Traditionally, parts used in manufacturing a product are picked up and placed in a position for manufacturing by human hand or robotic means. However, current robotic means have not provided a level of control, dexterity, and effectiveness to be cost-effectively implemented in some manufacturing systems.
Aspects of the present invention relate to systems, methods, and apparatus for a vacuum tool having a switchable plate, such that a common vacuum tool may be adapted with different plates. A switchable plate may form the entirety of the vacuum tool's material contacting surface or a switchable plate may form a portion of the material contacting surface. The vacuum tool is effective for picking and placing one or more manufacturing parts utilizing a vacuum force.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Illustrative embodiments of the present invention are described in detail below with reference to the attached drawing figures, which are incorporated by reference herein and wherein:
The subject matter of embodiments of the present invention is described with specificity herein to meet statutory requirements. However, the description itself is not intended to limit the scope of this patent. Rather, the inventors have contemplated that the claimed subject matter might also be embodied in other ways, to include different elements or combinations of elements similar to the ones described in this document, in conjunction with other present or future technologies.
Aspects of the present invention relate to systems, methods, and apparatus for a vacuum tool having a switchable plate, such that a common vacuum tool may be adapted with different plates. A switchable plate may form the entirety of the vacuum tool's material contacting surface or a switchable plate may form a portion of the material contacting surface. The vacuum tool is effective for picking and placing one or more manufacturing parts utilizing a vacuum force.
Accordingly, in one aspect, the present invention provides a vacuum tool comprised of a switchable plate that serves as a material contacting surface. The vacuum tool is comprised of a vacuum distributor. The vacuum distributor is comprised of an exterior top surface, an interior top surface, an exterior side surface, and an interior side surface. The vacuum tool is further comprised of a vacuum aperture extending through the exterior top surface and the interior top surface of the vacuum distributor. The vacuum tool is additionally comprised of a vacuum distribution cavity. The vacuum distribution cavity is formed, at least in part, by the interior top surface and the interior side surface, wherein an obtuse angle is formed between the interior top surface and the interior side surface. The vacuum tool is further comprised of a switchable plate. The plate is comprised of an interior plate surface and an exterior plate surface. A plurality of apertures extends through the interior plate surface and the exterior plate surface. The switchable plate is removably coupled to the vacuum distributor enclosing the vacuum distribution cavity within the vacuum distributor and the switchable plate.
In another aspect, the present invention provides another vacuum tool. The vacuum tool is comprised of a plurality of vacuum distributors. Each vacuum distributor is coupled to at least one other vacuum distributor. The vacuum tool is further comprised of a plurality of discrete vacuum distribution cavities. Each of the vacuum distributors forms, at least in part, an associated vacuum distribution cavity. The vacuum tool further comprises a vacuum plate having a plurality of apertures. The vacuum plate is removably coupled to one or more the vacuum distributors. The plate and the vacuum distributors enclose the vacuum distribution cavities.
A third aspect of the present invention provides a method of manufacturing utilizing a vacuum tool comprised of a removably coupled plate. The method is comprised of removing a first plate from the vacuum tool. The first plate has a first configuration of apertures, such as size, size, and/or location of one or more apertures. The method is further comprised of removably coupling a second plate having a second configuration of a plurality of apertures to the vacuum tool. The second configuration is different from the first configuration.
Having briefly described an overview of embodiments of the present invention, a more detailed description follows.
The material to be manipulated by a vacuum tool may be of any type. For example, it is contemplated that a vacuum tool described herein is adapted for manipulating (e.g., picking and placing) flat, thin, and/or lightweight parts of various shapes, materials, and other physical characteristics (e.g. pattern cut textiles, non-woven materials, mesh, plastic sheeting material, foams, rubber). Therefore, unlike industrial-scaled vacuum tools functional for manipulating a heavy, rigid, or non-porous material, the vacuum tools provided herein are able to effectively manipulate a variety of materials (e.g., light, porous, flexible).
The vacuum tool 100 is comprised of a vacuum generator 102. The vacuum generator generates a vacuum force (e.g., low pressure gradient relative to ambient conditions). For example, the vacuum generator may utilize traditional vacuum pumps operated by a motor (or engine). The vacuum generator may also utilize a venturi pump to generate a vacuum. Further yet, it is contemplated that an air amplifier, which is also referred to as a coandă effect pump, is also utilized to generate a vacuum force. Both the venturi pump and the coandă effect pump operate on varied principles of converting a pressurized gas into a vacuum force effective for maintaining a suction action. While the following disclosure will focus on the venturi pump and/or the coandă effect pump, it is contemplated that the vacuum generator may also be a mechanical vacuum that is either local or remote (coupled by way of tubing, piping, and the like) to the vacuum tool 100.
