Map-based graphical user interface indicating geospatial activity metrics

Information

  • Patent Grant
  • 11782574
  • Patent Number
    11,782,574
  • Date Filed
    Tuesday, August 2, 2022
    a year ago
  • Date Issued
    Tuesday, October 10, 2023
    7 months ago
Abstract
A server-side administrative interface for a social media platform allows for restriction of defined geographical areas. Social media items originating from such restricted areas are automatically filtered or age-restricted for availability via a map-based graphical user interface of the social media platform.
Description
BACKGROUND

Social media applications implement computer-mediated technologies allowing for the creating and sharing of content that communicates information, ideas, career interests, and other forms of expression via virtual communities and networks. Social media platforms use web-based technologies, desktop computers, and mobile technologies (e.g., smart phones and tablet computers) to create highly interactive platforms through which individuals, communities, and organizations can share, co-create, discuss, and modify user-generated content or pre-made content posted online.


Mobile electronic devices on which end-user social media applications can be executed typically provide geolocation services that determine the geographic location of the mobile electronic device, by extension indicating the geographic location of the associated user. Social media content posted by users is often geo-tagged based on the geolocation of a mobile electronic device (such as a mobile phone) by use of which the social media content is captured and/or posted to the social media platform. In other embodiments, social media content may explicitly be geo-tagged by a user using a computer device that does not have activated geolocation services and/or that is not a mobile device (such as a desktop PC).


In many social media platforms, the total number of individual social media items that are available for viewing by any particular user can be very large. Search mechanisms that enable users to locate social media content that may be of interest to them can consume significant server-side resources and often provide less than satisfactory search results.





BRIEF DESCRIPTION OF THE DRAWINGS

Some aspects of the disclosure are illustrated in the appended drawings. Note that the appended drawings illustrate example embodiments of the present disclosure and cannot be considered as limiting the scope of the disclosure.



FIG. 1 is a block diagram showing an example social media platform system for exchanging, posting, and consuming social media data (e.g., messages and associated content) over a network.



FIG. 2 is a block diagram illustrating further details regarding a social media platform system, according to example embodiments.



FIG. 3 is a schematic diagram illustrating data which may be stored in a database of the social media platform system, according to certain example embodiments.



FIG. 4 is a schematic diagram illustrating a structure of a message, according to some embodiments, generated by a social media client application according to example embodiments.



FIG. 5 is a schematic diagram illustrating an example access-limiting process, in terms of which access to content (e.g., an ephemeral message, and associated multimedia payload of data) or a content collection (e.g., an ephemeral message gallery or story) may be time-limited (e.g., made ephemeral).



FIGS. 6A and 6B are respective schematic views of a client device providing a map-based graphical user interface for a social media application, according to different respective example embodiments.



FIGS. 7A-7C are respective schematic views of a client device providing a destination selection interface forming part of a map-based graphical user interface for a social media application, according to some example embodiments.



FIGS. 8A-8C are respective screenshots of a map-based graphical user interface, providing features relating to display of user icons in a map forming part of the interface, according to an example embodiment.



FIGS. 9A and 9B are respective screenshots of the functionalities of a map-based graphical user interface that provides access to a chat interface and to friend content via a friend icon displayed as part of the map, according to an example embodiment.



FIG. 10A-10D are a series of screenshots of search interfaces provided as part of a map-based graphical user interface, according to respective example embodiments.



FIGS. 11A-11B are a series of schematic screenshots illustrating a location-based search mechanism provided by a map-based graphical user interface, according to one example embodiment.



FIG. 12 is a schematic view of a server system for providing a social media platform service, according to an example embodiment.



FIGS. 13A and 13B are screenshots of an administrative interface, according to an example embodiment



FIG. 14 is a flowchart of a method for restricting social media activity from surfacing on a social media platform by geography, according to an example embodiment.



FIG. 15 is a schematic flowchart of a method of providing for variable catchment intervals for social media items by geography, according to an example embodiment.



FIG. 16 is a flowchart illustrating an example embodiment of a method for automated estimation of social media item quality.



FIGS. 17A-17D is a series alternative schemes for training a neural network to perform automated quality assessment of social media items, according to an example embodiment.



FIGS. 18A-18B shows a labeling scheme for training a neural network, according to an example embodiment.



FIG. 19 is a flowchart illustrating a method of accessing expired ephemeral items on a social media platform, according to an example embodiment.



FIG. 20 is a schematic view of a social media platform system for providing a map-based graphical user interface for a social media application, according to one example embodiment.



FIG. 21 is a block diagram illustrating a representative software architecture, which may be used in conjunction with various hardware architectures herein described.



FIG. 22 is a block diagram illustrating components of a machine, according to some example embodiments, able to read instructions from a machine-readable medium (e.g., a machine-readable storage medium) and perform any one or more of the methodologies discussed herein.





The headings provided herein are merely for convenience and do not necessarily affect the scope or meaning of the terms used.


DESCRIPTION

One aspect of the disclosure provides a geographical map-based graphical user interface (GUI) for a social media platform or application, to allow user access via the map-based GUI to ephemeral social media content. Such an interface is also referred to herein as a “map GUI.”


As will be described in greater detail below, ephemeral social media content comprises social media items that are available for viewing via the social media application for only a limited period. For example, an ephemeral social media item or message (also referred to herein as a “snap”) submitted by a user to the social media application may be available for viewing by other users via the map GUI of the social media application for only a predefined period subsequent to submission. In one example embodiment, each ephemeral item or snap has an availability lifetime (also referred to herein as a “gallery participation timer”) of 24 hours after submission, after which the ephemeral item “disappears” and is no longer available for viewing by other users via the map GUI. Such ephemeral social media items (also referred to herein as ephemeral messages) typically comprise photographic or video content, which may be submitted with or without augmentations made by the user to the underlying photographic or video content.


Ephemeral messages submitted by multiple different users may be available on a map forming part of the map GUI based at least in part on respective location information (e.g., geotag information) of the ephemeral messages. In some embodiments, the map GUI may provide location-based access to one or more collections of ephemeral social media items (also known as and referred to herein as galleries or “stories”). In some example embodiments, a plurality of ephemeral messages submitted by different users are included in a common geo-anchored gallery or story based at least in part on respective geotagging information of the plurality of ephemeral messages. Such a location-based gallery or story is in some embodiments represented on the map GUI by a respective gallery icon displayed at a corresponding map location, the gallery icon being selectable by the user to trigger automated sequential display of the plurality of ephemeral messages in the gallery on the user device on which the map GUI is rendered.


These and additional aspects of the disclosure will be described below with reference to specific example embodiments. First, platform architecture and a technical background to implementation of the various embodiments will be described with reference to FIGS. 1-5. Thereafter, specific example embodiments are described with reference to FIGS. 6A-20. FIGS. 21-22 finally describe aspects of software and hardware components that are in some instances used in the implementation of the described example embodiments.


DETAILED DESCRIPTION

The description that follows includes systems, methods, devices, techniques, instruction sequences, and computing machine program products that embody illustrative embodiments of the disclosure. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. It will be evident, however, to those skilled in the art, that embodiments of the disclosed subject matter may be practiced without these specific details. In general, well-known instruction instances, protocols, structures, and techniques are not necessarily shown in detail.


System Architecture and Operating Environment



FIG. 1 is a block diagram showing an example social media platform system 100 for exchanging data (e.g., social media items or messages and associated content) over a network. In this description, items communicated from one user to one or more other users via a social media application or platform, as well as items uploaded or provided by users to a social media application or platform for availability to or consumption by other users via the social media application or platform, are referred to as “messages.” Thus, the term “messages” as used herein is not limited to communications from one user to specified recipient users, but includes messages made available for public consumption via the relevant social media platform.


The social media platform system 100 includes multiple client devices 102, each of which hosts a number of applications including a social media client application 104. Each social media client application 104 is communicatively coupled to other instances of the social media client application 104 and a social media application server system 108 via a network 106 (e.g., the Internet).


Accordingly, each social media client application 104 is able to communicate and exchange data with another social media client application 104 and with the social media application server system 108 via the network 106. The data exchanged between social media client applications 104, and between a social media client application 104 and the social media application server system 108, includes functions (e.g., commands to invoke functions) as well as payload data (e.g., text, audio, video, or other multimedia data).


The social media application server system 108 provides server-side functionality via the network 106 to a particular social media client application 104. While certain functions of the social media platform system 100 are described herein as being performed by either a social media client application 104 or by the social media application server system 108, it will be appreciated that the location of certain functionality either within the social media client application 104 or the social media application server system 108 is a design choice. For example, it may be technically expedient to initially deploy certain technology and functionality within the social media application server system 108, but to later migrate this technology and functionality to the social media client application 104 where a client device 102 has a sufficient processing capacity.


