Map and ablate open irrigated hybrid catheter

Information

  • Patent Grant
  • 9393072
  • Patent Number
    9,393,072
  • Date Filed
    Tuesday, June 3, 2014
    9 years ago
  • Date Issued
    Tuesday, July 19, 2016
    7 years ago
Abstract
An embodiment of an open-irrigated catheter system comprises a tip section, a distal insert, and mapping electrodes. The tip section has an exterior wall that defines an open interior region within the tip section. The exterior wall includes mapping electrode openings and irrigation ports. The exterior wall is conductive for delivering radio frequency (RF) energy for an RF ablation procedure. The irrigation ports are in fluid communication with the open interior region to allow fluid to flow from the open interior region through the irrigation ports. The distal insert is positioned within the tip section to separate the open region into a distal fluid reservoir and a proximal fluid reservoir. The mapping electrodes are positioned in the mapping electrode openings in the tip section.
Description
TECHNICAL FIELD

This application relates generally to medical devices and, more particularly, to systems, devices and methods related to open-irrigated hybrid catheters used to perform mapping and ablation functions.


BACKGROUND

Aberrant conductive pathways disrupt the normal path of the heart's electrical impulses. For example, conduction blocks can cause the electrical impulse to degenerate into several circular wavelets that disrupt the normal activation of the atria or ventricles. The aberrant conductive pathways create abnormal, irregular, and sometimes life-threatening heart rhythms called arrhythmias. Ablation is one way of treating arrhythmias and restoring normal contraction. The sources of the aberrant pathways (called focal arrhythmia substrates) are located or mapped using mapping electrodes situated in a desired location. After mapping, the physician may ablate the aberrant tissue. In radio frequency (RF) ablation, RF energy is directed from the ablation electrode through tissue to an electrode to ablate the tissue and form a lesion.


SUMMARY

An embodiment of an open-irrigated catheter system comprises a tip section, a distal insert, and mapping electrodes. The tip section has an exterior wall that defines an open interior region within the tip section. The exterior wall includes mapping electrode openings and irrigation ports. The exterior wall is conductive for delivering radio frequency (RF) energy for an RF ablation procedure. The irrigation ports are in fluid communication with the open interior region to allow fluid to flow from the open interior region through the irrigation ports. The distal insert is positioned within the tip section to separate the open region into a distal fluid reservoir and a proximal fluid reservoir. The mapping electrodes are positioned in the mapping electrode openings in the tip section.


A catheter system embodiment comprises a conductive exterior wall with mapping electrode openings, wherein the conductive exterior wall is configured for use in delivering RF energy for ablation functions. The catheter system embodiment may, but need not, be an open-irrigated catheter. The catheter system embodiment includes mapping electrodes positioned in the mapping electrode openings, and noise artifact isolators positioned in the mapping electrode openings. The mapping electrodes are electrically insulated from the exterior wall by the noise artifact isolators.


An electrode assembly embodiment comprises an electrode, an electrode shaft, and a noise artifact isolator. The electrode has a circumference defining sides of the electrode, a first surface, and a second surface opposite the first surface. The electrode shaft extends from the second surface of the electrode, and is in electrical conduction with the electrode. The noise artifact isolator is in contact with the sides of the electrode and surrounds the circumference of the electrode.


A method of forming an open-irrigated catheter tip includes inserting a distal insert into a distal tip section and connecting the distal tip section to a proximally adjacent structure. Inserting the distal insert includes moving the distal insert into the distal tip section until a distal extension of the insert contacts a distal end of the distal tip section to self-position the distal insert proximate to irrigation ports.


This Summary is an overview of some of the teachings of the present application and not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details about the present subject matter are found in the detailed description and appended claims. The scope of the present invention is defined by the appended claims and their equivalents.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are illustrated by way of example in the figures of the accompanying drawings. Such embodiments are demonstrative and not intended to be exhaustive or exclusive embodiments of the present subject matter.



FIGS. 1A-1D illustrate an embodiment of a hybrid catheter with distal irrigation ports and three microelectrodes used to perform the mapping function.



FIGS. 2A-2D illustrate an embodiment of a hybrid catheter with distal irrigation ports and four microelectrodes used to perform the mapping function.



FIGS. 3A-3D illustrate a microelectrode with a noise artifact isolator, according to various embodiments.



FIGS. 4A-4C illustrate an embodiment of a hybrid catheter in which the tip body includes separate distal and proximal portions, and where both the distal and proximal portions of the tip body are configured to connect to the distal insert that separates the distal and proximal portions.



FIGS. 5A-5D illustrate an embodiment of a map and ablate catheter with distal and proximal irrigation ports.



FIGS. 6A-6B illustrate an embodiment of a map and ablate catheter with distal irrigation ports.



FIGS. 7A-7B illustrate another embodiment of a map and ablate catheter with distal irrigation ports and a proximal fluid chamber.



FIGS. 8A-8C illustrate various distal insert embodiments configured for self-alignment and configured to isolate electrical components from the irrigation fluid.



FIGS. 9A-9C illustrate various embodiments for realizing a seal area between the distal inserts and the exterior wall of the electrode tip.



FIG. 10 illustrates a section view of a tip electrode assembly embodiment that includes an embodiment of a distal insert.



FIG. 11 illustrates an embodiment of a mapping and ablation system that includes an open-irrigated catheter.





DETAILED DESCRIPTION

The following detailed description of the present invention refers to subject matter in the accompanying drawings which show, by way of illustration, specific aspects and embodiments in which the present subject matter may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present subject matter. References to “an,” “one,” or “various” embodiments in this disclosure are not necessarily to the same embodiment, and such references contemplate more than one embodiment. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope is defined only by the appended claims, along with the full scope of legal equivalents to which such claims are entitled.


This present subject matter generally relates to a radiofrequency (RF) ablation catheter system. The catheter is referred to as a hybrid catheter herein as it can be used simultaneously for both localized mapping and ablation functions. The hybrid catheter is configured to provide localized, high resolution ECG signals during ablation. The localized mapping enables the mapping to be more precise than that which can be achieved with conventional ablation catheters. The hybrid catheter has an open-irrigated catheter design. A cooling fluid, such as a saline, is delivered through the catheter to the catheter tip, where the fluid exits through irrigation ports to cool the electrode and surrounding tissue. Clinical benefits of such a catheter include, but are not limited to, controlling the temperature and reducing coagulum formation on the tip of the catheter, preventing impedance rise of tissue in contact with the catheter tip, and maximizing potential energy transfer to the tissue. Additionally, the localized intra cardiac electrical activity can be recorded in real time or near-real time right at the point of energy delivery.



FIGS. 1A-1D illustrate an embodiment of a hybrid catheter with distal irrigation ports and three microelectrodes used to perform the mapping function. The illustrated catheter 100 includes a catheter tip body 101, an open-irrigated tip section 102 used to perform mapping and ablation functions, and mapping electrodes 103. With reference to FIG. 1B, the illustrated embodiment includes a generally hollow tip body and a distal insert 104 disposed therein and configured to separate a proximal fluid reservoir 105 and distal fluid reservoir 106. The hollow tip body has an open interior region defined by an exterior wall of the tip section. Fluid flow through these reservoirs is used to provide targeted cooling of portions of the tip electrode. In the illustrated embodiment, the hollow tip body has a generally cylindrical shape. By way of an example and not limitation, an embodiment of tip body has a diameter on the order of about 0.08-0.1 inches, has a length on the order of about 0.2-0.3 inches, and has an exterior wall with a thickness on the order of 0.003-0.004 inches.


The illustrated distal insert 104 includes openings or apertures 107 sized to receive a microelectrode and its corresponding noise artifact isolator 108. These microelectrodes used in the mapping function to image localized intra cardiac activity. The device may be used to record high resolution, precise localized electrical activity, to prevent excessive heating of the ablation electrode, to allow greater delivery of power, to prevent the formation of coagulum and to provide the ability to diagnose complex ECG activity. The illustrated distal insert 104 also includes a fluid conduit or passage 109 to permit fluid to flow for the proximal fluid reservoir 105 to the distal fluid reservoir 106, a thermocouple opening 110 sized to receive a thermocouple 111, and openings 112 sized to receive electrical conductors 113 used to provide electrical connections to the microelectrodes 103. Also illustrated is a thermocouple wire 114 connected to the thermocouple 111. By way of example and not limitation, an embodiment of the distal insert is fabricated from stainless steel.