The vacuum tool 100 of
In an exemplary aspect, the vacuum distributor 110 is formed from a semi-rigid to rigid material, such as metal (e.g., aluminum) or polymers. However, other materials are contemplated. The vacuum tool 100 is contemplated as being manipulated (e.g. moved/positioned) by a robot, such as a multi-axis programmable robot. As such, limitations of a robot may be taken into consideration for the vacuum tool 100. For example, weight of the vacuum tool 100 (and/or a manufacturing tool 10 to be discussed hereinafter) may be desired to be limited in order to limit the potential size and/or costs associated with a manipulating robot. Utilizing weight as a limiting factor, it may be advantageous to form the vacuum distributor in a particular manner to reduce weight while still achieving a desired distribution of the vacuum force.
Other consideration may be evaluated in the design and implementation of the vacuum tool 100. For example, a desired level of rigidity of the vacuum tool 100 may result in reinforcement portions and material removed portions, as will be discussed with respect to
The vacuum distributor 110 is comprised of an exterior top surface 112 and an exterior side surface 116.
The exemplary vacuum distributor 110 of
The interior side surfaces 118 extend from the interior top surface 114 toward the plate 150. In an exemplary aspect, an obtuse angle 142 is formed between the interior top surface and the interior side surfaces 118. The obtuse angle provides an air vacuum distribution effect that reduces internal turbulence of air as it passes from the plate 150 toward a vacuum aperture 138 serving the vacuum generator 102. By angling the approach of air as it enters the vacuum aperture 138, a reduced amount of material may be utilized with the vacuum distributor 110 (e.g., resulting in a potential reduction in weight) and the flow of air may be controlled through a reduction in air turbulence. However, aspects contemplate a right angle such as that formed by a cube-like structure, a cylinder-like structure and the like.
An angle 144 may also be defined by the intersection of the interior side surfaces 118 and the plate 150. For example, if the angle 142 is obtuse, the angle 144 is acute. Again, having an acute angle 144 may provide advantages with the flow of air and the ability to reduce/limit weight of the vacuum tool 100 in general.
A surface area of the interior top surface 114 may be less than a surface area of the exterior plate surface 158 when an obtuse angle is utilized between the top surface 114 and one or more interior side surfaces 118. This potential discrepancy in surface area serves as a funneling geometry to further reduce turbulence and effectively disperse a vacuum force.
In an exemplary aspect, the interior side surfaces 118 are in a parallel relationship with an associated exterior side surface 116. Similarly, in an exemplary aspect the interior top surface 114 is in a parallel relationship, at least in part, with the exterior top surface 112. However, it is contemplated that one or more of the surfaces are not in a parallel relationship with an associated opposite surface. For example, if one or more of the interior surfaces are curved in one or more directions, the exterior surface may instead maintain a linear relationship that is, at the most, tangential to the interior surfaces. Similarly, it is contemplated that the interior and exterior surfaces may maintain a parallel (either linear or curved) relationship in part or in whole.
The vacuum aperture 138 may include a series of threads allowing the vacuum generator 102 to be screwed and secured to the vacuum distribution cavity. Similarly, it is contemplated that other mating patterns (e.g., tapering) may be formed on the interior surface of the vacuum aperture 138 and the vacuum generator 102 to secure the vacuum generator 102 and the vacuum distributor 110 together with a air-tight bond.
The plate 150, which will be discussed in greater detail in
However, it is also contemplated that the plate is formed from a mesh-like material that may be rigid, semi-rigid, or flexible. The mesh-like material may be formed by interlaced material strands made from metal, textile, polymers, and/or the like. Further, it is contemplated that the plate may also be comprised of multiple materials. For example, the plate may be formed from a base structural material (e.g., polymer, metal) and a second part-contacting material (e.g., polymer, foam, textile, and mesh). The multiple-material concept may allow for the plate to realize advantages of the multiple materials selected.
The plate 150, in an exemplary aspect, is coupled, either permanently or temporarily, to the vacuum distributor 110. For example, it is contemplated that the plate 150 may be removable/replaceable to allow for adaptability to different materials and specifications. Continuing with this example, and as will be discussed with reference to
When used in combination, the vacuum generator 102, the vacuum distributor 110, and the plate 150, the vacuum tool 100 is functional to generate a suction force that draws a material towards the exterior plate surface 158 (also referred to as a manufacturing-part-contacting surface) where the material is maintained against the plate 150 until the force applied to the material is less than a force repelling (e.g., gravity, vacuum) the material from the plate 150. In use, the vacuum tool is therefore able to approach a part, generate a vacuum force capable of temporarily maintaining the part in contact with the plate 150, move the vacuum tool 100 and the part to a new location, and then allow the part to release from the vacuum tool 100 at the new position (e.g., at a new location, in contact with a new material, at a new manufacturing process, and the like).
In an exemplary aspect, the plate 150 (or in particular the exterior plate surface 158) has a surface area that is larger than a material/part to be manipulated. Further, it is contemplated that one or more apertures extending through the plate 150 are covered by a part to be manipulated. Stated differently, it is contemplated that a surface area defined by one or more apertures extending through the plate 150 exceeds a surface area of a part to be manipulated. Additionally, it is contemplated that a geometry defined by two or more apertures extending through the plate 150 results in one or more apertures not contacting (completely or partially) a material/part to be manipulated. As a result, it is contemplated that inefficiency in vacuum force is experienced by the vacuum tool as a result of unusable apertures. However, in an exemplary aspect, the inclusion of unusable apertures is an intended result to allow for a higher degree of latitude in positioning the vacuum tool relative to the part. Further, the intentional inclusion of unusable (unusable for purposes of a particular part to be manipulated (e.g., active vacuum apertures that are ineffective for contacting a portion of the part)) apertures allows for vacuum force leakage while still effectively manipulating a part. In an exemplary aspect, a plurality of apertures extending through a plate 150 is further comprised of one or more leaking apertures, an aperture not intended to be used in the manipulation of a part.