The social media application server system 108 supports various services and operations that are provided to the social media client application 104. Such operations include transmitting data to, receiving data from, and processing data generated by the social media client application 104. This data may include message content, client device information, geolocation information, media annotations and overlays, message content persistence conditions, social network information, and live event information, as examples. Data exchanges within the social media platform system 100 are invoked and controlled through functions available via user interfaces (UIs) of the social media client application 104.


Turning now specifically to the social media application server system 108, an application programming interface (API) server 110 is coupled to, and provides a programmatic interface to, an application server 112. The application server 112 is communicatively coupled to a database server 118, which facilitates access to a database 120 in which is stored data associated with messages processed by the application server 112.


Dealing specifically with the API server 110, this server receives and transmits message data (e.g., commands and message payloads) between the client device 102 and the application server 112. Specifically, the API server 110 provides a set of interfaces (e.g., routines and protocols) that can be called or queried by the social media client application 104 in order to invoke functionality of the application server 112. The API server 110 exposes various functions supported by the application server 112, including account registration; login functionality; the sending of messages, via the application server 112, from a particular social media client application 104 to another social media client application 104; the sending of media files (e.g., images or video) from a social media client application 104 to a social media server application 114, for possible access by another social media client application 104; the setting of a collection of media data (e.g., a story or gallery); the retrieval of such collections; the retrieval of a list of friends of a user of a client device 102; the retrieval of messages and content; the adding and deletion of friends to and from a social graph; the location of friends within a social graph; opening an application event (e.g., relating to the social media client application 104); and so forth.


The application server 112 hosts a number of applications and subsystems, including the social media server application 114, an image processing system 116, and a social network system 122. The social media server application 114 implements a number of message processing technologies and functions, particularly related to the aggregation and other processing of content (e.g., textual and multimedia content) included in messages received from multiple instances of the social media client application 104. As will be described in further detail, the text and media content from multiple sources may be aggregated into collections of content (e.g., called “stories” or “galleries”). These collections are then made available, by the social media server application 114, to the social media client application 104. Other processor- and memory-intensive processing of data may also be performed server-side by the social media server application 114, in view of the hardware requirements for such processing.


The application server 112 also includes the image processing system 116, which is dedicated to performing various image processing operations, typically with respect to images or video received within the payload of a message at the social media server application 114.


The social network system 122 supports various social networking functions and services, and makes these functions and services available to the social media server application 114. To this end, the social network system 122 maintains and accesses an entity graph 304 (described below with reference to FIG. 3) within the database 120. Examples of functions and services supported by the social network system 122 include the identification of other users of the social media platform system 100 with whom a particular user has relationships or whom the particular user is “following,” and also the identification of other attributes and interests of a particular user. In some embodiments, the social network system 122 includes an identification of other users whose location is available for viewing by a particular user via a map-based GUI displayable on a client device 102 using the corresponding social media client application 104.



FIG. 2 is a block diagram illustrating further details regarding the social media platform system 100, according to example embodiments. Specifically, the social media platform system 100 is shown to comprise the social media client application 104 and the application server 112, which in turn embody a number of some subsystems, namely an ephemeral timer system 202, a collection management system 204, and an annotation system 206.


The ephemeral timer system 202 is responsible for enforcing the temporary access to content permitted by the social media client application 104 and the social media server application 114. To this end, the ephemeral timer system 202 incorporates a number of timers that, based on duration and display parameters associated with a message, or collection/gallery of messages (e.g., a SNAPCHAT story), selectively display and enable access to messages and associated content via the social media client application 104. Further details regarding the operation of the ephemeral timer system 202 are provided below.


The collection management system 204 is responsible for managing collections of media (e.g., collections of text, image, video, and audio data). In some examples, a collection of content (e.g., messages, including images, video, text, and audio) may be organized into an “event gallery” or an “event story.” Such a collection may be made available for a specified time period, such as the duration of an event to which the content relates, or until expiry of a last message or snap in the gallery. For example, content relating to a music concert may be made available as a “story” for the duration of that music concert. The collection management system 204 may also be responsible for publishing an icon that provides notification of the existence of a particular collection to the user interface of the social media client application 104. As will be described in greater detail with reference to the specific example embodiments that follow, the collection management system 204 may also be responsible for compiling and managing multiple location-based social media galleries based at least in part on geo-tag data of social media items or messages uploaded to the social media platform by multiple users. Other types of galleries that may be provided by the collection management system 204 include a “place story” that collects ephemeral messages having geotag data indicating a location within a predefined associated geographical area; and an ad-hoc story or spike story that is dynamically surfaced on a map GUI as described herein based on underlying location-based social media activity, e.g., based on geo-temporal volume or anomality/unusualness of social media items submitted by users for public consumption (e.g., for inclusion in a “Live Story” or “Our Story”). With “anomality” is meant is metric indicating a how anomalous something is.


The collection management system 204 furthermore includes a curation interface 208 that allows a human operator (e.g., a collection manager) to manage and curate a particular collection of content. For example, the curation interface 208 enables an event organizer to curate a collection of content relating to a specific event (e.g., to delete inappropriate content or redundant messages). Instead, or in addition, the collection management system 204 may employ machine vision (or image recognition technology), geotag data, and/or content rules to automatically compile and/or curate a content collection. In certain embodiments, compensation may be paid to a user for inclusion of user-generated content into a collection. In such cases, the curation interface 208 operates to automatically make payments to such users for the use of their content.


The annotation system 206 provides various functions that enable a user to annotate or otherwise augment, modify, or edit media content associated with a message. For example, the annotation system 206 provides functions related to the generation and publishing of media overlays for messages processed by the social media platform system 100. The annotation system 206 operatively supplies a media overlay (e.g., a SNAPCHAT filter) to the social media client application 104 based on a geolocation of the client device 102. In another example, the annotation system 206 operatively supplies a media overlay to the social media client application 104 based on other information, such as social network information of the user of the client device 102. A media overlay may include audio and visual content and visual effects. Examples of audio and visual content include pictures, texts, logos, animations, and sound effects. An example of a visual effect includes color overlaying. The audio and visual content or the visual effects can be applied to a media content item (e.g., a photo) at the client device 102. For example, the media overlay includes text that can be overlaid on top of a photograph taken by the client device 102. In another example, the media overlay includes an identification of a location overlay (e.g., Venice Beach), a name of a live event, or a name of a merchant overlay (e.g., Beach Coffee House). In another example, the annotation system 206 uses the geolocation of the client device 102 to identify a media overlay that includes the name of a merchant at the geolocation of the client device 102. The media overlay may include other indicia associated with the merchant. The media overlays may be stored in the database 120 and accessed through the database server 118.


In one example embodiment, the annotation system 206 provides a user-based publication platform that enables users to select a geolocation on a map, and upload content associated with the selected geolocation. The user may also specify circumstances under which a particular media overlay should be offered to other users. The annotation system 206 generates a media overlay that includes the uploaded content and associates the uploaded content with the selected geolocation.


In another example embodiment, the annotation system 206 provides a merchant-based publication platform that enables merchants to select a particular media overlay associated with a geolocation via a bidding process. For example, the annotation system 206 associates the media overlay of a highest-bidding merchant with a corresponding geolocation for a predefined amount of time



FIG. 3 is a schematic diagram illustrating data 300 which may be stored in the database 120 of the social media application server system 108, according to certain example embodiments. While the content of the database 120 is shown to comprise a number of tables, it will be appreciated that the data could be stored in other types of data structures (e.g., as an object-oriented database).


The database 120 includes message data stored within a message table 314. An entity table 302 stores entity data, including an entity graph 304. Entities for which records are maintained within the entity table 302 may include individuals, corporate entities, organizations, objects, places, events, etc. Regardless of type, any entity regarding which the social media application server system 108 stores data may be a recognized entity. Each entity is provided with a unique identifier, as well as an entity type identifier (not shown).


The entity graph 304 furthermore stores information regarding relationships and associations between entities. Such relationships may be social, professional (e.g., work at a common corporation or organization), interested-based, or activity-based, merely for example.


The database 120 also stores annotation data, including in the example form of filters, in an annotation table 312. Filters for which data is stored within the annotation table 312 are associated with and applied to videos (for which data is stored in a video table 310) and/or images (for which data is stored in an image table 308). Filters, in one example, are overlays that are displayed as overlaid on an image or video during presentation to a recipient user. Filters may be of various types, including user-selected filters from a gallery of filters presented to a sending user by the social media client application 104 when the sending user is composing a message. Other types of filters include geolocation filters (also known as geofilters), which may be presented to a sending user based on geographic location. For example, geolocation filters specific to a neighborhood or special location may be presented within a user interface by the social media client application 104, based on geolocation information determined by a Global Positioning System (GPS) unit of the client device 102. Another type of filter is a data filter, which may be selectively presented to a sending user by the social media client application 104, based on other inputs or information gathered by the client device 102 during the message creation process. Examples of data filters include a current temperature at a specific location, a current speed at which a sending user is traveling, a battery life for a client device 102, or the current time.