The tip section 102 is formed from a conductive material. For example, some embodiments use a platinum-iridium alloy. Some embodiments use an alloy with approximately 90% platinum and 10% iridium. This conductive material is used to conduct RF energy used to form legions during the ablation procedure. A plurality of irrigation ports 115 or exit ports are shown near the distal end of the tip section 102. By way of example and not limitation, an embodiment has irrigation ports with a diameter approximately within a range of 0.01 to 0.02 inches. Fluid, such as a saline solution, flows from the distal fluid reservoir 106, through these ports 115, to the exterior of the catheter. This fluid is used to cool the ablation electrode tip and the tissue near the electrode. This temperature control reduces coagulum formation on the tip of the catheter, prevents impedance rise of tissue in contact with the catheter tip, and increases energy transfer to the tissue because of the lower tissue impedance.



FIGS. 1A-1D illustrate a three microelectrode embodiment in which the three microelectrodes are used to perform mapping functions. However, the hybrid catheter may include other numbers of microelectrodes. For example, FIGS. 2A-2D illustrate an embodiment of a hybrid catheter with distal irrigation ports and four microelectrodes used to perform the mapping function.


The illustrated catheter 200 includes a catheter tip body 201, an open-irrigated tip section 202 used to perform mapping and ablation functions, and microelectrodes 203. With reference to FIG. 1B, the illustrated embodiment includes a generally hollow tip body and a distal insert 204 disposed therein and configured to separate a proximal fluid reservoir 205 and distal fluid reservoir 206. The illustrated distal insert 204 includes openings or apertures 207 sized to receive a microelectrode and its corresponding noise artifact isolator 208. The illustrated distal insert 204 also includes a fluid conduit or passage 209 to permit fluid to flow from the proximal fluid reservoir 205 to the distal fluid reservoir 206, a thermocouple opening 210 sized to receive a thermocouple 211, and openings 212 sized to receive electrical conductors 213 used to provide electrical connections to the microelectrodes 203. Also illustrated is a thermocouple wire 214 connected to the thermocouple 211.



FIGS. 3A-3D illustrate a microelectrode with a noise artifact isolator, according to various embodiments. The illustrated microelectrode 303 is surrounded by the noise artifact isolator 308. An electrode shaft 315 is connected to the electrode 303, and provides an electrical connection between the electrode and the electrical conductors. The microelectrodes are small, independent diagnostic sensing electrodes embedded within the walls of the ablation tip of the RF ablation catheter. The noise artifact isolator electrically isolates the small electrodes from the conductive walls of the ablation tip. According to various embodiments, the noise artifact isolator is a polymer-based material sleeve and/or adhesive that encapsulates the microelectrodes. The isolator has a lip 316 over the outside edge of the microelectrode circumference that blocks the RF pathway into the surface of the microelectrodes. According to various embodiments, the lip extends a distance within a range of approximately 0.002 to 0.020 inches past the surface of the electrode. According to various embodiments, the lip extends a distance of approximately 0.003 inches around the circumference of the microelectrode. The isolator isolates the noise entrance creating a much cleaner electrogram during an RF ablation mode. An in-vitro test result provides evidence that the illustrated isolator significantly reduce the noise artifact during RF. These electrically-isolated microelectrodes are able to sense highly localized electrical activity, avoid a far field component, and simultaneously achieve the ability to ablate tissue without noise artifact during RF mode.



FIGS. 4A-4C illustrate an embodiment of a hybrid catheter in which the tip body includes separate distal and proximal portions, and where both the distal and proximal portions of the tip body are configured to connect to the distal insert that separates the distal and proximal portions. The embodiment illustrated in FIGS. 4A-4C provides a design to simplify manufacturing of the open-irrigated, mapping and ablation catheter. The illustrated device has a distal and proximal chamber separated into proximal 417 and distal tip sections 418. These sections are separated by the distal insert 419, which accommodates microelectrodes 420, a cooling flow channel 421, and a thermocouple slot 422. The illustrated distal insert 419 includes openings or apertures 424 sized to receive a microelectrode and its corresponding noise artifact isolator 423, and openings 424 sized to receive electrical conductors 425 used to provide electrical connections to the microelectrodes 420. The distal tip has distal holes or irrigations ports 415 around the proximal edge of the domed section of the tip.


The illustrated distal insert has ends with distal and proximal lip edges 470D and 470P. Both the distal and proximal tip sections 418 and 417 are designed to fit over the lip edges of the distal insert ends. Specifically, a proximal side 471 of the distal tip section fits over the distal lip 470D and a distal side 472 of the proximal section fits over the proximal kip 470P. A middle portion of the distal insert, between the proximal and distal lips 470P and 470D, has an outer surface 473 substantially flush with an outer surface of the distal and proximal tip sections. In some embodiments, the distal and proximal tips sections are bonded to the distal insert. The bonding process may involve a swaging/mechanical locking method, precise laser welding, force press fit, soldering and other means of chemical/mechanical bonding. The separate tip design provides a simple assembly process to bond the thermocouple and simplifies cleaning of the device. FIG. 4B also illustrates a thermocouple. Thus, according to a method for forming an open-irrigated catheter tip, a distal lip of a distal insert is inserted in a proximal end of the distal tip section. Mapping electrodes are seated in mapping openings around a circumference of the distal insert. A distal end of a proximal tip section is inserted over a proximal lip of the distal insert. A bonding process is performed to bond the distal and proximal tip sections to the distal insert.



FIGS. 5A-5C illustrate an embodiment of a map and ablate catheter with distal and proximal irrigation ports. The illustrated embodiment provides an open-irrigation RF ablation catheter with mapping and ablation functions in a Blazer tip platform. The Blazer tip is a tip developed by Boston Scientific. The relatively large surface area of the Blazer tip allows more power to be delivered, which hallows a larger lesion to be made. The larger surface area also promotes increased passive cooling by blood over the electrode.


The illustrated catheter has a tip section 526 with distal fluid ports 527, and proximal fluid ports 528. The distal insert 529 is made of plastic components such as Ultem inside the tip which is designed to separate a proximal reservoir 530 and a distal reservoir 531 for targeted cooling portions of the tip electrode, provide openings for the cooling fluid and the thermocouple, and provide housing for the microelectrodes 532 to image real time localized intra cardiac activity. The ends of this distal insert are encapsulated with adhesives to completely isolate distal tip chamber from proximal tip chamber.


The cooling lumen 533 is designed to cool the proximal/distal chamber while insulating the microelectrode lead wire junction from cooling fluid. The cooling lumen 533 includes several micro holes 534 in the proximal area of the tip to allow fluid to pass through these micro holes 534 and through the distal end of the cooling lumen, cooling the proximal tip and ultimately exiting through the proximal tip holes 528. The cooling lumen and tip ports can be configured in different modes to optimize cooling efficiency for both distal and proximal chamber. For example, different diameter sizes and orientations can be implemented to adjust cooling.


Some embodiments include a three microelectrode configuration and some embodiments include a four microelectrode configuration. FIG. 5C illustrates a distal insert 529 for a four microelectrode configuration. The illustrated insert 529 has openings 536 through which an electrical connection can be made with the microelectrodes 532. The tip size is within a range of approximately 4-10 mm, for example. Some embodiments do not include a proximal cooling chamber. The microelectrodes 532, which are used in the mapping function, are isolated from the conductive tip used to perform the ablation using a noise artifact isolator 535.



FIG. 5D illustrates an embodiment of the present subject matter incorporated into a Blazer tip. The illustrated embodiment includes a catheter body 537 and a tip section 526, and includes a plurality of ring electrodes 538, the microelectrodes 532, distal fluid ports 527 and proximal fluid ports 528.



FIGS. 6A-6B illustrate an embodiment of a map and ablate catheter with distal irrigation ports 627. The cooling lumen 633 includes micro holes 634 to pass fluid in a proximal reservoir to cool the proximal portion of the tip. This fluid passes into the distal reservoir out through the distal fluid ports 627.