In an exemplary aspect, it is contemplated that a vacuum tool, such as the vacuum tool 100, is capable of generating a suction force up to 200 grams. Further, it is contemplated that the pickup tool 100 may have 60 grams to 120 grams of vacuum (i.e., suction) force. In an exemplary aspect, the pickup tool 100 operates with about 90 grams of vacuum force. However, it is contemplated that changes in one or more configurations (e.g., vacuum generator, plate, apertures), material of part being manipulated (e.g., flexibility, porosity), and percent of apertures covered by the part may all affect a vacuum force of an exemplary pickup tool. Further, it is contemplated that when multiple distributors are used in conjunction the vacuum force is adjusted commensurately. For example, the pickup tool of
In this example, air is drawn from the exterior plate surface 158 through a plurality of apertures 160 through the plate 150 to the vacuum distribution cavity 140. The vacuum distribution cavity 140 is enclosed between the vacuum distributor 110 and the plate 150, such that if the plate 150 is a non-porous (i.e., lacked the plurality of apertures 160) surface, then an area of low pressure would be generated in the vacuum distribution cavity 140 when the vacuum generator 102 is activated. However, returning to the example including the plurality of aperture 160, the air is drawn into the vacuum distribution cavity 140 towards the vacuum aperture 138, which then allows the air to be drawn into the vacuum generator 102.
The plurality of apertures 160 may be defined, at least in part, by a geometry (e.g., circular, hatch, bulbous, rectangular), size (e.g., diameter, radius, area, length, width), offset from elements (e.g., distance from outer edge, distance from a non-porous portion), and pitch (e.g., distance between apertures). The pitch of two apertures is defined as a distance from a first aperture to a second aperture. The pitch may be measured in a variety of manners. For example, the pitch may be measured from the closest two points of two apertures, from the surface area center of two apertures (e.g., center of circular apertures), from a particular feature of two apertures.
The size of the apertures may be defined based on an amount of surface area (or a variable to calculate surface area) exposed by each aperture. For example, a diameter measurement provides an indication of a circular aperture's size.
Depending on desired characteristics of a vacuum tool, the variables associated with the apertures may be adjusted. For example, a non-porous material of low density may not require much vacuum force to maintain the material in contact with the vacuum tool under normal operating conditions. However, a large porous mesh material may, on the other hand, require a significant amount of vacuum force to maintain the material against the vacuum tool under normal operating conditions. Therefore, to limit the amount of energy placed into the system (e.g., amount of pressurized air to operate a coandă effect vacuum pump, electricity to operate a mechanical vacuum pump) an optimization of the apertures may be implemented.
For example, a variable that may be sufficient for typical materials handled in a footwear, apparel, and the like industry may include, but not be limited to, apertures having a diameter between 0.5 and 5 millimeters (mm), between 1 mm and 4 mm, between 1 mm and 3 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, and the like. However, larger and smaller diameter (or comparable surface area) apertures are contemplated. Similarly, the pitch may range between 1 mm and 8 mm, between 2 mm and 6 mm, between 2 mm and 5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, and the like. However, larger and smaller pitch measurements are contemplated.
Additionally, it is contemplated that a variable size and a variable pitch may be implemented in aspects of the present invention. For example, a compound part composed of both a porous material portion and a non-porous material portion may utilize different variables to accomplish the same level of manipulation. In this example, variables that lead to a reduction in necessary vacuum force in an area to be contacted by the non-porous material and variable that lead to higher vacuum forces in an area to be contacted by the porous material may be implemented. Further, a vision system or other identification system may be used in conjunction to further ensure a proper placement of the material with respect to the plurality of apertures occurs. Additionally, it is contemplated that a relationship between pitch and size may be utilized to locate the plurality of apertures. For example, a pitch from a larger sized aperture may be greater than a pitch from a smaller sized aperture (or vice versa).
An additional variable is the offset. In an exemplary aspect, the offset is a distance of an aperture from an outside edge of the plate 150. Different apertures may have different offsets. Further different edges may implement different offsets. For example an offset along a front edge may be different from an offset along a side edge. The offset may range from no offset to 8 mm (or more). In practice, an offset ranging from 1 mm to 5 mm may accomplish characteristics of exemplary aspects of the present invention.