Other annotation data that may be stored within the image table 308 is so-called “lens” data. A “lens” may be a real-time special effect and sound that may be added to an image or a video.


Yet further annotation data that may be stored within the annotation table 312 is user-generated annotations or augmentations provided by the user to overlay an underlying photographic image or video. Such augmentations/annotations can include, for example, text annotations and drawing annotations or augmentations provided by the user, e.g., via a client device touchscreen.


As mentioned above, the video table 310 stores video data which, in one embodiment, is associated with messages for which records are maintained within the message table 314. Similarly, the image table 308 stores image data associated with messages for which message data is stored in the message table 314. The entity table 302 may associate various annotations from the annotation table 312 with various images and videos stored in the image table 308 and the video table 310.


A story table 306 stores data regarding collections of messages and associated image, video, or audio data, which are compiled into a collection (e.g., a SNAPCHAT story or a gallery). The creation of a particular collection may be initiated by a particular user (e.g., any user for whom a record is maintained in the entity table 302). A user may create a “personal story” in the form of a collection of content that has been created and sent/broadcast by that user. To this end, the user interface of the social media client application 104 may include an icon that is user selectable to enable a sending user to add specific content to his or her personal story. In the context of this description, such messages and stories/galleries are understood to be for private consumption, being limited for viewing via the social media application to particular users identified by the submitting user or to users who are members of a social network of the submitting user. This is to be contrasted with social media items provided for public or non-private consumption via the social media application, not being limited to a user-specific or user-specified subset of all users of the social media application. An example of a publicly viewable collection or gallery is a “Live Story” or “Our Story.”


As mentioned, a collection may also constitute a “Live Story,” which is a collection of content from multiple users that is created manually, automatically, or using a combination of manual and automatic techniques. For example, a “Live Story” may constitute a curated stream of user-submitted content from various locations and events. Users whose client devices have location services enabled and are at a common event location at a particular time may, for example, be presented with an option, via a user interface of the social media client application 104, to contribute content to a particular Live Story. The Live Story may be identified to the user by the social media client application 104, based on his or her location. The end result is a “Live Story” told from a community perspective. In accordance with some example embodiments of this disclosure, a submitting user can submit social media items or messages to a non-specific common Live Story. Such content is accessible to other users via a map-based graphical user interface, with such social media items or messages being accessible via the map GUI based on a respective location indicated by corresponding geo-tag data, either by forming part of a location-based gallery or story, or by such other users using location-based search mechanisms forming part of the map GUI.


A further type of content collection is known as a “location story,” which enables a user whose client device 102 is located within a specific geographic location (e.g., on a college or university campus) to contribute to a particular collection. In some embodiments, a contribution to a location story may require a second degree of authentication to verify that the end user belongs to a specific organization or other entity (e.g., is a student on the university campus). In some embodiments of this disclosure, a message uploaded to a Live Story or Our Story generally, without the user specifying a particular location story in which the message is to be included, can automatically or semi-automatically be included in a location story based at least in part on geo-tag data of the message.


A map tile table 320 stores multiple map tiles that can be used for presenting a map in a map viewport of a map-based GUI, according to some embodiments of this disclosure. In a particular example embodiment, each map view is composed of 9 or 16 map tiles stitched together. A plurality of sets of map tiles may be maintained for different map zoom levels. In some example embodiments, a superset of map tiles is maintained server-side, being forwarded to a requesting client device 102 for composing a map representation of specific requested areas.


A user location table 326 stores current or most recent user location data for multiple users of the social media application. The user location data may be based on location data received from respective client devices 102 associated with the respective users. Such user location data is in some example embodiments used to display in a map-based GUI respective locations of a plurality of users who form part of the social network of the requesting user and/or who have provided permission for the requesting user to view their locations. Each such user may be represented on a map forming part of the map GUI by a respective user icon or bitmoji.



FIG. 4 is a schematic diagram illustrating a structure of a social media item or message 400, according to some embodiments, generated by one instance of the social media client application 104 for communication to a further instance of the social media client application 104 or to the social media server application 114. The content of a particular message 400 is used to populate the message table 314 stored within the database 120, accessible by the social media server application 114. Similarly, the content of a message 400 is stored in memory as “in-transit” or “in-flight” data of the client device 102 or the application server 112. The message 400 is shown to include the following components:


A message identifier 402: a unique identifier that identifies the message 400.


A message text payload 404: text, to be generated by a user via a user interface of the client device 102 and that is included in the message 400.


A message image payload 406: image data, captured by a camera component of a client device 102 or retrieved from memory of a client device 102, and that is included in the message 400.


A message video payload 408: video data, captured by a camera component or retrieved from a memory component of the client device 102 and that is included in the message 400.


A message audio payload 410: audio data, captured by a microphone or retrieved from the memory component of the client device 102, and that is included in the message 400.


A message annotation 412: annotation data (e.g., filters, stickers, or other enhancements) that represents annotations to be applied to the message image payload 406, message video payload 408, or message audio payload 410 of the message 400.


A display duration parameter 414: a parameter value indicating, in seconds, the amount of time for which content of the message (e.g., the message image payload 406, message video payload 408, and message audio payload 410) is to be presented or made accessible to a user via the social media client application 104. The display duration parameter 414 is also referred to herein as a “display duration timer.”


A message geolocation parameter 416: geolocation data or geo-tag data (e.g., latitudinal and longitudinal coordinates) associated with the content payload of the message 400. Multiple message geolocation parameter 416 values may be included in the payload, each of these parameter values being associated with respective content items included in the content (e.g., a specific image within the message image payload 406, or a specific video in the message video payload 408).


A message story identifier 418: identifier values identifying one or more content collections (e.g., “stories”) with which a particular content item in the message image payload 406 of the message 400 is associated. For example, multiple images within the message image payload 406 may each be associated with multiple content collections using identifier values. An example of such a message story identifier 418 can in some embodiments comprise one or more thumbnail images.


A message tag 420: each message 400 may be tagged with multiple tags, each of which is indicative of the subject matter of content included in the message payload. For example, where a particular image included in the message image payload 406 depicts an animal (e.g., a lion), a tag value may be included within the message tag 420 that is indicative of the relevant animal. Tag values may be generated manually, based on user input, or may be automatically generated using, for example, image recognition.


A message sender identifier 422: an identifier (e.g., a messaging system identifier, email address, or device identifier) indicative of a user of the client device 102 on which the message 400 was generated and from which the message 400 was sent.


A message receiver identifier 424: an identifier (e.g., a messaging system identifier, email address, or device identifier) indicative of a user of the client device 102 to which the message 400 is addressed.


The contents (e.g., values) of the various components of the message 400 may be pointers to locations in tables within which content data values are stored. For example, an image value in the message image payload 406 may be a pointer to (or address of) a location within an image table 308. Similarly, values within the message video payload 408 may point to data stored within a video table 310, values stored within the message annotation 412 may point to data stored in an annotation table 312, values stored within the message story identifier 418 may point to data stored in a story table 306, and values stored within the message sender identifier 422 and the message receiver identifier 424 may point to user records stored within an entity table 302.



FIG. 5 is a schematic diagram illustrating an access-limiting process 500, in terms of which access to content (e.g., an ephemeral message 502, and associated multimedia payload of data) or a content collection (e.g., an ephemeral message story 504) may be time-limited (e.g., made ephemeral).


An ephemeral message 502 is shown to be associated with a display duration parameter 506, the value of which determines an amount of time that the ephemeral message 502 will be displayed to a receiving user of the ephemeral message 502 by the social media client application 104. In one embodiment, where the social media client application 104 is a SNAPCHAT client application, an ephemeral message 502 is viewable by a receiving user for up to a maximum of 10 seconds, depending on the amount of time that the sending user specifies using the display duration parameter 506. In some embodiments, the system automatically attaches a default display duration parameter 506 to photographic or still-image messages, e.g., having a default display duration of 5 seconds. The display duration parameter 506 of video-based messages may automatically correspond to the duration of the underlying video, with an automatically enforced upper limit. Thus, in an example embodiment in which an upper limit of 10 seconds is enforced, a 7-second video message will have a display duration parameter of 7 seconds.