Some embodiments shorten the cooling lumen up to the proximal end of the distal insert, allowing the fluid to cool the proximal end of the chamber before passing the distal tip chamber and ultimately passing thru the distal tip holes. FIGS. 7A-7B illustrate an example of a map and ablate catheter with distal irrigation ports 727 and a proximal fluid chamber, where fluid exits a cooling lumen into a proximal reservoir 730 before passing into the distal reservoir 731 and exiting the distal irrigation ports 727.


Electrical signals, such as electrocardiograms (ECGs), are used during a cardiac ablation procedure to distinguish viable tissue from not viable tissue. If ECG amplitudes are seen to attenuate during the delivery of RF energy into the tissue, the delivery of RF energy into that specific tissue may be stopped. However, noise on the ECG signals makes it difficult to view attenuation. It is currently believed that internal cooling fluid circulation, cooling fluid circulating externally in contact with other electrodes, and/or fluid seepage in between the electrodes and their housing may cause the noise on this type of ablation catheter.


Various embodiments, as described below, isolate the microelectrode signal wires from the cooling fluid circulating in the proximal chamber of the hollow ablation electrode, and thus are expected to reduce the noise that is contributed from the internal cooling fluid circulation. The fluid seal can be provided without bonding or adhesive. The electrical components within the tip are isolated from the cooling flow of irrigation fluid while the irrigation fluid maintains internal cooling of the proximal and distal portions of the tip electrode. Further, as provided in more detail below, these designs have the potential of increasing the accuracy of the temperature readings from the thermocouple.


Various distal insert embodiments include design elements configured for self-positioning the distal insert during manufacturing. These embodiments reduce the number of processing steps to join the distal insert to the tip electrode.



FIGS. 8A-8C illustrate various distal insert embodiments configured for self-alignment and configured to isolate electrical components from the irrigation fluid. Some embodiments are configured for self-alignment, some embodiments are configured to isolate electrical components from the irrigation fluid, and some embodiments as illustrated are configured for both self-alignment and for isolating electrical components from the irrigation fluid. FIG. 8A illustrates a distal insert embodiment with fluid channels formed in a peripheral surface of the insert, FIG. 8B illustrates a distal insert embodiment with fluid lumens formed through the distal insert, and FIG. 8C illustrates a section view of the distal insert embodiment of FIG. 8A.


The illustrated distal inserts 832A and 832B include a distally-extending member 833. The distal insert includes a main body portion 834A and 834B and a channel 835 extending from a proximal channel end 836 through the main body portion to a distal channel end 837. The main body portion 834A and 834B has a circumference or outer diameter generally complementary to an inside diameter of the exterior wall of the tip section, and has a peripheral surface with openings 838 therein sized to receive the electrodes. The exterior wall of the tip section also has mapping electrode apertures. During assembly, the apertures in the exterior wall and the apertures in the distal insert are aligned, and the mapping electrodes are positioned and potted within the apertures. The channel has an interior passage that is isolated from the proximal fluid reservoir. Mapping electrode wires extend through the interior passage of the channel into smaller channels 839 in the main body portion of the distal insert to the mapping electrodes.


The distal insert embodiments illustrated in FIGS. 8A-8C include a circumferential groove 840, on which an o-ring is seated to form a seal between the distal insert and the exterior wall of the hollow electrode to prevent fluid from seeping around the side of the distal insert. This seal, generally illustrated in FIG. 8C as a seal area, prevents fluid from seeping between the distal insert and the exterior wall of the tip section, and between the electrodes and their housing.



FIGS. 9A-9C illustrate various embodiments for realizing a seal area between the distal inserts and the exterior wall of the electrode tip. FIG. 9A generally illustrates the groove 940 and o-ring 941, such as was generally illustrated in FIGS. 8A-8C. Other embodiments include annular or circumferential detents 942 formed as part of the main body and configured to extend away from the peripheral surface of the main body, as generally illustrated in FIG. 9B. These detents engage the interior surface of the exterior wall of the tip section, thus securing the distal insert within the tip section. Some embodiments, as generally illustrated in FIG. 9C, form the peripheral surface with a circumferential gasket 943 configured to provide a seal between the distal insert and the exterior wall. The gasket 943 may be formed from a flexible material such as a polymer. These embodiments for realizing a seal are not intended to be an exclusive list, as other seals may be used to seal the fluid from the mapping electrodes.



FIG. 10 illustrates a section view of a tip electrode assembly embodiment 1044 that includes an embodiment of a distal insert 1032. The distal insert partitions a hollow ablation electrode into a proximal chamber 1045 and a distal chamber 1046, thus allowing cooling of the proximal chamber 1045. The cooling of the proximal chamber 1045 mitigates heating known as “edge effect” before the fluid is directed into the distal chamber 1046 and discharged through irrigation ports into the vasculature. The distal insert houses multiple, smaller electrodes in apertures 1038 in the tip electrode to provide localized electrical information.


The illustrated embodiment simplifies and improves the consistency of the method for positioning the insert into the hollow tip electrode. The distal insert 1032 is inserted into the hollow tip electrode 1044 and is automatically located within the electrode due to the distally-extending member 1033 of the isolation channel. The outer diameter of the insert and the o-ring are designed such that no additional adhesive is necessary to form a seal between the tip and the distal insert. The proximal section 1047 of the isolation channel terminates in a slot of the adjacent component 1048 that is potted with adhesive.


The exterior wall of the tip section has a distal end 1049 separated from the irrigation ports 1050 of the electrode by a predetermined distance 1051, and the distally-extending member is configured with a predetermined length 1052 to position the distal insert in the tip section on a proximal side of the irrigation ports 1050 when the distal channel end abuts the distal end of the exterior wall of the electrode.


When the apparatus is inserted into a hollow tip electrode in the direction illustrated by arrow 1053, the distal section of the isolated channel has a length that positions the distal edge of the insert above or proximal to the irrigation ports, allowing the irrigation ports provide fluid communication between the distal chamber and the exterior of the ablation electrode.


The overall diameter of the apparatus is similar enough to the inside diameter of the tip electrode that an o-ring placed in the circumferential groove provides an adequate seal forcing cooling fluid to flow through the fluid channels 1054, also illustrated in FIG. 8A at 854. Because of the design characteristics, manufacturing processes are reduced. The channel houses the thermocouple and signal wires from the microelectrodes. The proximal end of the insulated channel terminates in the adjacent structure within the tip, which is potted with epoxy and isolated from the cooling fluid. The thermocouple is in contact with the distal end of the electrode tip. Some embodiments provide slots 1055 at the distal channel end of the channel allowing cooling fluid to circulate into contact with the thermocouple. Some embodiments do not include slots, but rather provide a fluid-tight seal between the channel and the distal end of the electrode tip, such that the fluid does not circulate into contact with the thermocouple.


RF generators are configured with a cut-off temperature, where the RF ablation energy is cut off if the temperature reaches a particular level. However, some RF generators are configured with a relatively low cut-off temperature that reflects a less-than-accurate temperature measurement. The slots 1055 are believed to allow the embodiments of the present subject matter to operate with such devices. Various embodiments provide four slots. Other embodiments include other numbers of slots. Embodiments that include a slotted channel seal the channel at a more proximate position to prevent fluid from traveling through the channel toward the wiring. Some embodiments do not include slots, but rather seal the distal channel end to the distal wall of the electrode to prevent fluid from contacting the thermocouple. Such embodiments that isolate the thermocouple are believed to provide more accurate temperature measurements.


The distal insert includes fluid paths from the proximal chamber to the distal chamber to create a back pressure as fluid enters the proximal chamber, causing the fluid to circulate before being forced through the channels into the distal chamber. According to various embodiments, the fluid paths have an equal cross-sectional area and equally positioned around the center of the distal insert. Various embodiments include three equally-spaced fluid paths. In some embodiments, the fluid paths are fluid channels 856 formed in a peripheral surface 857 of the main body of the distal insert. The fluid channels provide the fluid pathways toward the exterior of the distal insert, thus allowing the insert to seat more electrodes around its circumference. In some embodiments, the fluid paths are lumens 858 formed through the main body of the distal insert. The lumens 858 provide further isolation of the mapping electrodes from the fluid, as the fluid flowing through the lumens is not in contact with the interface between the peripheral surface of the insert and the inner surface of the exterior wall of the electrode.


