1. Fields of the Invention
The present invention relates to a manufacturing method of metal matrix composites (MMC), especially to a manufacturing method in which friction stir welding (FSW) is applied to produce MMC.
2. Descriptions of Related Art
In recent years, FSW technique that joins light-weight aluminum alloy and magnesium alloy has made great progress. The technique is applied to weld and join the metal plates by stirring the materials in solid state temperature range and welding them together using a stir tool driven by milling machines, multi-axis machine centers, or robots. The technique overcomes shortcomings of conventional electric arc welding such as low welding speed and reduced strength of weld metal and becomes an innovative method for welding light weight alloy. The FSW has been applied to manufacturing of components of vehicles, boats, and aircraft structures and skins.
The addition of micron-scale reinforcement particles such as Al2O3 or SiC a particulate into aluminum alloy matrix to form reinforced MMC has been developed for more than thirty years. After particulate reinforcement, the mechanical properties of metal matrix alloy are improved effectively so that MMC has been applied to components requiring higher strength and light weight. Most of MMCs have been applied in aviation or aerospace industry as structural material of flight vehicles. The most common way of adding Al2O3 or SiC reinforcement particles is smelting. The particles are added into a liquid-phase material during the smelting process and are further stirred during the solidification process. Other than this process, there is hardly further technical information regarding adding particles into aluminum alloy for producing MMC.
There are three main problems in welding the particulate reinforced MMC:
1. Arc welding of the particulate reinforced MMC: after electric arc welding, particles of the MMC exhibit a non-uniform distribution in weld metal. Also particle loss may occur. Thus the strength of the weld metal is dramatically reduced due to lacking of reinforcement particles. Thus, the welding of MMC has been always a tough issue.
2. Uniform distribution of reinforcement particles in base material of MMC:
during the smelting process, the addition of Al2O3 or SiC reinforcement particles into molten metal may result in a non-uniform distribution or formation of clusters. The uneven distribution of reinforcement particles in MMC causes heterogeneity and anisotropy of maternal. Thus how to improve the uniformity of particles distribution in MMC is also an important issue.
3. metallurgical bonding between reinforcement particles and base material:
most of the reinforcement particles are Al2O3 or SiC ceramic powder of irregular shape with particle diameter ranging from 10 μm to 50 μm. These reinforcement particles are embedded in aluminum alloy base material without metallurgical bonding with the matrix. The composite matrix is achieved merely by adhesion between base material and particles. The lack of the metallurgical bonding between particles and base material not only restricts the reinforcement effect but also reduces the fatigue strength of the MMC due to formation of microcracks caused by detachment of the particles with the base material. Thus how to enhance the bonding strength between the particles and the base material is a substantial issue. Previous studies have been conducted to evaluate the feasibility of FSW applied to MMC. It was found that the hardness and the strength of weld metal significantly decreased even the reinforcement particles are distributed uniformly in weld metal of the MMC. Thus the reinforcing effect of the particles needs to be further improved.
Therefore it is a primary object of the present invention to provide a manufacturing method of MMC using FSW that enhances mechanical strength of weld metal effectively through achieving a metallurgical bonding between base metal and reinforcement particles coated with a metal film.
It is a furthers object of the present invention to provide a manufacturing method of MMC using FSW that improves the fatigue strength of MMC materials through achieving a metallurgical bonding between base metal material and reinforcement particles coated with a metal film.
In order to achieve above objects, the present invention provides a manufacturing method in which FSW is applied to MMC. A metal layer such as copper, silver and nickel is coated on surface of reinforcement particles by a technique such as electroless plating. The thickness of the metal layer can be adjusted according to electrolyte concentration and reaction time. Generally, a dense metal coating layer can be adhered to the reinforcement particles without detachment. A certain volume fraction of the metal-coated reinforcement particles is inserted between two metal plates or two MMC plates and the particles are stirred and mixed into the metal plates or the MMC plates by FSW to form a butt weld metal of the particulate reinforced MMC plate. The metal-coated particles can also be applied to the surface of the metal plates or the MMC plates and then are stirred into the base material of the metal plates or the MMC plates by FSW. The metal-coated particles are uniformly distributed in weld metal (or stir zone). Metallurgical bonding between the metal film coated on the surface of the reinforcement particles and the base material is achieved by forming an alloy.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawing wherein:
At first, welding of particulate reinforced MMC using FSW overcomes problems which occur with conventional inert gas tungsten arc welding (GTAW). The inventor has successfully stirred reinforcement particles into butt weld metal of two aluminum or magnesium alloy plates by FSW. The reinforcement particles exhibit a uniform distribution in the weld metal (or stir zone) as well as a uniform distribution in the onion rings of the stir zone. However, both the strength and the hardness of the weld metal are not substantially improved. Nevertheless, the results this study at least revealed that stirring reinforcement particles into metal or MMC plates by FSW to form a weld metal with uniformly distributed reinforcement particles is completely feasible.