The plurality of apertures 160 may be formed in the plate 150 utilizing a number of manufacturing techniques. For example apertures may be punched, drilled, etched, carved, melted, and/or cut from the plate 150. In an exemplary embodiment, the plate 150 is formed from a material that is responsive to laser cutting. For example polymer-based materials and some metal-based materials may be used in conjunction with laser cutting of the plurality of apertures. Further, it is contemplated that the geometry of the apertures may be variable as the aperture extends through the thickness of the plate. For example, the aperture may have a diameter of a first size on a top surface of the plate and a diameter of a second size at the opposite bottom surface of the plate. This variable in geometry mat result in a conical geometry extending through the plate. Additional geometries are contemplated herein (e.g., pyramid).
Depending on the footprint of the plate 150, the offset, the pitch, the geometry of the apertures, the layout of the apertures, and the size of the apertures, any number of apertures may be utilized. For example, it is contemplated that the plate 150 of
Changes to the vacuum generator 102, the plate 150, and the overall size of the vacuum tool 100 may affect the air consumption and pressure when utilizing a coandă effect vacuum pump or a venturi vacuum pump For example, it is contemplated that a given coandă effect vacuum pump may generate 50 g/cm2 of vacuum force. To accomplish this level of vacuum, it is contemplated that a pneumatic pressure of 0.55 to 0.65 MPa of pressure are introduced to the vacuum tool. The volume of air consumption to generate sufficient vacuum may also vary based on the variables. For example, it is contemplated that 1,400 Nl/min of air consumption may be utilized for the vacuum tool 100 of
The manufacturing tool 10 also is comprised of a coupling member 300. The coupling member 300 is a feature of the manufacturing tool 10 (or the vacuum tool 100 or the ultrasonic welder 200 individually) allowing a positional member (not shown) to manipulate the position, attitude, and/or orientation of the manufacturing tool 10. For example, the coupling member 300 may allow for the addition of the manufacturing tool to a computer-numerically-controlled (CNC) robot that has a series of instruction embodied on a non-transitory computer-readable medium, that when executed by a processor and memory, cause the CNC robot to perform a series of steps. For example, the CNC robot may control the vacuum generator(s) 102, the ultrasonic welder 200, and/or the position to which the manufacturing tool 10 is located. The coupling member 300 may, therefore, allow for the temporary or permanent coupling of the manufacturing tool 10 to a positional member, such as a CNC robot.
As was previously discussed, aspects of the present invention may form portions of the manufacturing tool 10 with the intention of minimizing mass. As such, the plurality of vacuum distributors 110 of
However, aspects of the present invention may desire to remain a level of rigidity of the plurality of vacuum distributors 110 as supported by a single coupling member 300. To maintain a level of rigidity while still introducing the reduced material portions 113, reinforcement portions 115 may also be introduced. For example, reinforcement portions 115 may extend from one vacuum distributor 110 to another vacuum distributor 110. Further yet, it is contemplated that in aspects of the present invention, reinforcement portions 115 may be included proximate the coupling member 300 for a similar rationale.
The plate 400 is separated from the plurality of vacuum distributors 110 in
The plate 400 may be comprised of a plurality of plate portions. For example, the plate 400 of
The plate 400 is contemplated as being removably coupled with one or more distributors or other portions of a vacuum tool. A plate is removably coupled when a first plate (or plate portion) may be coupled with the vacuum tool in a manner so that the plate may function for its intended purpose, but yet be removed from the vacuum tool without significantly deforming or otherwise damaging the plate and/or the vacuum tool. Examples of maintaining mechanisms (e.g., bolts, screws, magnets, adhesives, mechanical interlocking, lacing, friction fit, clips, bands, pins, suction, and the like) that may be used to maintain a plate in a position relative to the vacuum tool will be discussed with respect to
A junction may exist between plate portions. A junction is a meeting of a first plate portion and a second plate portion. A junction may represent a location at which a first plate portion may independently be switched from the vacuum tool while not switching a second plate portion. Therefore, as will be discussed with respect to
A junction between the plates, such as a junction 421, defines a junction between the plate portion 420 and 422. It is contemplated that a tongue and groove-like coupling mechanism may be implemented along a junction to allow for the switchable coupling of the plate portions. Additional edge treatments are contemplated to provide a removable coupling between the plate portions. Other junctions depicted include 423, 425, 427, and 429. It is contemplated that a junction may extend in a linear path creating consistent-sized plate portions. Further it is contemplated that a junction may be formed in an organic or non-linear fashion to provide a level of control over a location of one or more plate portions relative to a material to be manipulated.
The vacuum tool 100 is comprised of a plurality of vacuum generators 102, vacuum distributors 110, and associated vacuum distribution cavities 140. It is contemplated that any number of each may be utilized in a vacuum tool 100. For example, it is contemplated that 10, 8, 6, 4, 2, 1, or any number of units may be combined to form a cohesive vacuum tool 100. Further, any footprint may be formed. For example, while a rectangular footprint is depicted in
The ultrasonic welder 200, in an exemplary aspect, is comprised of a stack comprised of an ultrasonic welding horn 210 (may also be referred to as a sonotrode), a converter 220 (may also be referred to as a piezoelectric transducer), and a booster (not labeled). The ultrasonic welder 200 may further be comprised of an electronic ultrasonic generator (may also be referred to as a power supply) and a controller. The electronic ultrasonic generator may be useable for delivering a high-powered alternating current signal with a frequency matching the resonance frequency of the stack (e.g., horn, converter, and booster). The controller controls the delivery of the ultrasonic energy from the ultrasonic welder to one or more parts.