Wire channel branches, illustrated at 839 in FIG. 8C and at 1039 in FIG. 10, allow the signal wires from the microelectrodes to enter the isolated channel. The illustrated embodiment is designed with three equally-spaced microelectrodes. Thus, the distal electrode embodiment includes three wire channels extending from an electrode aperture in the distal insert to the wire channel. According to various embodiments, these channel branches are angled (e.g. 15 to 60 degrees) to aid wire threading. This entire section is potted with adhesive to isolate this section from any potential cooling fluid.



FIG. 10 also generally illustrates a method for forming an open-irrigated catheter tip. A distal insert 1032 is inserted into a distal tip section or hollow electrode 1044. The distal insert includes a distal extension and the distal tip section includes a distal end and irrigation ports separated from the distal end by a predetermined distance. Inserting the distal insert includes moving the distal insert into the distal tip section until the distal extension contacts the distal end of the distal tip section to self-position the distal insert proximate to the irrigation portions. The distal tip section is connected to a proximally adjacent structure. For example, some embodiments swage the distal tip section to join the distal tip section against the proximally adjacent structure 1044. The distal insert partitions the distal tip section into a distal fluid reservoir between the distal insert and the distal end, and a proximal fluid reservoir between the distal insert and the proximally adjacent structure. The distal insert provides fluid communication between the distal and proximal fluid reservoirs. In various embodiments, inserting the distal insert into the distal tip section includes aligning mapping electrode apertures in the distal insert with mapping electrode apertures in the distal tip section. The mapping electrodes are seated into the mapping electrode apertures. Wires connected to the mapping electrodes run through the channel of the distal insert.



FIG. 11 illustrates an embodiment of a mapping and ablation system 1156 that includes an open-irrigated catheter. The illustrated catheter includes an ablation tip 1157 with mapping microelectrodes 1158 and with irrigation ports 1159. The catheter can be functionally divided into four regions: the operative distal probe assembly region (e.g. the distal portion of catheter body 1160), a main catheter region 1161, a deflectable catheter region 1162, and a proximal catheter handle region where a handle assembly 1163 including a handle is attached. A body of the catheter includes a cooling fluid lumen and may include other tubular element(s) to provide the desired functionality to the catheter. The addition of metal in the form of a braided mesh layer sandwiched in between layers of plastic tubing may be used to increase the rotational stiffness of the catheter.


The deflectable catheter region 1162 allows the catheter to be steered through the vasculature of the patient and allows the probe assembly to be accurately placed adjacent the targeted tissue region. A steering wire (not shown) may be slidably disposed within the catheter body. The handle assembly may include a steering member such as a rotating steering knob that is rotatably mounted to the handle. Rotational movement of the steering knob relative to the handle in a first direction may cause a steering wire to move proximally relative to the catheter body which, in turn, tensions the steering wire, thus pulling and bending the catheter deflectable region into an arc; and rotational movement of the steering knob relative to the handle in a second direction may cause the steering wire to move distally relative to the catheter body which, in turn, relaxes the steering wire, thus allowing the catheter to return toward its form. To assist in the deflection of the catheter, the deflectable catheter region may be made of a lower durometer plastic than the main catheter region.


The illustrated system 1156 includes an RF generator 1164 used to generate the energy for the ablation procedure. The RF generator 1164 includes a source 1165 for the RF energy and a controller 1166 for controlling the timing and the level of the RF energy delivered through the tip 1157. The illustrated system 1156 also includes a fluid reservoir and pump 1167 for pumping cooling fluid, such as a saline, through the catheter and out through the irrigation ports 1159. A mapping signal processor 1168 is connected to the electrodes 1158, also referred to herein as microelectrodes. The mapping signal processor 1168 and electrodes 1158 detect electrical activity of the heart. This electrical activity is evaluated to analyze an arrhythmia and to determine where to deliver the ablation energy as a therapy for the arrhythmia. One of ordinary skill in the art will understand that, the modules and other circuitry shown and described herein can be implemented using software, hardware, and/or firmware. Various disclosed methods may be implemented as a set of instructions contained on a computer-accessible medium capable of directing a processor to perform the respective method.


This application is intended to cover adaptations or variations of the present subject matter. It is to be understood that the above description is intended to be illustrative, and not restrictive. The scope of the present subject matter should be determined with reference to the appended claims, along with the full scope of legal equivalents to which such claims are entitled.