The display duration parameter 506 and the message receiver identifier 424 are shown to be inputs to a message timer 512, which is responsible for determining the amount of time that the ephemeral message 502 is shown to a particular receiving user identified by the message receiver identifier 424. In particular, the ephemeral message 502 will only be shown to the relevant receiving user for a time period determined by the value of the display duration parameter 506. The message timer 512 is shown to provide output to a more generalized ephemeral timer system 202, which is responsible for the overall timing of display of content (e.g., an ephemeral message 502) to a receiving user.


The ephemeral message 502 is shown in FIG. 5 to be included within a social media gallery in the form of an ephemeral message story 504 (e.g., a personal SNAPCHAT story, or an event story). The ephemeral message story 504 has a story duration parameter 508, a value of which determines a time duration for which the ephemeral message story 504 is made available and is accessible to users of the social media platform system 100. The story duration parameter 508, for example, may be the duration of a music concert, where the ephemeral message story 504 is a collection of content pertaining to that concert. Alternatively, a user (either the owning user or a curator user) may specify the value for the story duration parameter 508 when performing the setup and creation of the ephemeral message story 504. In some embodiments, the story duration parameter 508 is determined based at least in part on respective story participation parameters 510 (or lifetimes) of one or more of the ephemeral messages 502 forming part of the particular ephemeral message story 504. In one example embodiment, the story duration parameter 508 corresponds to a story participation parameter 510 or lifetime of a last-posted one of the ephemeral messages 502 in the relevant ephemeral message story 504. In such a case, the ephemeral message story 504 expires (e.g., by becoming unavailable for viewing via the social media platform) when the last-posted ephemeral message 502 therein expires (e.g., when a story participation parameter 510 or lifetime of the last ephemeral message 502 expires).


As alluded to above, each ephemeral message 502 within the ephemeral message story 504 has an associated story participation parameter 510 (also referred to herein as a “gallery participation parameter” or a “gallery participation timer”), a value of which determines the duration of time for which the ephemeral message 502 will be accessible within the context of the ephemeral message story 504. Accordingly, a particular ephemeral message 502 may “expire” and become inaccessible within the context of the ephemeral message story 504, prior to the ephemeral message story 504 itself expiring in terms of the story duration parameter 508. The story duration parameter 508, story participation parameter 510, and message receiver identifier 424 each provide input to a story timer 514, which operationally determines, first, whether a particular ephemeral message 502 of the ephemeral message story 504 will be displayed to a particular receiving user, and, if so, for how long. Note that the ephemeral message story 504 is also aware of the identity of the particular receiving user as a result of the message receiver identifier 424.


Accordingly, the story timer 514 in some embodiments operationally controls the overall lifespan of an associated ephemeral message story 504, as well as an individual ephemeral message 502 included in the ephemeral message story 504. In one embodiment, each and every ephemeral message 502 within the ephemeral message story 504 remains viewable and accessible for a time period specified by the story duration parameter 508. In a further embodiment, a certain ephemeral message 502 may expire, within the context of the ephemeral message story 504, based on a story participation parameter 510. Note that a respective display duration parameter 506 may still determine the duration of time for which a particular ephemeral message 502 is displayed to a receiving user upon replay of the ephemeral message 502, even within the context of the ephemeral message story 504. Accordingly, the display duration parameter 506 determines the duration of time that a particular ephemeral message 502 is displayed to a receiving user, regardless of whether the receiving user is viewing that ephemeral message 502 inside or outside the context of an ephemeral message story 504.


The ephemeral timer system 202 may furthermore operationally remove a particular ephemeral message 502 from the ephemeral message story 504 based on a determination that it has exceeded an associated story participation parameter 510. For example, when a sending user has established a story participation parameter 510 of 24 hours from posting, the ephemeral timer system 202 will remove the relevant ephemeral message 502 from the ephemeral message story 504 after the specified 24 hours. The ephemeral timer system 202 also operates to remove an ephemeral message story 504 either when the story participation parameter 510 for each and every ephemeral message 502 within the ephemeral message story 504 has expired, or when the ephemeral message story 504 itself has expired in terms of the story duration parameter 508. Note that in this disclosure, at least some ephemeral messages 502 may be submitted by the user to the social media application for general or public viewing via the map-based GUI, without being included by the user in any particular event gallery and without being included in any location-based gallery represented by a respective gallery icon on the map GUI. Such ephemeral messages 502 in some embodiments also have respective story participation parameters 510 specifying time periods for which the ephemeral messages 502 are accessible via the map GUI as part of a collective Live Story or Our Story, as described with reference to specific example embodiments below. In a particular example embodiment, each ephemeral message 502 thus submitted for public or non-private view has a default gallery participation parameter or story participation parameter 510 of 24 hours. Such ephemeral messages 502 are thus viewable via the map GUI for only 24 hours after submission.


In certain use cases, a creator of a particular ephemeral message story 504 may specify an indefinite story duration parameter 508. In this case, the expiration of the story participation parameter 510 for the last remaining ephemeral message 502 within the ephemeral message story 504 will determine when the ephemeral message story 504 itself expires. In this case, a new ephemeral message 502, added to the ephemeral message story 504, with a new story participation parameter 510, effectively extends the life of an ephemeral message story 504 to equal the value of the story participation parameter 510.


In response to the ephemeral timer system 202 determining that an ephemeral message story 504 has expired (e.g., is no longer accessible), the ephemeral timer system 202 communicates with the social media platform system 100 (and, for example, specifically the social media client application 104) to cause an indicium (e.g., an icon) associated with the relevant ephemeral message story 504 to no longer be displayed within a user interface of the social media client application 104. Similarly, when the ephemeral timer system 202 determines that the story participation parameter 510 for a particular ephemeral message 502 has expired, the ephemeral timer system 202 causes the social media client application 104 to no longer display an indicium (e.g., an icon or textual identification) associated with the ephemeral message 502.


Example Embodiments of Map GUI Functionality


First, various aspects and features of the disclosure will be described conceptually with respect to specific example embodiments discussed with reference to and illustrated in FIGS. 6A-11B.


Basic Map GUI Architecture



FIG. 6A shows an example embodiment of a map-based graphical user interface, further referred to as a map GUI 612, displayed on a client device 102 in the example form of a mobile phone. In this example embodiment, the map GUI 612 is generated on a display in the form of a touchscreen 606 capable of receiving haptic input. The map GUI 612 includes an interactive map 618 showing a stylized aerial or satellite representation of a particular geographical area. The map 618 is displayed within a map viewport 621 which, in this example embodiment, uses the full available area of the touchscreen 606. In other example embodiments, the map viewport 621 may be a bounded panel or window within a larger display screen. The map GUI 612 further comprises a plurality of user-selectable graphical user interface elements displayed at specific respective geographic locations on the map 618. Each such geo-anchored GUI element is in this example embodiment represented by a respective indicium or icon overlaid on the map 618. The different types of icons and their respective functionalities will be described in greater detail below. As will also be described briefly, the map GUI 612 may further include one or more informational overlays rendered over the underlying geographical map 618, in this example embodiment including a heatmap 625 representative of the geographical distribution of underlying social media activity on the social media platform provided by the relevant social media application.


As mentioned, the map GUI 612 includes a number of different user-selectable icons or UI elements that indicate different geographically based content or information. In this example embodiment, the map GUI 612 includes a plurality of different gallery icons, also referred to in this description as “story icons.” Each story icon corresponds in location on the map 618 to a respective location-based social media gallery or collection, in this example embodiment corresponding to a location-based story of ephemeral messages in the example form of so-called “snaps,” as discussed elsewhere herein. Each of these stories that are represented by respective story icons on the map 618 consists of a respective set of snaps (respectively comprising augmented or unaugmented photographic or video content) that are grouped together based at least in part on respective geo-tag data associated with respective snaps.


In the example embodiment of FIG. 6A, the map GUI 612 includes two different types of gallery icons for two different respective types of location-based social media galleries, namely place icons 631 for place galleries/stories, and spike icons 633 for spike galleries/stories that are dynamically surfaced on the map GUI 612 based on one or more metrics of underlying social media activity relating to the submission of social media items/snaps to the social media platform with geo-tag data indicating the respectively associated geographical areas. Note that these different types of galleries are represented by different types of icons 631, 633. The differences between these different types of galleries and the corresponding visually distinct gallery icons 631, 633 are discussed later herein. The map GUI 612 in this example embodiment further includes friend icons in the example form of bitmojis 640 that are displayed on the map GUI 612 based on the current or last known geographic location of respective friends of the user associated with the client device 102.