Within the stack, the converter converts the electrical signal received from the electronic ultrasonic generator into a mechanical vibration. The booster modifies the amplitude of the vibration from the converter. The ultrasonic welding horn applies the mechanical vibration to the one or more parts to be welded. The ultrasonic welding horn is comprised of a distal end 212 adapted for contacting a part.
The vacuum distributor 500 of
When utilizing a tongue and groove-like maintaining mechanism, it is contemplated that a first plate portion may be easily switched for a second plate portion with minimal machine downtime. As a result, a common vacuum distributor may be utilized when manipulating a variety of different materials. This may allow for a relatively inexpensive plate portion to be maintained in inventory to allow a relatively more expensive vacuum tool to be a more universal-like manufacturing tool.
While a particular combination of tongue and groove portions are depicted, it is contemplated that a tongue may be formed on at least a portion of the vacuum distributor 500 and a groove may be formed on at least a portion of the plate 400, in an exemplary aspect. Further, while a sliding maintaining mechanism is depicted as engaging an outer surface of the vacuum distributor, it is also contemplated that a sliding maintaining mechanism may also/alternatively engage an interior surface and/or a bottom surface. For example, a T-like protrusion may extend upwardly from the plate 400 top surface 402 to be received by a T-like groove extending into the vacuum distributor 500 from the bottom surface 502. Alternatively, the T-like protrusion may extend downwardly from the bottom surface 502 for reception by a T-like groove extending into the plate 400 from the top surface 402. Alternative shaped protrusion and receiving channels are contemplated.
The maintaining mechanism depicted in
It is contemplated that one or more removable maintainers 602 may be utilized in a variety of location. For example, while the removable maintainer 602 is depicted as extending upwardly through the plate 400 into the vacuum distributor 500, a removable maintainer may extend downwardly through the vacuum distributor 500 into the plate 400. Further, it is contemplated that a removable maintainer may also be utilized in any orientation, such as extending horizontally to couple one or more portions of the vacuum tool. Consequently, any number, type, and/or location of removable maintainer may be implemented to removably couple a plate 400 with a vacuum distributor, directly or indirectly.
The adhesive maintaining mechanism 604 may be any type of bonding agent. For example, a caulk-like substance that is applied in a first liquid-like state may be applied that provides an adhesive bond when in a second state between the plate 400 and the vacuum distributor 500 with an amount of force that allows for the removal of the plate 400 without damaging or distorting the plate. It is contemplated that the level of bonding required may be on the order of the weight of the plate plus a margin of error. For example, when a vacuum force is generated in an internal cavity between the plate 400 and the vacuum distributor 500, the resulting negative pressure may aid in maintaining the position of the plate 400 relative to the vacuum distributor 500.
Other non-limiting examples of an adhesive maintaining mechanism may include a magnetic material to which at least one of the plate 400 or the vacuum distributor 500 may be attracted. For example, it is contemplated that the plate may be formed from polymer-based material into which one or more ferrous components are embedded. A magnetic material coupled, either permanently or temporarily, to the vacuum distributor 500 may attract the plate 400 to maintain a desired position. Other arrangements are contemplated, such as a magnetic material embedded within the plate that is attracted to one or more portions of the vacuum distributor 500.
Another non-limiting example may include a suction material, such as suction cup-like components, that forms a removable (e.g., temporary) bond with one or more portions of the vacuum tool in order to maintain the plate 400 in a desired position relative to the vacuum distributor 500. While specific examples are provided, it is contemplated that any type of material that may provide a temporary coupling between the plate 400 and the vacuum distributor 500 may be implemented.
The first connecting point 606 and the second connecting point 608 may be a receiving point functional for receiving a portion of the connecting member 610. For example, the first connecting point 606 may be a hole into which a protrusion of the connecting member 610 may extend. In the alternative, the first connecting point 606 may be a protrusion-like component that extends outwardly from the vacuum tool to be inserted into an opening in the connecting member 610. In this example, the connecting member 610 may be a link having a first hole and a second hole such that the first connecting point 606 extends through the first hole and the second connecting point 608 extends through the second hole.
Alternative physical configurations are contemplated. For example, the first connecting point may provide a protrusion onto which a first end of the connecting member 610 rests while the opposite end of the connecting member is permanently coupled with the plate 400. Further, it is contemplated that the connecting member 610 may be formed from any type of material, such as a material having elastic properties (e.g., rubber, silicone), a material having rigid properties (e.g., metallic, polymer), and the like.
Plate portions having different aperture patterns are able to be combined in a variety of manners to achieve zoned material manipulation functionality. For example, if a portion of material to be manipulated has a low porosity and light weight, the aperture pattern in the fourth plate portion 708 may be used to reduce an amount of vacuum energy necessary to manipulate the material. However, if a delicate and flexible material is in need of being manipulated, the aperture pattern in the first plate portion 702 may be utilized to provide a distributed vacuum force with smaller points of vacuum application. Further, if an irregular-shaped material portion is to be manipulated, the aperture pattern of the fourth plate portion 708 may be appropriate.