Claims
  • 1. An open-irrigated catheter system for performing mapping and ablation functions, comprising: a tip section having an exterior wall that defines an open interior region within the tip section, wherein the exterior wall includes a plurality of mapping electrode openings, wherein at least one of the mapping electrode openings is spaced apart from a distal end of the exterior wall of the tip section, wherein the exterior wall includes at least one irrigation port in fluid communication with the open interior, and wherein the exterior wall is conductive for delivering radio frequency (RF) energy for an RF ablation procedure; a distal insert positioned within the tip section separating the open interior region into a distal fluid reservoir and a proximal fluid reservoir; a fluid path extending through the open interior region and in fluid communication with the distal fluid reservoir, the proximal fluid reservoir, and at least one irrigation port; a plurality of mapping electrodes seated in the distal insert and aligned with the mapping electrode openings in the tip section; wherein the distal insert has a peripheral surface with openings therein sized to receive at least one insulating element, wherein the distal insert includes at least one insulating element electrically insulating the mapping electrodes from the fluid path, the at least one insulating element including at least one insulated channel configured to electrically insulated wires extending from the plurality of mapping electrodes from the fluid path.
  • 2. The system of claim 1, wherein each mapping electrode has a peripheral surface extending transverse to a longitudinal axis of the tip section, an inner surface facing the open interior region, and an outer surface facing laterally away from the tip section, wherein each insulating element covers the peripheral surface and the inner surface of its corresponding mapping electrode.
  • 3. The system of claim 1, wherein the distal insert defines a fluid conduit extending from the distal fluid reservoir to the proximal fluid reservoir.
  • 4. The system of claim 1, wherein the at least one irrigation port in fluid communication with the open interior region includes at least one distal irrigation port in fluid communication with the distal fluid reservoir.
  • 5. The system of claim 1, wherein the at least one irrigation port in fluid communication with the open interior region includes at least one proximal irrigation port in fluid communication with the proximal fluid reservoir.
  • 6. The system of claim 1, wherein the at least one irrigation port in fluid communication with the open interior region includes at least one distal irrigation port in fluid communication with the distal fluid reservoir and at least one proximal irrigation port in fluid communication with the proximal fluid reservoir.
  • 7. The system of claim 1, further comprising a fluid cooling lumen extending through the distal insert to deliver fluid to the distal fluid reservoir, the fluid cooling lumen having a wall with openings therein to deliver fluid to the proximal fluid reservoir.
  • 8. The system of claim 1, wherein: the tip section includes a proximal section and a distal section, the proximal section including a distal side, and the distal section including a proximal side;the distal insert includes a proximal lip on a proximal end of the distal insert and a distal lip on a distal end of the distal insert;the proximal side of the distal section fits over the distal lip; and the distal side of the proximal section fits over the proximal lip.
  • 9. The system of claim 8, wherein the distal insert includes a middle portion between the proximal and distal lips, the middle portion having an outer surface substantially flush with an outer surface of the proximal section and with an outer surface of the distal section.
  • 10. The system of claim 1, wherein: the at least one irrigation port is separated from the distal end of the exterior wall of the tip section by a predetermined distance; andthe distal insert includes a distally-extending member terminating in a distal channel end, wherein the distally-extending member is configured with a first predetermined length to position the distal insert in the tip section on a proximal side of the at least one irrigation port when the distal channel end of the distally-extending member abuts the distal end of the exterior wall.
  • 11. The system of claim 1, wherein: the at least one irrigation port is separated from the distal end of the exterior wall of the tip section by a predetermined distance;the distal insert includes a main body portion and at least one of the insulated channel extending from a proximal channel end through the main body portion to a distal channel end, the main body portion having a circumference generally complementary to an inner diameter of the exterior wall;the distal channel end abuts a distal wall of the tip section, the main body is positioned on a proximal side of the at least one irrigation port, and the proximal channel end is connected to a proximally adjacent structure;the insulated channel has an interior passage that is isolated insulated from the proximal fluid reservoir; andthe system includes wires extending through the interior passage of the insulated channel into the main body portion of the distal insert to the mapping electrodes.
  • 12. The system of claim 1, further comprising a thermocouple.
  • 13. The system of claim 1, wherein the at least one insulating element has a generally annular shape.
  • 14. The system of claim 1, wherein the mapping electrodes include three mapping electrodes approximately equally spaced from each other about a circumference of the tip section.
  • 15. The system of claim 1, wherein the mapping electrodes include four mapping electrodes approximately equally spaced from each other spaced about a circumference of the tip section.
  • 16. An open-irrigated catheter system for performing mapping and ablation functions, comprising: a tip section having an exterior wall that defines an open interior region within the tip section, wherein the exterior wall includes a plurality of mapping electrode openings in fluid communication with the open interior, wherein at least one of the mapping electrode openings is spaced apart from a distal end of the exterior wall of the tip section, wherein the exterior wall includes at least one irrigation port in fluid communication with the open interior region and wherein the exterior wall is conductive for delivering radio frequency (RF) energy for an RF ablation procedure; a distal insert within the tip section separating the open interior region into a distal fluid reservoir and a proximal fluid reservoir; a fluid path extending through the tip section and in fluid communication with the at least one irrigation port; a plurality of mapping electrodes seated in the distal insert and in alignment with the mapping electrode openings in the tip section, wherein each mapping electrode has a peripheral surface extending transverse to a longitudinal axis of the tip section, an inner surface facing the interior of the tip section, and an outer surface facing laterally away from the tip section; wherein the distal insert includes at least one insulating element electrically insulating the mapping electrodes from the fluid path, wherein each insulating element cover the peripheral surface and the inner surface of its corresponding mapping electrode, wherein the at least one insulating element includes at least on insulated channel configured to electrically insulate wires extending from the plurality of mapping electrodes from the fluid path.
  • 17. The system of claim 16, further comprising a distal insert positioned within the tip section separating the open interior region into a distal fluid reservoir and a proximal fluid reservoir, wherein the distal insert has a peripheral surface with openings therein sized to receive the at least one insulating element.
  • 18. The system of claim 16, wherein the insulating elements extend outward from the exterior wall past an outside surface of the mapping electrodes.
  • 19. An open-irrigated catheter system for performing mapping and ablation functions, comprising: a tip section having an exterior wall that defines an open interior region within the tip section, wherein the exterior wall includes at least three mapping electrode openings and at least one irrigation port in fluid communication with the open interior region, wherein the exterior wall is conductive for delivering radio frequency (RF) energy for an RF ablation procedure;a distal insert positioned within the tip section and separating the open interior region into a distal fluid reservoir and a proximal fluid reservoir, the distal insert defining a fluid conduit extending from the distal fluid reservoir to the proximal fluid reservoir, the distal insert having a peripheral surface with openings therein sized to receive the insulating elements, wherein the insulating elements electrically insulate the mapping electrodes from the distal insert, wherein at least one of the irrigation ports is in fluid communication with the distal fluid reservoir;at least three mapping electrodes seated in the distal insert and aligned with the at least three mapping electrode openings;at least three insulating elements surrounding the at least three mapping electrodes;at least one insulated channel configured to electrically insulated wires extending from the at least three mapping electrodes from fluid within the open interior region.
  • 20. The system of claim 19, wherein at least one of the irrigation ports is in fluid communication with the proximal fluid reservoir.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/859,523, filed Apr. 9, 2013, now U.S. Pat. No. 8,740,900; which is a continuation of U.S. application Ser. No. 12/821,459, filed Jun. 23, 2010, now U.S. Pat. No. 8,414,579; which claims the benefit of U.S. Provisional Application No. 61/325,456, filed on Apr. 19, 2010 and U.S. Provisional Application No. 61/221,967, filed on Jun 30, 2009, under 35 U.S.C. §119(e), the entire disclosures of which are incorporated herein by reference.

