section perpendicular to the Z direction having a round shape with a diameter of 281 mm, a thickness of the partition wall of 304.8 μm, and a cell density of 46.5 pieces/cm2 (see Table 1).
Subsequently, the formed product was cut by every 360 min along the Z direction, to obtain eight honeycomb formed bodies (see Table 1). Both end faces of the respective eight honeycomb formed bodies were visually checked to separate the eight honeycomb formed bodies into the honeycomb formed bodies in each of which the colorant appeared on at least one of the end faces, as the colorant-containing honeycomb formed bodies, and the honeycomb formed bodies in each of which the colorant did not appear on any of the end faces, as the colorant non-containing honeycomb formed bodies. Among the eight honeycomb formed bodies, the colorant-containing honeycomb formed bodies were two pieces while the colorant non-containing honeycomb formed bodies were six pieces.
Furthermore, the two pieces of the colorant-containing honeycomb formed bodies were determined as “presumed defective products”, and the six pieces of the colorant non-containing honeycomb formed bodies were determined as “presumed non-defective products” (see Table 1).
After performing high-frequency dielectric heating drying on the honeycomb formed body, the honeycomb formed body was dried at 120° C. for two hours with a hot wind dryer. Afterwards, the honeycomb formed body was fired at 1350 to 1450° C. for ten hours to obtain a honeycomb structure.
Eight pieces of the honeycomb formed body were obtained in the same way as Example 1, except that the colorant was not applied over the end face of the kneaded material (forming raw material billet). According to a rule of thumb, the obtained honeycomb formed bodies were separated into the “presumed defective products” and the “presumed non-defective products”. In Comparative Example 2, since the “presumed defective products” were overestimated, the “presumed defective products” were three pieces while the “presumed non-defective products” were five pieces. In Comparative Example 3, since the “presumed defective products” were underestimated, the “presumed defective product” was one piece while the “presumed non-defective products” were seven pieces. Subsequently, in the same way as Example 1, the drying and firing were performed to obtain the honeycomb structures.
The honeycomb formed bodies were fabricated in the same way as Example 1, except that the respective conditions were changed to the specifications as shown in Table 1. Then, after separating the honeycomb formed bodies into the “presumed defective products” and the “presumed non-defective products”, the honeycomb structure was fabricated.
The honeycomb formed bodies were fabricated in the same way as Comparative Example 1, except that the respective conditions were changed to the specifications as shown in Table 1. Then, after separating the honeycomb formed bodies into the “presumed defective products” and the “presumed non-defective products”, the honeycomb structure was fabricated.
The honeycomb formed bodies were fabricated in the same way as Comparative Example 2, except that the respective conditions were changed to the specifications as shown in Table 1. Then, after separating the honeycomb formed bodies into the “presumed defective products” and the “presumed non-defective products”, the honeycomb structure was fabricated.
The obtained honeycomb structures were inspected for pinholes and cell shape, to determine whether the honeycomb structure was a defective product or a non-defective product. Here, the inspection for pinholes is an inspection in which smoke is caused to flow from the one end face of the honeycomb structure into the cells and the presence/absence of the pinholes on the partition wall is determined based on a distribution state of the smoke flown out from the opposite end face. The number of non-defective products and the number of defective products obtained from the honeycomb formed bodies of the “presumed defective products” and the number of non-defective products and the number of defective products obtained from the honeycomb formed bodies of the “presumed non-defective products” were evaluated. The results are shown in Table 2.
[Examination]
In Examples 1 and 2, all the “presumed defective products” were actually evaluated as the defective products while all the “presumed non-defective products” were actually evaluated as the non-defective products. Since Comparative Examples 1 and 3 overestimated the “presumed defective products”, the “presumed non-defective products” did not include the defective products actually; however, the “presumed defective products” included the non-defective products actually. That is, Comparative Examples 1 and 3 resulted in disposing of a honeycomb formed body to be obtained originally as the non-defective products. Since Comparative Examples 2 and 4 underestimated the “presumed defective products”, the “presumed non-defective products” included the defective products actually. Accordingly, Comparative Examples 2 and 4 resulted in vainly firing the honeycomb formed body to be dealt originally as the defective products.
The present invention is applicable to fabrication of a honeycomb structure used as a filter or a catalyst carrier for purifying exhaust gas.
1: honeycomb structure, 3: first end face, 5: second end face, 7: cell, 9: partition wall, 10: honeycomb structure body, 11: forming raw material billet, 13: coupling surface (of forming raw material billet), 15: colorant, 17: end face (of forming raw material billet), 19: coupled forming raw material billet, 20: formed product, 21: cut surface, 21a to 21e: cut surface, 30: honeycomb formed body, 30a to 30e: honeycomb formed body, 31: circumferential wall, 35: colorant-containing honeycomb formed body, 37: colorant non-containing honeycomb formed body, 41: honeycomb body forming die, 43: cylinder, 44: tapered portion, 45: extruder.
Number | Date | Country | Kind |
---|---|---|---|
2014-057746 | Mar 2014 | JP | national |