Message and/or Story Ephemerality


In this example embodiment, the social media items that are selectively playable by selection of the corresponding story icons 631, 633 in the map GUI 612 are ephemeral social media items or messages. As described previously, ephemeral content is social media content (e.g., augmented and/or unaugmented video clips, pictures, and/or other messages) that is available for viewing by social media users via the map GUI 612 for only a predetermined limited period, also referred to herein as a respective gallery participation parameter or timer. After expiry of a respective gallery participation parameter or timer for any ephemeral message or snap uploaded by a particular user, that ephemeral message or snap is no longer available for viewing by other users via the map GUI 612 generated on their respective client devices 102. Current examples of such ephemeral social media content include the respective snaps or messages included in so-called “stories” in the SNAPCHAT or the INSTAGRAM social media applications.


Instead of, or in addition to, management of ephemerality on a per-snap level using respective gallery participation timers, availability of the ephemeral messages by the map GUI 612 can in some instances be managed collectively, e.g., on a per-story level. In such instances, each story can have a respective story duration parameter 508 (e.g., being based on a corresponding story timer 514—see FIG. 5), at the expiry of which availability of the corresponding story for viewing via the map GUI 612 is terminated. In some embodiments, the story duration parameter 508 is calculated based on the story participation parameter 510 of one of the ephemeral messages included in the relevant story. For example, a story may in some embodiments expire when a last uploaded item within the story expires, in response to which the corresponding story icon 631, 633 is no longer displayed on the map GUI 612. In one example embodiment, the map GUI 612 may include one or more event icons (e.g., similar in appearance to the place icons 631 of FIG. 6A) corresponding to respective event stories, with the story duration parameter 508 of the event story being set to expire a predetermined period of time from the start or conclusion of the underlying event. At expiry of the story duration parameter 508, the corresponding gallery icon 631, 633 is removed from the map GUI 612, irrespective of individual timers associated with respective snaps included in the event story.


Story Playback


The user can select any one of the gallery icons 631, 633 by haptic contact with the touchscreen 606 at the on-screen location of the selected gallery icon 631/633. In response to such selection, automated sequential playback of the corresponding set of ephemeral messages or snaps in the selected story is performed by the client device 102 on the touchscreen 606. Such automated sequential playback of the selected story consists of:

    • displaying on the touchscreen 606 the content or media payload of a first one of the ephemeral messages for a corresponding display duration (e.g., a default value of five seconds for photo-based messages and a maximum value of 10 seconds for video-based snaps), in this example embodiment temporarily replacing the map GUI 612 on the touchscreen 606 with a full-screen replay of the relevant snap;
    • at expiry of the display duration, displaying the content of the next snap/message for its display duration; and
    • thus progressing in sequence through all of the ephemeral messages in the selected story until all of the snaps in the story have been replayed or until the user selectively dismisses the playback sequence.


In some embodiments, not all of the snaps in a particular story/gallery are necessarily included in the replay sequence. For example, if there are many overlapping snaps (e.g., snaps showing substantially identical content), some of those snaps are automatically skipped to keep a continuous narrative and not repeat some sections of an event commonly captured by the different snaps. Instead, or in addition, the social media server application 114 can in some embodiments be programmed automatically to identify and curate overlapping or contemporaneous snaps based on timestamp information associated with respective snaps.


In this example embodiment, the snaps automatically collected together in a replayable spike story or place story are arranged automatically to be played back in chronological order based on respective timestamps (e.g., being played in sequence from oldest to newest or earliest posted to most recently posted). A benefit of such chronological playback is that viewing of the story provides a user with sequentially arranged views of events transpiring at the relevant location. In some instances, however, a human curator may choose to rearrange snaps out of chronological order, for example to improve the narrative flow of the story. In other embodiments, the snaps may be played in reverse chronological order, from newest to oldest.


It can thus be seen that the example map GUI 612 includes multiple location-based gallery icons in the example form of story icons 631, 633 that are user-selectable to trigger playback of respective collections of ephemeral social media items, in this example embodiment being respective ephemeral stories consisting of respective sets of ephemeral messages (also referred to in this description as “snaps”). In this example embodiment, each of the plurality of location-based stories represented by the respective story icons 631, 633 may comprise media content contributed by multiple different users.


Our Story and Publication of Ephemeral Messages to Our Story


The respective ephemeral stories are in this example embodiment compiled from ephemeral messages submitted by multiple users based at least in part on geo-tagging of the respective snaps. Note that the ephemeral messages made available for viewing via the map GUI 612 are in this example embodiment not limited to content provided by other users who are members of an in-application social network of the user on whose client device 102 the map GUI 612 is generated. Instead, the social media content to which the map GUI 612 allows access is in this example embodiment provided by snaps uploaded or submitted by any user to be publicly accessible via the map GUI 612.


One aspect of the example map GUI 612 provides for the functionality for users to submit social media content that is publicly viewable via the map GUI 612. Turning briefly to FIG. 7A, therein is shown an example embodiment of a destination selection interface 707 forming part of the map GUI 612 to provide a mechanism that gives the user a selectable option to make a snap publicly viewable via the map GUI 612 upon capturing of the snap.


In this example embodiment, snaps can be captured via the map GUI 612 while the map viewport 621 is displayed (as seen in FIG. 6A) by operation of a camera soft button 650 (FIG. 6A) forming part of the map GUI 612. After capturing of photo or video content by operation of the camera soft button 650, the captured media content is displayed on the touchscreen 606 (FIG. 7A) together with the destination selection interface 707. In this example embodiment, the user can select one or both destination options identified in FIG. 7A as “My Story” and “Our Story,” represented in FIG. 7A by respective radio buttons 714, 721. By selecting the Our Story radio button 721 and thereafter selecting a “Send” soft button 728, the user can submit the snap over the network 106 to the application server 112 with an indication that the snap is available for non-private publication via the map GUI 612. If the snap is not so marked by the user, for example being associated with selection of the My Story radio button 714 only, then the snap is not available for inclusion in any of the stories associated with the story icons 631, 633 and is not available for inclusion in search results of a location-based search via the map GUI 612, as described later herein. Snaps included only in the My Story gallery are available only to friends of the user (e.g., members of the uploading user's social network). The My Story gallery is a per-user location-agnostic gallery of ephemeral messages available to friend users only, thus being a non-public or private gallery.


In other example embodiments described herein, the superset of ephemeral messages made available by multiple users for public viewing via the map GUI 612 is alternatively referred to as the “Live Story” or simply as a “Live” gallery. For the purposes of the description of example embodiments herein, “Live Story” and “Our Story” are thus to be read as being synonymous. In the present example embodiment, the compilation and/or surfacing of gallery icons 631, 633 and the rendering of the heatmap 625 are based exclusively on publicly available social media content provided by snaps uploaded to Our Story. Calculation of metrics or attributes of social media activity upon which one or more aspects of the map GUI 612 are based (e.g., an unusualness or anomality metric indicating geo-temporal unusualness or anomality of social media activity within respective geographical areas) is in this example embodiment likewise based exclusively on snaps uploaded to Our Story.


Visual Distinctions Between Story Icons for Different Story Types


Returning now to the visual distinctions or differences between the different types of gallery icons 631, 633, it will be noted that each gallery icon 631/633 in this example embodiment comprises a circular graphical user interface element bearing a thumbnail image provided by the one of the snaps contained in the respective story. Each place icon 631, however, also includes an associated label 635 bearing a text indication of the associated place. In this example embodiment, the labels 635 indicate the respective places of the place stories surfaced in the geographic window presently displayed in the example map 618 as being the Rockefeller Center, Bryant Park, and the Empire State Building, respectively.


In other example embodiments, the visual distinctions between different types of story icons may be provided in a different manner. FIG. 6B, for example, shows another example embodiment of a map GUI 612 that is analogous to the example embodiment of FIG. 6A, a major difference being that the visual distinction between place icons 631 and spike icons 633 is provided at least in part by differently shaped thumbnail images. In the example of FIG. 6B, the thumbnails of the place icons 631 are rectangular, while the thumbnails of the spike icons 633 are circular.


The respective thumbnail images that are used for the spike icons 633 are in the example embodiments of FIGS. 6A and 6B automatically selected by the social media server application 114. In this instance, the thumbnail image for a spike icon 633 is automatically selected based on the posting time of the respective snaps forming part of the corresponding spike story, in this case being selected as a most recently posted snap in the relevant story. In other embodiments, automatic selection of the thumbnail image to be used in the spike icon 633 can be based on selecting the earliest-posted ephemeral message/snap that is still available for viewing as part of the spike story. The thumbnail images for the place icons 631 (or for icons associated with other curated stories, such as event stories) can in some embodiments likewise be selected automatically. In this embodiment, however, the thumbnail images for the place icons 631 can be selected from the snaps included in the corresponding story/gallery by a human operator via a content management interface forming part of the social media server application 114. Absent such an explicit designation of a particular snap to be used for the thumbnail image, thumbnail selection may revert to an automatic default selection as described previously.