US Referenced Citations (366)
Number Name Date Kind
3773401 Douklias et al. Nov 1973 A
4732149 Sutter Mar 1988 A
4763660 Kroll et al. Aug 1988 A
5029588 Yock et al. Jul 1991 A
5154387 Trailer Oct 1992 A
5178150 Silverstein et al. Jan 1993 A
5217460 Knoepfler Jun 1993 A
5238004 Sahatjian et al. Aug 1993 A
5240003 Lancee et al. Aug 1993 A
5254088 Lundquist et al. Oct 1993 A
5295482 Clare et al. Mar 1994 A
5318589 Lichtman Jun 1994 A
5324284 Imran Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5334193 Nardella Aug 1994 A
5341807 Nardella Aug 1994 A
5383874 Jackson et al. Jan 1995 A
5385146 Goldreyer Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5391199 Ben-Haim Feb 1995 A
5398683 Edwards et al. Mar 1995 A
5423811 Imran et al. Jun 1995 A
5447529 Marchlinski et al. Sep 1995 A
5462521 Brucker et al. Oct 1995 A
5482054 Slater et al. Jan 1996 A
5485849 Panescu et al. Jan 1996 A
5494042 Panescu et al. Feb 1996 A
5500012 Brucker et al. Mar 1996 A
5520683 Subramaniam et al. May 1996 A
5571088 Lennox et al. Nov 1996 A
5573535 Viklund Nov 1996 A
5579764 Goldreyer Dec 1996 A
5582609 Swanson et al. Dec 1996 A
5647870 Kordis et al. Jul 1997 A
5718701 Shai et al. Feb 1998 A
5722402 Swanson et al. Mar 1998 A
5762067 Dunham et al. Jun 1998 A
5788636 Curley Aug 1998 A
5800482 Pomeranz et al. Sep 1998 A
5820568 Willis Oct 1998 A
5830213 Panescu et al. Nov 1998 A
5833621 Panescu et al. Nov 1998 A
5836990 Li Nov 1998 A
5868735 Lafontaine Feb 1999 A
5871483 Jackson et al. Feb 1999 A
5913856 Chia et al. Jun 1999 A
5916213 Haissaguerre et al. Jun 1999 A
5919188 Shearon et al. Jul 1999 A
6004269 Crowley et al. Dec 1999 A
6027500 Buckles et al. Feb 2000 A
6050994 Sherman Apr 2000 A
6059778 Sherman May 2000 A
6064905 Webster, Jr. et al. May 2000 A
6070094 Swanson et al. May 2000 A
6083170 Ben-Haim Jul 2000 A
6083222 Klein et al. Jul 2000 A
6099524 Lipson et al. Aug 2000 A
6101409 Swanson et al. Aug 2000 A
6116027 Smith et al. Sep 2000 A
6120476 Fung et al. Sep 2000 A
6165123 Thompson Dec 2000 A
6171305 Sherman Jan 2001 B1
6200314 Sherman Mar 2001 B1
6206831 Suorsa et al. Mar 2001 B1
6210337 Dunham et al. Apr 2001 B1
6216027 Willis et al. Apr 2001 B1
6224557 Ziel et al. May 2001 B1
6233491 Kordis et al. May 2001 B1
6241754 Swanson et al. Jun 2001 B1
6270493 Lalonde et al. Aug 2001 B1
6290697 Tu et al. Sep 2001 B1
6352534 Paddock et al. Mar 2002 B1
6400981 Govari Jun 2002 B1
6423002 Hossack Jul 2002 B1
6475213 Whayne et al. Nov 2002 B1
6488678 Sherman Dec 2002 B2
6491710 Satake Dec 2002 B2
6508767 Burns et al. Jan 2003 B2
6508769 Bonnefous Jan 2003 B2
6508803 Horikawa et al. Jan 2003 B1
6516667 Broad et al. Feb 2003 B1
6517533 Swaminathan Feb 2003 B1
6517534 McGovern et al. Feb 2003 B1
6537271 Murray et al. Mar 2003 B1
6544175 Newman Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6569162 He May 2003 B2
6572547 Miller et al. Jun 2003 B2
6575966 Lane et al. Jun 2003 B2
6575969 Rittman et al. Jun 2003 B1
6579278 Bencini Jun 2003 B1
6582372 Poland Jun 2003 B2
6589182 Loftman et al. Jul 2003 B1
6592525 Miller et al. Jul 2003 B2
6602242 Fung et al. Aug 2003 B1
6611699 Messing Aug 2003 B2
6620103 Bruce et al. Sep 2003 B1
6632179 Wilson et al. Oct 2003 B2
6638222 Chandrasekaran et al. Oct 2003 B2
6640120 Swanson et al. Oct 2003 B1
6647281 Morency Nov 2003 B2
6656174 Hegde et al. Dec 2003 B1
6658279 Swanson et al. Dec 2003 B2
6666862 Jain et al. Dec 2003 B2
6671533 Chen et al. Dec 2003 B2
6676606 Simpson et al. Jan 2004 B2
6689128 Sliwa, Jr. et al. Feb 2004 B2
6692441 Poland et al. Feb 2004 B1
6702811 Stewart et al. Mar 2004 B2
6705992 Gatzke Mar 2004 B2
6709396 Flesch et al. Mar 2004 B2
6711429 Gilboa et al. Mar 2004 B1
6719756 Muntermann Apr 2004 B1
6735465 Panescu May 2004 B2
6736814 Manna et al. May 2004 B2
6743174 Ng et al. Jun 2004 B2
6773402 Govari et al. Aug 2004 B2
6776758 Peszynski et al. Aug 2004 B2
6795721 Coleman et al. Sep 2004 B2
6796979 Lentz Sep 2004 B2
6796980 Hall Sep 2004 B2
6804545 Fuimaono et al. Oct 2004 B2
6805128 Pless et al. Oct 2004 B1
6811550 Holland et al. Nov 2004 B2
6824517 Salgo et al. Nov 2004 B2
6837884 Woloszko Jan 2005 B2
6837886 Collins et al. Jan 2005 B2
6845264 Skladnev et al. Jan 2005 B1
6917834 Koblish et al. Jul 2005 B2
6922579 Taimisto et al. Jul 2005 B2
6923808 Taimisto Aug 2005 B2
6932811 Hooven et al. Aug 2005 B2
6945938 Grunwald Sep 2005 B2
6950689 Willis et al. Sep 2005 B1
6952615 Satake Oct 2005 B2
6958040 Oliver et al. Oct 2005 B2
7001383 Keidar Feb 2006 B2
7037264 Poland May 2006 B2
7047068 Haissaguerre May 2006 B2
7097643 Cornelius et al. Aug 2006 B2
7105122 Karason Sep 2006 B2
7112198 Satake Sep 2006 B2
7115122 Swanson et al. Oct 2006 B1
7131947 Demers Nov 2006 B2
7166075 Varghese et al. Jan 2007 B2
7220233 Nita et al. May 2007 B2
7232433 Schlesinger et al. Jun 2007 B1
7247155 Hoey et al. Jul 2007 B2
7270634 Scampini et al. Sep 2007 B2
7278993 Kelly et al. Oct 2007 B2
7288088 Swanson Oct 2007 B2
7291142 Eberl et al. Nov 2007 B2
7306561 Sathyanarayana Dec 2007 B2
7311708 McClurken Dec 2007 B2
7335052 D'Sa Feb 2008 B2
7347820 Bonnefous Mar 2008 B2
7347821 Dkyba et al. Mar 2008 B2
7347857 Anderson et al. Mar 2008 B2
7361144 Levrier et al. Apr 2008 B2
7387126 Cox et al. Jun 2008 B2
7422591 Phan Sep 2008 B2
7438714 Phan Oct 2008 B2
7455669 Swanson Nov 2008 B2
7488289 Suorsa et al. Feb 2009 B2
7507205 Borovsky et al. Mar 2009 B2
7519410 Taimisto et al. Apr 2009 B2
7529393 Peszynski et al. May 2009 B2
7534207 Shehada et al. May 2009 B2
7544164 Knowles et al. Jun 2009 B2
7549988 Eberl et al. Jun 2009 B2
7569052 Phan et al. Aug 2009 B2
7578791 Rafter Aug 2009 B2
7582083 Swanson Sep 2009 B2
7585310 Phan et al. Sep 2009 B2
7648462 Jenkins et al. Jan 2010 B2
7697972 Verard et al. Apr 2010 B2
7704208 Thiele Apr 2010 B2
7720420 Kajita May 2010 B2
7727231 Swanson Jun 2010 B2
7736362 Eberl et al. Jun 2010 B2
7740629 Anderson et al. Jun 2010 B2
7758508 Thiele et al. Jul 2010 B1
7766833 Lee et al. Aug 2010 B2
7776033 Swanson Aug 2010 B2
7785324 Eberl Aug 2010 B2
7794398 Salgo Sep 2010 B2
7796789 Salgo et al. Sep 2010 B2
7799025 Wellman Sep 2010 B2
7815572 Loupas Oct 2010 B2
7819863 Eggers et al. Oct 2010 B2
7837624 Hossack et al. Nov 2010 B1
7859170 Knowles et al. Dec 2010 B2
7862561 Swanson et al. Jan 2011 B2
7862562 Eberl Jan 2011 B2
7892228 Landis et al. Feb 2011 B2
7918850 Govari et al. Apr 2011 B2
8016822 Swanson Sep 2011 B2
8128617 Bencini et al. Mar 2012 B2
8221409 Cao et al. Jul 2012 B2
8414579 Kim et al. Apr 2013 B2
8579889 Bencini Nov 2013 B2
8657814 Werneth et al. Feb 2014 B2
8740900 Kim et al. Jun 2014 B2
8894643 Watson et al. Nov 2014 B2
8945015 Rankin et al. Feb 2015 B2
9089340 Hastings et al. Jul 2015 B2
9125668 Subramaniam et al. Sep 2015 B2
9211156 Kim et al. Dec 2015 B2
20010029371 Kordis Oct 2001 A1
20020087208 Koblish et al. Jul 2002 A1