The aperture pattern of the fourth plate portion 708 is comprised of a non-aperture portion 710. The non-aperture portion 710 may be formed into a plate where material is absent or where vacuum forces are not intended to be applied. For example, to prevent having apertures not in contact with material to be manipulated, which may reduce a level vacuum force exerted as a result of uncovered apertures, the non-aperture portion may be formed in the plate at known location where there will be an absence of material.
Further, it is contemplated that apertures of various sizes may be formed into portions of the plate. For example, a first aperture size 712 may form a first portion, such as a perimeter region. A second aperture size 714 may form a second portion, such as an internal area. The size and spacing (and shape) of the apertures may be adjusted based on a product to be manipulated. As such, it is contemplated the one plate portion may be switched, utilizing the removable coupling functionality, with another plate portion. Therefore, it is contemplated that one or more portions of a plate may be maintained while selectively switching one or more other plate portions of the plate.
Exemplary aspects are provided herein for illustrative purposes. Additional extensions/aspects are also contemplated in connection with aspects of the present invention. For example, a number, size, orientation, and/or form of components, portions, and/or attributes are contemplated within the scope of aspects of the present invention.
This application is a continuation of co-pending U.S. patent application Ser. No. 16/673,614, filed Nov. 4, 2019, and titled “MANUFACTURING VACUUM TOOL WITH SELECTIVE ACTIVATION OF PICKUP ZONES,” which is a continuation of U.S. patent application Ser. No. 15/906,083, filed Feb. 27, 2018, titled “MANUFACTURING VACUUM TOOL WITH SELECTIVE ACTIVATION OF PICKUP ZONES,” which is a continuation of U.S. patent application Ser. No. 15/220,063, filed Jul. 26, 2016, titled “MANUFACTURING VACUUM TOOL WITH SELECTIVE ACTIVATION OF PICKUP ZONES,”,” which is a continuation of U.S. patent application Ser. No. 14/978,253, filed Dec. 22, 2015, titled “MANUFACTURING VACUUM TOOL,” which is a continuation of U.S. patent application Ser. No. 14/661,565, filed Mar. 18, 2015, titled “SWITCHABLE PLATE MANUFACTURING VACUUM TOOL,” which is a continuation of U.S. patent application Ser. No. 13/421,525, filed Mar. 15, 2012, titled “SWITCHABLE PLATE MANUFACTURING VACUUM TOOL,” which is a continuation-in-part of U.S. patent application Ser. No. 13/299,934, filed Nov. 18, 2011, titled “MANUFACTURING VACUUM TOOL,” each of which is incorporated herein by reference in the entirety. This application is also related by subject matter to U.S. patent application Ser. No. 13/299,908, filed Nov. 18, 2011, titled “MULTI-FUNCTIONAL MANUFACTURING TOOL” and U.S. patent application Ser. No. 13/421,521, titled “ZONED ACTIVATION MANUFACTURING VACUUM TOOL,” which share the same priority date, and which are also incorporated herein by reference in the entirety.
Number | Name | Date | Kind |
---|---|---|---|
949850 | Smith | Feb 1910 | A |
2572640 | Lovegrove | Oct 1951 | A |
3183032 | Warfel | May 1965 | A |
3220723 | Jacob | Nov 1965 | A |
3307816 | Michael | Mar 1967 | A |
3307819 | Michael | Mar 1967 | A |
3357091 | Reissmueller et al. | Dec 1967 | A |
3464102 | Soloff | Sep 1969 | A |
3591228 | Webb | Jul 1971 | A |
3720433 | Rosfelder | Mar 1973 | A |
3848752 | Branch et al. | Nov 1974 | A |
3866875 | Fournier | Feb 1975 | A |
3866876 | Adams | Feb 1975 | A |
4185814 | Buchmann et al. | Jan 1980 | A |
4362461 | Cathers | Dec 1982 | A |
4389064 | Laverriere | Jun 1983 | A |
4428815 | Powell et al. | Jan 1984 | A |
4775290 | Brown et al. | Oct 1988 | A |
4865680 | Pierson | Sep 1989 | A |