Differences between Different Story Types


Place Stories


Returning to FIG. 6A, the differences between the different types of social media galleries or stories accessible via respective story icons 631, 633 on the map GUI 612 will now be briefly discussed.


Place stories, represented by respective place icons 631, are social media galleries for defined locations or places, typically being places that consistently have relatively large activity volumes (e.g., Times Square, Universal Studios, etc.). Note that, in this example embodiment, not all defined places are by default surfaced in the map GUI 612 by respective place icons 631. Instead, the geo-anchored place stories are surfaced based on the amount of activity (e.g., the raw number of uploaded snaps) captured within a defined geographical area associated with the relevant place, as indicated by associated geo-tag data. This ensures that places that regularly or always attract relatively large volumes of snaps are identified as such on the map 618.


Defined places for which place icons 631 may be surfaced in the map GUI 612 are in this example embodiment manually created by one or more human operators using a server-side gallery management system or content management system (CMS) 1224 provided by a server-side social media platform system 1200 (FIG. 12). In this example embodiment, each defined place has:

    • (a) an associated operator-defined polygon marking its geographical boundaries, that specify a particular geographical area for the place story;
    • (b) a thumbnail location or icon location, typically lying within the associated polygon, that specifies the on-map position at which the place icon 631 for a gallery or story associated with that place is displayed in the map 618; and
    • (c) a name by which the place is identified. In the example embodiment of FIG. 6A, this is the name that is displayed on the associated label 635 of the place icon 631.


      In other embodiments, such places and associated place stories are automatically identified by historical snap volume. In some such embodiments, the defined places and their associated stories/galleries are created and curated automatically by server-side procedures.


In some instances, each place story includes all of the snaps having geotag information indicating a geographic location lying within the associated polygon. Selection of a particular place icon 631 (e.g., by clicking in a desktop application or by tapping on the touchscreen 606 in the example embodiment of FIG. 6A) in such cases plays all the snaps from within the corresponding polygon. In this example embodiment, the CMS 1224 provides functionality to operators or administrators to curate the collection of snaps associated with any operator-selected defined place (e.g., a particular geographical area defined by the corresponding polygon). The operator or one or more automated procedures can thus, for example, delete individual snaps from the place story, or can select individual snaps for inclusion in the place story.


When snaps are played in response to selection of a place icon 631, the name of the place appears on-screen together with the replayed content or payload of the respective snaps. As mentioned, in this example embodiment, the snap represented by a corresponding thumbnail within the relevant place icon 631 is played first, then the rest in time order.


Spike Stories


The unlabeled circular spike icons 633 are automatically surfaced for geographical areas of unusually high activity, with the respective associated spike stories or ad hoc galleries including unexpired snaps within the associated geographical area. In the example embodiment of FIG. 6A, all ad hoc galleries associated with spike icons 633 are unmoderated, so that selecting a spike icon 633 triggers automated sequential replay of all of the snaps within a geographical area associated with the spike icon 633. In a particular example embodiment, the geographical area associated with the spike icon 633 includes all geographical points located within a predefined radius of the on-map location of the selected spike icon 633.


Thus, clicking or tapping on the spike icon 633 plays all the snaps in that cluster, showing the snap in the thumbnail first and then the rest of the snaps in time order. Note, again, that the snaps clustered under the common spike icon 633 are in this example uploaded by multiple different respective social media users to Our Story, and are uncurated by moderators. In other embodiments, the stories collected under such spike thumbnails may be curated.


Automated selection of spike icons 633 (and therefore of the associated social media gallery, collection, or story) for surfacing in the map GUI 612 is in this example embodiment based at least in part on calculation of respective anomality or unusualness metric values for different geographical areas. Thus, a higher level of unusualness or anomality of user activity in a particular geo-temporal space would in such instances increase the likelihood of a particular spike story being surfaced on the map GUI 612 by display of a corresponding spike icon 633. As mentioned, the anomality metric provides an indication of the level of geo-temporal unusualness or anomality of social media activity. Calculation of anomality metrics can in some embodiments comprise calculating a level or percentage of difference between historical activity levels in a given area, and activity levels in a current time window. It will be appreciated that heat map coloration and content surfacing increases with an increase in positive anomality levels (i.e., indicating unusually high social media activity). Also note that, in some embodiments, a social media activity metric upon which heat map generation and/or content surfacing is based on a combination of factors that include an anomality metric. In a particular example embodiment, the social media activity metric is provided by a combination of a raw activity metric and an anomality metric.


Instead, or in addition, human curators can, via the CMS 1224, also mark specific spike stories or clusters as “interesting,” thereby boosting the unusualness or anomality score of the respective spike.


Note that, in the example embodiment described with reference to FIG. 6A, different social media activity attributes or metrics are used for surfacing of the place icons 631 and the spike icons 633 respectively. As discussed, spike icons 633 are in this example embodiment surfaced based on anomality metric values, while place icons 631 are surfaced based on raw snap volume. In other embodiments, surfacing of the place icons 631 may also be based at least in part on associated anomality values. Note that in some embodiments, various aspects of social media surfacing as described herein (including heatmap calculation and generation, story surfacing, etc.) are based on attributes other than anomality. For example, the heatmap 625 and story surfacing are in one embodiment based on raw activity levels. Therefore, discussion herein of aspects of the disclosure relating to informational overlays (such as the heatmap 625) and content surfacing based on the anomality metric is to be read as, in other embodiments, being performed based on a different social media activity value, such as raw snap numbers in a given time period, snap frequency, snap density, or the like.


Other Types of Stories or Ephemeral Social Media Galleries


Other embodiments can instead, or in addition, provide for social media gallery types different from the place stories and the spike stories described with reference to FIGS. 6A and 6B. Each such different type of gallery may be represented on the map 618 by a visually distinct type of icon or other user interface element.


One example embodiment provides for event galleries pertaining to particular events occurring at a specific location. Such events can include, for example, concerts, festivals, sports events, or the like. These event galleries are in one embodiment created and curated server-side by human operators using the CMS 1224.


Some embodiments provide for surfacing on the map 618 story icons or thumbnails with respect to non-public snaps, e.g., snaps or stories that are access-restricted based at least in part on social network information. For example, individual stories uploaded by friend users may in some embodiments be represented on the map 618 by a respective icon or thumbnail. For example, the My Story of friend users may in some embodiments be directly accessible via the map 618. Such story icons are in some embodiments indicated by a respective friend icon or bitmoji 640 located on the map 618 corresponding to the location at which the corresponding story was generated. In other embodiments, each such user story icon may be indicated on the map GUI 612 by a circular thumbnail analogous to the previously described example story icons 631, 633.


Snap Submission to User-Selected Location Based Stories


Another feature of the disclosure enables users to submit publicly viewable snaps designated for inclusion in any and all Live Stories or ephemeral galleries that might be happening at locations where the user is eligible to post, e.g., being geographically proximate to the current location of the user as indicated by the associated client device 102. In this manner, the user can specify snaps for inclusion in place stories, event stories, or other location-based ephemeral social media galleries as discussed above.



FIGS. 7B and 7C show an example embodiment of a destination selection interface 707 that provides a mechanism for such destination selection alternative to the example embodiment previously described with reference to FIG. 7A. The destination selection interface 707 of FIG. 7B is displayed on the client device 102 in response to the user initiating a snap submission flow, e.g., by capturing a snap.


The destination selection interface 707 of FIG. 7B is similar to that of the example embodiment of FIG. 7A, in that two different user-selectable user interface elements in the form of respective radio buttons 714, 721 are presented for posting a snap to a user-specific My Story (radio button 714) or to a publicly viewable Our Story (radio button 721). A distinction between the destination selection interface 707 of FIG. 7A and that of FIG. 7B is that the Our Story cell of FIG. 7B automatically expands upon selection of the radio button 721 to show subtitles of local place stories and/or event stories to which the snap could be submitted based on device location or the geo-tag of the associated snap.



FIG. 7C shows additional options presented as a result of selecting the Our Story radio button 721, which opens up a list showing the respective local stories for which the snap is eligible. In this example embodiment, all suboptions are selected by default via respective radio buttons 750. In other embodiments, separate selection of individual suboptions may be required. If the user chooses to submit the snap with all of the options selected, that snap is automatically associated with each of the selected suboptions as well as being made available for geographically based viewing as part of Our Story, separate from any curated location-based place or event gallery/story, as described above.


The user can deselect any particular suboptions by clicking or tapping on the corresponding default-selected radio button 750, as shown in FIG. 7C, in which the lowermost one of the suboptions has been deselected. If all suboptions are deselected, the snap is not posted to any curated location-based story, but is posted only to Our Story to be publicly viewable via the map GUI 612, as described elsewhere herein.