20020107511 Collins et al. Aug 2002 A1
20030004506 Messing Jan 2003 A1
20030013958 Govari et al. Jan 2003 A1
20030088240 Saadat May 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030158549 Swanson Aug 2003 A1
20030229286 Lenker Dec 2003 A1
20040006268 Gilboa et al. Jan 2004 A1
20040082860 Haissaguerre Apr 2004 A1
20040092806 Sagon et al. May 2004 A1
20040116793 Taimisto et al. Jun 2004 A1
20040147920 Keidar Jul 2004 A1
20040162556 Swanson Aug 2004 A1
20040186467 Swanson et al. Sep 2004 A1
20040210136 Varghese et al. Oct 2004 A1
20040215177 Swanson Oct 2004 A1
20040215186 Cornelius et al. Oct 2004 A1
20050033331 Burnett et al. Feb 2005 A1
20050059862 Phan Mar 2005 A1
20050059962 Phan et al. Mar 2005 A1
20050059963 Phan et al. Mar 2005 A1
20050059965 Eberl et al. Mar 2005 A1
20050065506 Phan Mar 2005 A1
20050065508 Johnson et al. Mar 2005 A1
20050070894 McClurken Mar 2005 A1
20050090817 Phan Apr 2005 A1
20050119545 Swanson Jun 2005 A1
20050119648 Swanson Jun 2005 A1
20050119649 Swanson Jun 2005 A1
20050119653 Swanson Jun 2005 A1
20050119654 Swanson et al. Jun 2005 A1
20050124881 Kanai et al. Jun 2005 A1
20050187544 Swanson et al. Aug 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20050228504 Demarais Oct 2005 A1
20050273060 Levy et al. Dec 2005 A1
20060089634 Anderson et al. Apr 2006 A1
20060100522 Yuan et al. May 2006 A1
20060161146 Cornelius et al. Jul 2006 A1
20060247607 Cornelius et al. Nov 2006 A1
20060247683 Danek et al. Nov 2006 A1
20060253028 Lam et al. Nov 2006 A1
20060253116 Avitall et al. Nov 2006 A1
20070003811 Zerfass et al. Jan 2007 A1
20070016054 Yuan et al. Jan 2007 A1
20070016059 Morimoto et al. Jan 2007 A1
20070016228 Salas Jan 2007 A1
20070021744 Creighton Jan 2007 A1
20070049925 Phan et al. Mar 2007 A1
20070055225 Dodd, III et al. Mar 2007 A1
20070073135 Lee et al. Mar 2007 A1
20070088345 Larson et al. Apr 2007 A1
20070165916 Cloutier et al. Jul 2007 A1
20070167813 Lee et al. Jul 2007 A1
20070270794 Anderson et al. Nov 2007 A1
20080009733 Saksena Jan 2008 A1
20080015568 Paul et al. Jan 2008 A1
20080025145 Peszynski et al. Jan 2008 A1
20080058836 Moll et al. Mar 2008 A1
20080086073 McDaniel Apr 2008 A1
20080091109 Abraham Apr 2008 A1
20080140065 Rioux et al. Jun 2008 A1
20080161705 Podmore et al. Jul 2008 A1
20080161795 Wang et al. Jul 2008 A1
20080195089 Thiagalingam et al. Aug 2008 A1
20080228111 Nita Sep 2008 A1
20080243214 Koblish Oct 2008 A1
20080275428 Tegg et al. Nov 2008 A1
20080281322 Sherman et al. Nov 2008 A1
20080287803 Li et al. Nov 2008 A1
20080300454 Goto Dec 2008 A1
20080312713 Wilfley et al. Dec 2008 A1
20090030312 Hadjicostis Jan 2009 A1
20090048591 Ibrahim et al. Feb 2009 A1
20090062790 Malchano et al. Mar 2009 A1
20090062795 Vakharia et al. Mar 2009 A1
20090076390 Lee et al. Mar 2009 A1
20090093810 Subramaniam et al. Apr 2009 A1
20090093811 Koblish et al. Apr 2009 A1
20090099472 Remmert et al. Apr 2009 A1
20090131932 Vakharia et al. May 2009 A1
20090163904 Miller et al. Jun 2009 A1
20090171341 Pope et al. Jul 2009 A1
20090182316 Bencini Jul 2009 A1
20090216125 Lenker Aug 2009 A1
20090240247 Rioux et al. Sep 2009 A1
20090259274 Simon et al. Oct 2009 A1
20090287202 Ingle et al. Nov 2009 A1
20090292209 Hadjicostis Nov 2009 A1
20090299355 Bencini et al. Dec 2009 A1
20090299360 Ormsby Dec 2009 A1
20100010487 Phan et al. Jan 2010 A1
20100057072 Roman et al. Mar 2010 A1
20100094274 Narayan et al. Apr 2010 A1
20100106155 Anderson et al. Apr 2010 A1
20100113938 Park et al. May 2010 A1
20100145221 Brunnett et al. Jun 2010 A1
20100152728 Park et al. Jun 2010 A1
20100168557 Deno et al. Jul 2010 A1
20100168568 Sliwa Jul 2010 A1
20100168570 Sliwa et al. Jul 2010 A1
20100168831 Korivi et al. Jul 2010 A1
20100249599 Hastings et al. Sep 2010 A1
20100249603 Hastings et al. Sep 2010 A1
20100249604 Hastings et al. Sep 2010 A1
20100298826 Leo et al. Nov 2010 A1
20100331658 Kim et al. Dec 2010 A1
20110009857 Subramaniam et al. Jan 2011 A1
20110022041 Ingle et al. Jan 2011 A1
20110028820 Lau et al. Feb 2011 A1
20110028826 Kim et al. Feb 2011 A1
20110071400 Hastings et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110112569 Friedman et al. May 2011 A1
20110125143 Gross et al. May 2011 A1
20110130648 Beeckler et al. Jun 2011 A1
20110144491 Sliwa et al. Jun 2011 A1
20110144524 Fish et al. Jun 2011 A1
20110160584 Paul et al. Jun 2011 A1
20110224667 Koblish et al. Sep 2011 A1
20120095347 Adam et al. Apr 2012 A1
20120101398 Ramanathan et al. Apr 2012 A1
20120136351 Weekamp et al. May 2012 A1
20120172698 Hastings et al. Jul 2012 A1
20120172727 Hastings et al. Jul 2012 A1
20120172871 Hastings et al. Jul 2012 A1
20120310064 McGee Dec 2012 A1
20120330304 Vegesna et al. Dec 2012 A1
20130023897 Wallace Jan 2013 A1
20130066312 Subramaniam et al. Mar 2013 A1
20130066315 Subramaniam et al. Mar 2013 A1
20130172715 Just et al. Jul 2013 A1
20130172742 Rankin et al. Jul 2013 A1
20130190747 Koblish et al. Jul 2013 A1
20130197363 Rankin et al. Aug 2013 A1
20130274582 Afonso et al. Oct 2013 A1
20140012251 Himmelstein et al. Jan 2014 A1
20140058375 Koblish Feb 2014 A1
20140066764 Subramaniam et al. Mar 2014 A1
20140073893 Bencini Mar 2014 A1
20140075753 Haarer et al. Mar 2014 A1
20140081111 Tun et al. Mar 2014 A1
20140081112 Kim et al. Mar 2014 A1
20140081113 Cohen et al. Mar 2014 A1
20140081262 Koblish et al. Mar 2014 A1
20140107453 Maskara et al. Apr 2014 A1
20140107636 Bencini Apr 2014 A1
20140276052 Rankin et al. Sep 2014 A1
20150011995 Avitall et al. Jan 2015 A1
20150133914 Koblish May 2015 A1
20150133920 Rankin et al. May 2015 A1
20150265341 Koblish Sep 2015 A1
20150265348 Avitall et al. Sep 2015 A1
20150342672 Bencini et al. Dec 2015 A1
20150374436 Subramaniam et al. Dec 2015 A1
20160100884 Fay et al. Apr 2016 A1
Foreign Referenced Citations (88)
Number Date Country
2682055 Oct 2008 CA
2847846 Mar 2013 CA
2848053 Mar 2013 CA
1455655 Nov 2003 CN
103917185 Jul 2014 CN
103987336 Aug 2014 CN
104619259 May 2015 CN
104661609 May 2015 CN
1343426 Sep 2003 EP
1343427 Sep 2003 EP
1502542 Feb 2005 EP
1547537 Jun 2005 EP
0985423 Apr 2006 EP
1690510 Aug 2006 EP
1717601 Nov 2006 EP
1935332 Jun 2008 EP
1343426 Oct 2012 EP
2755587 Jul 2014 EP
2755588 Jul 2014 EP
2136702 Jul 2015 EP
2000000242 Jan 2000 JP
200083918 Mar 2000 JP
2006239414 Sep 2006 JP
2007163559 Jun 2007 JP
2007244857 Sep 2007 JP
2009142653 Dec 2008 JP
2009518150 May 2009 JP
2010522623 Jul 2010 JP
5336465 Nov 2013 JP
2014012174 Jan 2014 JP
2014531244 Nov 2014 JP
2015501162 Jan 2015 JP
2015509027 Mar 2015 JP
20100021401 Feb 2010 KR
101490374 Feb 2015 KR
WO9221278 Dec 1992 WO
WO9413358 Jun 1994 WO
WO9419958 Jun 1994 WO
WO9725916 Jul 1997 WO
WO9725917 Jul 1997 WO
WO9736541 Oct 1997 WO
WO9858681 Dec 1998 WO
WO9927862 Jun 1999 WO
WO0029062 May 2000 WO
WO0158372 Aug 2001 WO
WO0164145 Sep 2001 WO
WO0168173 Sep 2001 WO
WO0205868 Jan 2002 WO