In order to improve hardness and strength of the MMC weld metal, measures must be taken to allow the existed or added reinforcement particles to play an effective critical role of reinforcement in MMC. An effective method is required to achieve metallurgical bonding of sufficient strength between reinforcement particles and base material after friction stir processing, not merely mixing the reinforcement particles into base material. In order to archive this goal, the present invention proposes plating of metal layer on surfaces of the reinforcement particles to become metal-coated particles prior to FSW. Thus when particles are stirred into the weld metal of MMC, a metallurgical bonding with sufficient strength is formed between the particle and the base material since the reinforcement now particles play an effective role in particulate reinforcement in MMC, the strength of the weld metal of MMC is further improved.
Refer to
In the step S10, the two base materials are selected from aluminum alloys, magnesium alloys, alloy matrix composites and magnesium alloy matrix composites.
In the step S20, the metal layer is coated on surface of the reinforcement particles by an electroless plating process. The particle diameter ranges from 0.25 μm to 70 μm. And material of the metal coating layer is selected from copper, silver and nickel. The reinforcement particles are silicon carbide or aluminum oxide. The volume fraction of the metal-coated reinforcement particles added into weld metal of two base materials ranges from 0% to 30%.
In the following example, the powder is aluminum oxide, the metal-coated layer is copper, and the metal base material is aluminum alloy 6061. Refer to
In order to prove that the weld metal hardness can be effectively improved by stirring copper-coated aluminum oxide particles into aluminum alloy 6061 through a firm metallurgical bonding between aluminum oxide particles and aluminum alloy 6061, comparison is conducted between FSW weld metal of aluminum alloy 6061 without reinforcement particles (not aluminum alloy 6061 metal matrix composite) and FSW weld metal of aluminum alloy 6061 with copper-coated reinforcement particles (not aluminum alloy 6061 metal matrix composite). Refer to
After being added with copper-coated aluminum oxide particles, microstructure of the FSW weld metal (stir zone) of aluminum alloy 6061 shown in
Comparing
In summary, the strength of the FSW weld metal of aluminum alloy 6061 (not aluminum alloy 6061 matrix composite is effectively increased by the application of the present invention. Thus it is expected that the addition of copper-coated aluminum oxide particles into weld metal of aluminum alloy 6061 metal matrix composite must result in an additional effect on increasing the strength of the FSW meld metal of MMC by the application of this invention to MMC.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, and representative devices shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5342502 | Peng et al. | Aug 1994 | A |
6457629 | White | Oct 2002 | B1 |
7163138 | Dudt et al. | Jan 2007 | B1 |
20030042292 | Hatten et al. | Mar 2003 | A1 |
20030141344 | Foster et al. | Jul 2003 | A1 |
20040004107 | Litwinski | Jan 2004 | A1 |
20040265503 | Clayton et al. | Dec 2004 | A1 |
20050249978 | Yao | Nov 2005 | A1 |
20060049234 | Flak et al. | Mar 2006 | A1 |
20060108394 | Okaniwa et al. | May 2006 | A1 |
20060208034 | Packer et al. | Sep 2006 | A1 |
20060273140 | Ghosh | Dec 2006 | A1 |
20070044406 | Van Aken et al. | Mar 2007 | A1 |
20070119276 | Liu | May 2007 | A1 |
20070241164 | Barnes et al. | Oct 2007 | A1 |
20070297935 | Langan et al. | Dec 2007 | A1 |
20080041921 | Creehan et al. | Feb 2008 | A1 |
20080047222 | Barnes | Feb 2008 | A1 |
20080156846 | Manicke et al. | Jul 2008 | A1 |
20080311420 | Zillmer et al. | Dec 2008 | A1 |
20080318794 | Takahashi et al. | Dec 2008 | A1 |
20090068491 | Maruko et al. | Mar 2009 | A1 |
20090068492 | Fujii et al. | Mar 2009 | A1 |
20090087681 | Decker et al. | Apr 2009 | A1 |
20090152328 | Okamoto et al. | Jun 2009 | A1 |
20090226789 | Mizusaki et al. | Sep 2009 | A1 |
20090258232 | Brice | Oct 2009 | A1 |
20100089976 | Szymanski et al. | Apr 2010 | A1 |
20100089977 | Chen et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
2001-205457 | Jul 2001 | JP |
2003-126970 | May 2003 | JP |
2003-126971 | May 2003 | JP |