Heatmap Considerations


As shown in FIG. 6A, the social media application map GUI 612 in this example embodiment includes a heat map layer overlaid on the geographical map 618, thus providing the heatmap 625 that indicates geographical distribution of one or more attributes of user activity within the social media application. As discussed previously, the heatmap 625 indicates user activity levels with respect to posting geotagged content that is publicly viewable (e.g., Live Stories/Our Story). Instead, or in addition, the heatmap 625 can in some embodiments be based on snaps that are available for viewing by the particular user on whose client device 102 the map GUI 612 is displayed, in which case the heatmap 625 may differ from person to person depending on who gave the viewer permission to see their snaps.


In this example embodiment, the map 618 is color-coded, with warmer colors corresponding to higher levels of unusualness, as indicated by higher anomality metric values. Thus, in the map 618 illustrated in FIG. 6A, the red areas of the heatmap 625 indicate those geographical areas with snap clusters corresponding to the highest anomality metric values. Again, different metrics or attributes for generation of the heatmap 625 may be used in other embodiments, for example being based on snap density (e.g., raw snap volume per unit area of the map 618).


In some embodiments, the map GUI 612 displays information pertaining to the heatmap 625 differently at different magnification levels. For example, calculation of anomality metrics and consequent rendering of the heatmap 625 based thereon is in some embodiments performed separately for each of a plurality of zoom levels. In addition, different sets of spike icons 633 may be surfaced at different magnification levels. In one example embodiment, the heatmap 625 may be displayed at a first zoom level without individual spike icons 633 surfaced in the map GUI 612, while multiple gallery or story icons 631, 633 are automatically surfaced in response to user-controlled zooming in on a particular portion of the map 618 shown at the first zoom level.


Anomality Metric Calculation


Some features of the map GUI 612 in this example embodiment provide for calculating with respect to social media content an anomality metric that quantifies geospatial anomality or unusualness of the social media content, and for surfacing the social media content in the map GUI 612 based on respective values for the anomality metric. In this example embodiment, respective collections of snaps associated with different geographical locations are ranked based at least in part on corresponding anomality metric values, and a predetermined number of the collections are automatically selected based on their anomality rankings for surfacing on the map GUI 612 with respective spike icons 633. Instead, or in addition, all spike stories with a positive anomality metric value (i.e., reflecting anomalously high, not low, activity) higher than a predefined threshold value can automatically be surfaced by the display of a corresponding spike icon 633. As described elsewhere herein, the calculation and display of heatmap information is in some embodiments based at least in part on anomality metric calculation.


Anomality metrics may in some embodiments be calculated for individual social media items. In this example embodiment, however, anomality metrics are calculated for collective user behavior. In particular, anomality metrics are calculated for multiple snaps (in this example being respective geotagged social media submissions) based on a comparison between geo-temporal distribution of the multiple snaps and historic geo-temporal social media behavior in or around the relevant geographic location.


Note that the calculation of anomality metrics is in this example embodiment time sensitive. Thus, the same volume of snaps in a particular location may be identified as being anomalous at one time of the day but not at another time. For example, a certain level of social media activity (here, posting of snaps to Our Story) at the Empire State Building would be flagged as above-threshold anomalous at 4 AM, but would not be thus identified as anomalous during daytime.


An aspect of the disclosure provides for determining one or more geo-temporal attributes of social media activity by a process comprising, for each of multiple social media postings, representing the posting as having a distribution in time and/or in space. In some embodiments, representing respective postings as having a geo-temporal distribution comprises treating respective social media items as a probability cloud, for example having a Gaussian distribution. Instead, or in addition, the method may comprise generating or extrapolating a historical model or historical representation of social media activity based at least in part on a resampling procedure executed with respect to a multiplicity of historical geo-tagged social media items. In one example embodiment, the resampling procedure comprises a bootstrapping operation.


In some embodiments, the representation of social media postings as having respective distributions in time and/or space is performed as part of an operation to represent a geo-temporal reference profile or model for historical social media activity for a particular geographical area. Instead, or in addition, the representation of social media postings as having respective distributions in time and/or space may be performed as part of a procedure to represent recent or near-live social media activity in the particular geographical area. In such cases, the geo-temporal reference profile and the representation of the recent or near-live social media activity may be used in combination to identify within the geographical area one or more regions of interesting or anomalous social media activity, e.g., by calculating a geographical distribution of a quantified anomality metric based on differences between the geo-temporal reference profile and the corresponding representation of recent or near-live social media activity.


Dynamic Variation of Icon Size


Turning briefly to FIG. 6B, it will be seen that the map GUI 612 illustrated therein provides an example embodiment of an aspect of the disclosure that provides for automated variation in one or more visual attributes of user interface elements associated with respective social media content based at least in part on a quantified attribute of underlying social media activity. In particular, the example embodiment of FIG. 6B provides for dynamic variation in the on-screen size of respective spike icons 633 based on respective anomality metric values for the corresponding clusters or spike galleries. On-screen size of the respective spike icons 633 thus indicates a level of unusualness or anomality of the underlying social media activity. Worded differently, the size of a spike icon 633 represents how unusual it is for there to be the relevant amount of activity in that spot, with a larger spike icon 633 indicating a greater level of unusualness.


Instead, or in addition, a visual attribute (such as its on-screen size) of the place icons 631 may likewise be variable based on a corresponding anomality value. In the example embodiment of FIG. 6B, however, the on-screen size of the place icons 631 is variable based on snap volume, with a greater number of snaps included in any place story corresponding to a larger on-screen size of the associated place icon 631. Thus, it is intuitively intelligible from the example screenshot shown in FIG. 6B that the Universal Studios story has a greater number of snaps than the Venice Boardwalk story.


Location Sharing and User Icons


User Location Display


As mentioned previously, the map GUI 612 includes a graphical representation of associated locations of the user associated with the client device 102 and/or other users, each user being represented by a respective user icon or friend icon (for users who are members of an in-application social graph associated with the viewing user), in the illustrated embodiments being in the form of respective bitmojis 640. In this example embodiment, a user of the social media platform will not be sharing their location if they have never interacted with the map GUI 612. The first time the user interacts with the map GUI 612, the user is taken through an on-boarding flow which allows for the setting of individual location sharing preferences.


Regardless of whether the user has selected to show their location to anyone, the user can see their own current location on the map at all times, and, if the user's bitmoji 640 is no longer in view, snap back to it, causing the map focus to re-center on the user location. FIG. 8A shows an example embodiment in which the viewing user's location is indicated by a custom user-selected or user-generated user interface element in the form of the user's bitmoji 640.


Location sharing preferences can be changed from the graphical user interface of FIG. 8A. In this embodiment, changes to location sharing preferences can be affected by (a) entering an invisible mode in which the user's location is not visible by any other user (also referred to herein as Ghost Mode), and (b) changing default location sharing settings and/or respective settings for different friend users and/or groups of friend users.


Location sharing can be turned off or on from within the map GUI 612, thereby to enter or exit Ghost Mode. In this embodiment, Ghost Mode can be toggled on/off via a map pin icon 808 in the top right (see FIG. 8A). When location sharing is off (i.e., when in Ghost Mode), the user's location is no longer displayed in the map GUI 612 on other user's client devices 102. The user can still, however, see his/her location in the map GUI on his/her own device. When in Ghost Mode, a ghost icon (not shown) slowly pulses in the top right of the screen in replacement of the map pin icon 808.


Note that the Ghost Mode functionality described herein is to be distinguished from turning off location services on a mobile user device. Thus, when Ghost Mode is turned on, the device location services of the client device 102 are still functioning, so that the user location can still be determined and displayed on the map GUI 612 of the user's own device 102, with social media content captured in Ghost Mode still being geo-tagged.


When the user turns on Ghost Mode after previously being present on the map, the user's bitmoji 640 disappears within seconds from other people's maps. When in Ghost Mode, the user can still see anyone on the map who has chosen to share their location with the user.


If the user selects their own bitmoji 640, a user bubble or user panel 816 is launched at the bottom of the touchscreen 606, enabling the user to access location sharing preferences via a settings soft button 824. The user panel 816 further includes a location-agnostic collection icon in the form of a My Story icon 832. The My Story icon 832 is selectable to launch replay of the viewing user's My Story, being a location-agnostic collection of social media items (here, ephemeral snaps) submitted by the user. Analogous to other location-agnostic GUI features disclosed herein, location-agnostic in this context means that the collection of social media items playable via the My Story icon 832 is collated and displayed without regard to any location constraint, thus being unaffected by geo-tagging information associated with the respective items, by the user's current location, or by the current focus of the map 618.