WO0209599 Feb 2002 WO
WO0219934 Mar 2002 WO
WO0247569 Jun 2002 WO
WO02102234 Dec 2002 WO
WO2003039338 May 2003 WO
WO2007079278 Jul 2007 WO
2008046031 Apr 2008 WO
WO2008046031 Apr 2008 WO
2008118992 Oct 2008 WO
WO2008118992 Oct 2008 WO
2009032421 Mar 2009 WO
WO2009032421 Mar 2009 WO
2009043824 Apr 2009 WO
2009048824 Apr 2009 WO
2009048943 Apr 2009 WO
2010054409 May 2010 WO
WO2010056771 May 2010 WO
2010082146 Jul 2010 WO
2011008444 Jan 2011 WO
2011008681 Jan 2011 WO
2011033421 Mar 2011 WO
WO2011024133 Mar 2011 WO
2011089537 Jul 2011 WO
WO2011089537 Jul 2011 WO
2011101778 Aug 2011 WO
WO2011095937 Aug 2011 WO
2012001595 Jan 2012 WO
WO2010001595 Jan 2012 WO
WO2010001595 Jan 2012 WO
WO2012001595 Jan 2012 WO
WO2012049621 Apr 2012 WO
WO2012066430 May 2012 WO
2012161880 Nov 2012 WO
2013040201 Mar 2013 WO
2013040297 Mar 2013 WO
2014072879 May 2014 WO
2014152575 Sep 2014 WO
104640513 May 2015 WO
2015143061 Sep 2015 WO
2015183635 Dec 2015 WO
Non-Patent Literature Citations (41)
Entry
Goldberg, S. Nahum et al., “Variables Affecting Proper System Grounding for Radiofreguency Ablation in an AnimaL Model”, JVIR, vol. 11, No. 8, Sep. 2000, pp. 1069-1075.
Haverkamp, W., et. al. Coagulation of Ventricular Myocardium Using Radiofreguency Alternating Current: Bio-Physical Aspects and Experimental Findings, PACE, 12:187-195, Jan. 1989, Part II.
International Preliminary Examination Report issued in PCT/US2013/060183, completed Mar. 24, 2015, 6 pages.
International Preliminary Report on Patentability issued in PCT/US2013/056211, completed Feb. 24, 2015, 5 pages.
International Preliminary Report on Patentability issued in PCT/US2013/060194, mailed Mar. 24, 2015, 6 pages.
International Search Report and Written Opinion issued in PCT/US2008/058324, dated Aug. 18, 2008, 11 pages.
International Search Report and Written Opinion issued in PCT/US2012/031819, mailed Sep. 27, 2012, 16 pages.
International Search Report and Written Opinion issued in PCT/US2012/055309, mailed Nov. 19, 2012, 13 pages.
International Search Report and Written Opinion issued in PCTIUS2012/072061, mailed Mar. 21, 2013, 9 pages.
International Search Report and Written Opinion issued in PCT/US2013/020503, mailed Mar. 20, 2013, 10 pages.
International Search Report and Written Opinion issued in PCT/US2013/021013, mailed Apr. 5, 2013, 14 pages.
International Search Report and Written Opinion issued in PCT/US2013/056211, mailed Jan. 20, 2014
International Search Report and Written Opinion issued in PCT/US2013/060183, mailed Jan. 27, 2014, 10 pages.
International Search Report and Written Opinion issued in PCT/US2013/060194, mailed Jan. 29, 2014.
International Search Report and Written Opinion issued in PCT/US2013/060194, mailed Jan. 29, 2014, 10 pages.
International Search Report and Written Opinion issued in PCT/US2015/021300, mailed Jun. 9, 2015, 11 pages.
International Search Report and Written Opinion issued in PCTUS2015/031591, mailed Aug. 17, 2015, 11 pages.
Machi MD, Junji, “Prevention of Dispersive Pad Skin Burns During RFA by a Simple Method”, Editorial Comment, Surg Laparosc Endosc Percutan Tech, vol. 13, No. 6, Dec. 2003, pp. 372-373.
Neufeld, Gordon R. et al., “Electrical Impedance Properties of the Body and the Problem of Alternate-site Bums During Electrosurgery”, Medical Instrumentation, vol. 19, No. 2, Mar.-Apr. 1985, pp. 83-87.
Partial International Search Report issued in PCT/US2012/055155, mailed Dec. 20, 2012, 7 pages.
Piorkowski, Christopher et al., “First in Human Validation of Impedance-Based Catheter Tip-to-Tissue Contact Assessment in the Left Atrium”, Journal of Cardiovascular Electrophysiology, vol. 20, No. 12, Dec. 1, 2009, pp. 1366-1373.
Pires, L, A., et. al. Temperature-guided Radiofrequency Catheter Ablation of Closed-Chest Ventricular Myocardium with a Novel Thermistor-Tipped Catheter. American Heart Journal, 127(6):1614-1618, Jun. 1994.
Price, Adam et al., “Novel Ablation Catheter Technology that Improves Mapping Resolution and Monitoring of Lesion Maturation”, The Journal of Innovations in Cardiac Rhythm Management, vol. 3, 2002, pp. 599-609.
Price, Adam et al., “PO3-39 Pin Electrodes Improve Resolution: Enhanced Monitoring of Radioirequency Lesions in the Voltage and Frequency Domains”, Heart Rhythm 2010, 31st Annual Scientific Sessions, May 12-15 in Denver Colorado.
Ring, E. R., et. al. Catheter Ablation of the Ventricular Septum with Radiofrequency Energy. American Heart Journal, 117(6)1233-1240, Jun. 1989.
Steinke, Karin et al., “Dispersive Pad Site burns With Modern Radiofrequency Ablation Equipment”, Surg Laparosc Percutan Tech, vol. 13, No. 6, Dec. 2003, pp. 366-371.
Zachary, J.M. et al., “PO4-86 Pin Electrodes Provide Enhanced Resolution Enabling Titration of Radiofrequency Duration to Lesion Mayuration”, Heart Rhythm 2011, 32 Annual Scientific Sessions, May 4-7, San Francisco, CA.
Extended European Search Report issued in EP Application No. 15174537.9, issued Mar. 2, 2016, 7 pages.
International Preliminary Examination Report issued in PCT/US2013/060612, completed Mar. 24, 2015, 10 pages.
International Preliminary Report on Patentability issued in PCT/US2008/058324, mailed Sep. 29, 2009, 9 pages.
International Preliminary Report on Patentability issued in PCT/US2012/055309, issued on Mar. 18, 2014, 8 pages.
International Preliminary Report on Patentabiiity issued in PCT/US2013/058105, completed Mar. 10, 2015.
International Preliminary Report on Patentability issued in PCT/US2014/027491, mailed Sep. 24, 2015, 12 pages.
International Search Report and Written Opinion issued in PCT/US2012/055155, mailed Mar. 11, 2013, 19 pages.
International Search Report and Written Opinion issued in PCT/US2013/058105, mailed Nov. 22, 2013, 16 pages.
International Search Report and Written Opinion issued in PCT/US2013/060612, mailed Feb. 28, 2014, 16 pages.
International Search Report and Written Opinion issued in PCT/US2014/027491, mailed Sep. 23, 2014, 17 pages.
International Search Report and Written Opinion issued in PCT/US2015/055173, mailed Jan. 18, 2016, 11 pages.
International Search Report and Written Opinion issued in PCT/US2015/057242, mailed Jan. 15, 2016, 11 pages.
Invitation to Pay Additional Fees and Partial International Search Report issued in PCT/US2014/027491, mailed Jul. 28, 2014, 5 pages.
Patriciu, A. et al., “Detecting Skin Burns Induced by Surface Electrodes”, published in Engineering in Medicine and Biology Society, 2001, Proceedings of the 23rd Annual International Conference of the IEEE, vol. 3, pp. 3129-3131.
Related Publications (1)
Number Date Country
20140288548 A1 Sep 2014 US
Provisional Applications (2)
Number Date Country
61325456 Apr 2010 US
61221967 Jun 2009 US
Continuations (2)
Number Date Country
Parent 13859523 Apr 2013 US
Child 14295089 US
Parent 12821459 Jun 2010 US
Child 13859523 US