4865687 | Pierson | Sep 1989 | A |
4909022 | Kubis et al. | Mar 1990 | A |
5024574 | Wilson et al. | Jun 1991 | A |
5050919 | Yakou | Sep 1991 | A |
5149162 | Focke et al. | Sep 1992 | A |
5207553 | Konagai | May 1993 | A |
5242256 | Appel | Sep 1993 | A |
5264069 | Dietrich et al. | Nov 1993 | A |
5405123 | Mielenz | Apr 1995 | A |
5414617 | Pomerleau et al. | May 1995 | A |
5427301 | Pham et al. | Jun 1995 | A |
5480501 | Stewart et al. | Jan 1996 | A |
5609377 | Tanaka | Mar 1997 | A |
5655700 | Pham et al. | Aug 1997 | A |
5671910 | Davies et al. | Sep 1997 | A |
5772100 | Patrikios | Jun 1998 | A |
5879040 | Nagai et al. | Mar 1999 | A |
5897882 | Gonzalez et al. | Apr 1999 | A |
5971454 | Baan et al. | Oct 1999 | A |
5984623 | Smith et al. | Nov 1999 | A |
6127822 | Sasahara et al. | Oct 2000 | A |
6203621 | Tran et al. | Mar 2001 | B1 |
6238503 | Kakehi | May 2001 | B1 |
6341808 | Baan et al. | Jan 2002 | B1 |
6533885 | Davis et al. | Mar 2003 | B2 |
6599381 | Urlaub et al. | Jul 2003 | B2 |
6672576 | Walker | Jan 2004 | B1 |
6718604 | Taga et al. | Apr 2004 | B1 |
6823763 | Foster et al. | Nov 2004 | B1 |
6979032 | Damhuis | Dec 2005 | B2 |
7007942 | Stearns et al. | Mar 2006 | B1 |
7296834 | Clark et al. | Nov 2007 | B2 |
7387627 | Erb et al. | Jun 2008 | B2 |
7476289 | White | Jan 2009 | B2 |
7481472 | Cawley et al. | Jan 2009 | B2 |
7717482 | Iwasaki | May 2010 | B2 |
8070199 | Na et al. | Dec 2011 | B2 |
8276959 | Kim | Oct 2012 | B2 |
8696043 | Regan et al. | Apr 2014 | B2 |
8858744 | Regan et al. | Oct 2014 | B2 |
8960745 | Regan et al. | Feb 2015 | B2 |
9010827 | Regan et al. | Apr 2015 | B2 |
9096016 | Regan et al. | Aug 2015 | B2 |
9238305 | Regan et al. | Jan 2016 | B2 |
9937585 | Regan et al. | Apr 2018 | B2 |
10532468 | Regan et al. | Jan 2020 | B2 |
11389972 | Regan | Jul 2022 | B2 |
20010045755 | Schick et al. | Nov 2001 | A1 |
20020153735 | Kress | Oct 2002 | A1 |
20030062110 | Urlaub et al. | Apr 2003 | A1 |
20030075849 | Choi | Apr 2003 | A1 |
20030160084 | Higashiyama | Aug 2003 | A1 |
20030164620 | Schmalz et al. | Sep 2003 | A1 |
20030189114 | Taylor et al. | Oct 2003 | A1 |
20040034963 | Rogers et al. | Feb 2004 | A1 |
20040195850 | Ogimoto | Oct 2004 | A1 |
20040212205 | Linker | Oct 2004 | A1 |
20050050669 | Castello | Mar 2005 | A1 |
20050115014 | Worwag | Jun 2005 | A1 |
20060082172 | Clark et al. | Apr 2006 | A1 |
20060196332 | Downing et al. | Sep 2006 | A1 |
20060277733 | Boyl-davis et al. | Dec 2006 | A1 |
20070200377 | Nishio | Aug 2007 | A1 |
20070200378 | Johnson | Aug 2007 | A1 |
20070228751 | Viavattine et al. | Oct 2007 | A1 |
20070262598 | Schaaf et al. | Nov 2007 | A1 |
20070290517 | Nagai et al. | Dec 2007 | A1 |
20080080962 | Holtmeier | Apr 2008 | A1 |
20080197644 | Gebhart et al. | Aug 2008 | A1 |
20090001064 | Rakpongsiri et al. | Jan 2009 | A1 |
20090035407 | Mattice et al. | Feb 2009 | A1 |
20090066098 | Subotincic | Mar 2009 | A1 |
20090084660 | Kita et al. | Apr 2009 | A1 |
20090108053 | Huddleston | Apr 2009 | A1 |
20090121417 | Nishimura et al. | May 2009 | A1 |
20090311087 | Na et al. | Dec 2009 | A1 |
20100040450 | Parnell | Feb 2010 | A1 |
20100264679 | Moriya | Oct 2010 | A1 |
20100296903 | Shah et al. | Nov 2010 | A1 |
20100320768 | Lu | Dec 2010 | A1 |
20100320786 | Ko et al. | Dec 2010 | A1 |
20110121590 | Schaaf | May 2011 | A1 |
20110123359 | Schaaf | May 2011 | A1 |
20110183108 | Tachibana | Jul 2011 | A1 |
20110232008 | Crisp | Sep 2011 | A1 |
20110254298 | Lomerson, Jr. | Oct 2011 | A1 |
20110278870 | Omiya et al. | Nov 2011 | A1 |
20120126554 | Becker et al. | May 2012 | A1 |
20120274011 | Schilp et al. | Nov 2012 | A1 |
20130032981 | Schaaf | Feb 2013 | A1 |
20130125319 | Regan | May 2013 | A1 |
20130126067 | Regan et al. | May 2013 | A1 |
20130127192 | Regan et al. | May 2013 | A1 |
20130127193 | Regan et al. | May 2013 | A1 |
20130127194 | Regan et al. | May 2013 | A1 |
20130129464 | Regan et al. | May 2013 | A1 |
20130240152 | Chang et al. | Sep 2013 | A1 |
20140216662 | Regan et al. | Aug 2014 | A1 |
20140374030 | Regan et al. | Dec 2014 | A1 |
20150190930 | Regan et al. | Jul 2015 | A1 |
20150298320 | Eisele et al. | Oct 2015 | A1 |
20160074956 | Regan et al. | Mar 2016 | A1 |
20160107319 | Regan et al. | Apr 2016 | A1 |
20160332310 | Regan et al. | Nov 2016 | A1 |
20180178315 | Regan et al. | Jun 2018 | A1 |
20180186012 | Regan et al. | Jul 2018 | A1 |
20180326561 | Lee et al. | Nov 2018 | A1 |
20190210145 | Regan et al. | Jul 2019 | A1 |
20200061849 | Regan et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
676366 | Nov 1996 | CH |
687366 | Nov 1996 | CH |
1311761 | Sep 2001 | CN |
1794439 | Jun 2006 | CN |
1956144 | May 2007 | CN |
1993208 | Jul 2007 | CN |
200995498 | Dec 2007 | CN |
201064906 | May 2008 | CN |
101194352 | Jun 2008 | CN |
101595392 | Dec 2009 | CN |
201483812 | May 2010 | CN |
101801626 | Aug 2010 | CN |
201761066 | Mar 2011 | CN |
102161436 | Aug 2011 | CN |
102164719 | Aug 2011 | CN |
2404197 | Jul 1975 | DE |
3047717 | Jul 1982 | DE |
3208864 | Sep 1983 | DE |
3741091 | Jun 1989 | DE |
3817615 | Aug 1989 | DE |
4101545 | Jul 1992 | DE |
4226822 | Feb 1994 | DE |
20105550 | Aug 2001 | DE |
20209985 | Sep 2002 | DE |
202009014154 | Jan 2010 | DE |
0123173 | Oct 1984 | EP |
0405171 | Jan 1991 | EP |
0657373 | Jun 1995 | EP |
0790010 | Aug 1997 | EP |
0913246 | May 1999 | EP |
1000732 | May 2000 | EP |
1227041 | Jul 2002 | EP |
1586419 | Oct 2005 | EP |
2042453 | Apr 2009 | EP |
2060348 | Feb 2011 | EP |
2617078 | Dec 1988 | FR |
2709478 | Mar 1995 | FR |
1249294 | Oct 1971 | GB |
1349578 | Apr 1974 | GB |
53-88981 | Jul 1978 | JP |
61-63438 | Apr 1986 | JP |
61-229730 | Oct 1986 | JP |
3-152091 | Jun 1991 | JP |
3234251 | Aug 1991 | JP |
4-57724 | Feb 1992 | JP |
4-134234 | Dec 1992 | JP |
5-8189 | Jan 1993 | JP |
5-111882 | May 1993 | JP |
5-139554 | Jun 1993 | JP |
60-14155 | Feb 1994 | JP |
6-27765 | Apr 1994 | JP |
2000-108068 | Apr 2000 | JP |
2004-174685 | Jun 2004 | JP |
2005-60063 | Mar 2005 | JP |
2006-346951 | Dec 2006 | JP |
2010-5769 | Jan 2010 | JP |
96-8632 | Jun 1996 | KR |
2000-0063704 | Nov 2000 | KR |
10-2006-0124527 | Dec 2006 | KR |
10-1036797 | May 2011 | KR |
200529997 | Sep 2005 | TW |
M275054 | Sep 2005 | TW |
M337576 | Aug 2008 | TW |
201032956 | Sep 2010 | TW |
9210336 | Jun 1992 | WO |
9955186 | Nov 1999 | WO |
2004062842 | Jul 2004 | WO |
2006054061 | May 2006 | WO |
2011064138 | Jun 2011 | WO |
Entry |
---|
English translation of German patent DE 20 2009 014 154, published Jan. 2010 (Year: 2010). |
Intention to Grant received for European Patent Application No. 20185963.4, dated Dec. 20, 2022, 7 pages. |
Intention to Grant received for European Patent Application No. 19201380.3, dated Feb. 7, 2023, 7 pages. |
Office Action received for European Patent Application No. 18183589.3 dated Mar. 13, 2023, 6 pages. |
Intention to Grant received for European Patent Application No. 20185963.4, dated May 12, 2023, 7 pages. |
Office Action received for European Patent Application No. 21164137.8, dated Aug. 10, 2023, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20220305673 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16673614 | Nov 2019 | US |
Child | 17841475 | US | |
Parent | 15906083 | Feb 2018 | US |
Child | 16673614 | US | |
Parent | 15220063 | Jul 2016 | US |
Child | 15906083 | US | |
Parent | 14978253 | Dec 2015 | US |
Child | 15220063 | US | |
Parent | 14661565 | Mar 2015 | US |
Child | 14978253 | US | |
Parent | 13421525 | Mar 2012 | US |
Child | 14661565 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13299934 | Nov 2011 | US |
Child | 13421525 | US |