Location Sharing Preferences


Selecting the settings soft button 824 causes display in the map GUI 612 of a location sharing preferences interface 840 (FIG. 8B) that, in this example embodiment, provides the user with options for specifying who will get to see their location, and at what granularity. Default sharing granularity options provided in this example embodiment include:

    • Precise, meaning in this embodiment is that the user's bitmoji 640 is displayed to friend users via their map GUIs 612 at the user's actual location (e.g., as indicated by the location services of the client device 102). In other words, the display location and the actual location for the user is substantially the same; and
    • City, meaning that the display location of the user's bitmoji 640 will be different from the actual location, but will be located within a defined geographical region corresponding to the current actual location. In this example embodiment, the defined geographical region within which the user's location is displayed is at a city level (e.g., Venice, CA, London, etc.).


When the city option is selected for a particular group of users or for particular individuals, the user's bitmoji 640 will in this example embodiment be shown in the map GUI 612 generated on the user devices 102 of the selected persons (or persons within the selected group) at a random location within that city, and which will in this embodiment not change if the user does not leave that city. FIG. 8C shows an example of display of a user bitmoji 640 in the interactive map 618 of the map GUI 612 at such a city-level display granularity, in which the user bitmoji 640 is shown at the random location in the city, together with an associated label 860 specifying, broadly, the city in which the user is located (in the illustrated example embodiment being Santa Monica).


Note that the features related to intentionally inaccurate display of the user's location has the effect that the user's location is displayed differently on, the one hand, an instance of the map GUI 612 generated on their own device 102 (e.g., FIG. 8A, in which the display location of the user bitmoji 640 corresponds to the actual location of the user) and, on the other hand, instances of the map GUI 612 generated on the user devices 102 of friend users having a non-precise viewing permission (e.g., labeled city-level display such as that illustrated in FIG. 8C, in which the display location of the user bitmoji 640 differs from the user's actual location). In this example embodiment, the display location of the user bitmoji 640 at a non-precise regional level (e.g., at city-level) is the same across different friend user devices 102, so that different friends see the user bitmoji 640 as being displayed at the same random location. In other embodiments, the display location can be different for different friend users.


It will be seen that this aspect of the disclosure thus provides for a method comprising: determining a location of a user device associated with the user of a social media application; determining a user-selected location display setting that specifies a manner in which the user location is to be displayed on a map-based GUI displayed to other users of the social media application, the location display setting being selected from a predetermined set of location display settings that correspond to display of the user location at different respective levels of precision on the map-based GUI; and representing the user on the map-based GUI of the friend user by rendering a UI element associated with the user at a location on the map-based GUI in accordance with the selected location display setting.


The defined geographic region is in the example embodiment of FIG. 8B as being available only at city level. In other embodiments, different or additional levels of display granularity can be provided, for example identifying different levels of cartographically and/or politically defined geographical regions, such as county-, city-, town-, or neighborhood level. Note that, in the example embodiment of FIG. 8B, Ghost Mode can not only be toggled at a general level (via a Ghost Mode toggle 841), but can be selected for groups of users or for individual friend users via a group selector 842 and a friend selector 843 respectively. In some embodiments, the displayed user location remains fixed at the randomly selected display position until the user device 102 leaves the defined geographic area. Thus, a new display location is in some embodiments determined each time the user enters the relevant area.


As mentioned, the user can also via the location sharing preferences interface 840 select different groups of other users to which his location will be displayed, and may in some embodiments specify different display attributes for the different respective groups or for different respective individuals. In this example, audience options available via the group selector 842 include: Best Friends, Friends, and Custom (which is an individual-level whitelist of people specified by the friend selector 843).


If Friends are selected, all new people added to the user's friends list will automatically be able to see their location, consistent with the granularity level selected in the group selector 842 (e.g., being selectable as precise or at city level in the group selector 842 of FIG. 8B). If they are already sharing with the user, they appear within seconds on the user's map.


In this example embodiment, the location sharing relationships are two-way—if John is sharing his location with Jack, Jack will not see John on his map 618 unless he has added him as a friend. The user cannot add anyone who is not a friend to the Custom section. The user can furthermore, via the friend selector 84343, define more specialized permissions for specific people, which override the default setting


When viewing the map GUI 612, the user will thus be able to see the locations of all his/her friends that have shared their location with him/her on the map 618. As discussed, each user is in this example embodiment represented by a bitmoji 640. If the friend does not have a bitmoji 640, a profile picture within a generic UI element is shown. If no profile pictures available for a particular friend, a default icon (e.g., a blank profile) is displayed at the corresponding location.


Friend-Level Access via Friend Icon/Friend Carousel


In this example embodiment, friend-level access to friend information and friend-specific content is enabled via the interactive map 618. Such friend-level access is distinguished from location-based access mechanisms such as a location-based search or snap collections accessible via respective geo-anchored story icons 631, 633. One example of such a friend-level access mechanism is a friend bubble or friend panel 909 (FIG. 9A that pops up at the bottom of the screen when the user taps on the bitmoji 640 of a displayed friend. The friend panel 909 and a friend carousel 918 of which it forms part, provide a number of functionalities to the user.


In the example embodiment of FIG. 9A, the friend panel 909 displays summary information about the user. As illustrated in FIG. 9A, the friend panel 909 forms part of a friend carousel 918 that enables the user selectively to switch focus between different friends. Note that, in addition to the main friend panel 909, the friend carousel 918 includes a next friend panel 909 whose left edge is exposed on the right-hand side of the touchscreen 606.


The user can swipe between friends on the map 618 via the friend carousel 918. In this example embodiment, switching between friends is achieved by swiping the current focus friend panel 909 left or right. Swiping left or right on the friend panel 909 brings into view the next or previous friend panel 909, as the case may be. In this example embodiment, swiping to a particular friend automatically centers the map 618 on the bitmoji 640 of that friend. Note that all of the friends for whom the user has viewing permission should be available as part of the friend carousel 918, not just those friends who are visible in the map viewport 621. Friends are in this embodiment ordered in the carousel by update recency.


The friend panel 909 also includes a chat soft button 918 that can be selected to launch a chat interface 950 (see FIG. 9B) in temporary replacement of the interactive map 618, but without leaving the map GUI 612. In other embodiments, tapping on the friend bitmojis 640 causes a fly-out menu to be displayed, with initiation of a chat session being one of the selectable options.


In this example embodiment, selection of the chat soft button 918 causes the chat interface 950 to pop up in a modal over the map 618, which modal can be swiped down to dismiss. Incoming chat notifications can be opened in this modal view.


The friend carousel 918 additionally provides location-agnostic access to social media content provided by respective friend users via the map GUI 612. In this example embodiment, such location-agnostic access is available via a location-agnostic collection icon in the form of a respective Friend Story icon 932 displayed in the friend panel 909. The Friend Story icon 932 is selectable to trigger replay of a corresponding story (in this example being that the My Story of the selected friend) comprising a series of snaps uploaded by the corresponding friend user, without any location constraint on the replayed material. In other words, no location information has any effect on the availability and identity of these snaps. The friend carousel 918, via the Friend Story icon 932 thus provides a link from the user location to social media content that is not located anywhere, in that the snaps or stories thus available will be the same irrespective of the friend user's current location, the current focus of the map viewport 621, or the current location of the viewing user. Worded differently, this and other location-agnostic access features of the map GUI 612 provide for access to friend content via the map GUI 612 in a manner similar to that which would be provided by a GUI that is not map-based. Thus, in one example embodiment, selecting a particular friend bitmoji 640 causes display of a menu or user interface element (in the example embodiment of FIG. 9A, the respective Friend Story icon 932 of the selected user) through which available snaps and/or stories of the target user can be viewed, without regard to any geo-tagging information of the respective snaps/stories.


As will be described below, certain aspects of the search mechanisms provided by the map GUI 612 similarly provide access to location-agnostic social media content of friend users via the map GUI 612.


Search Functionalities


In addition to viewing clustered stories by selection of the story icons 631, 633, the user can access snaps by use of one or more search functionalities provided by the map GUI 612. In this example embodiment, the map GUI 612 provides a number of different search mechanisms through which the user can access targeted social media content, the search mechanisms including:

    • a search bar 665 (FIG. 6A) that enables the entry of a text string search query to cause display of search results comprising a list of entries satisfying the search query (FIG. 10C);
    • location-based searches to search for social media content based at least in part on their respective geo-tag information. In some embodiments, these location-based search mechanisms include:
      • a location-targeted search triggered by clicking or tapping at a target location on the map 618 (illustrated schematically in FIGS. 11A and 11B); and
      • a friend-based location search to locate social media content based at least in part on the location of a selected friend user; and
    • one or more friend-level access mechanisms that provide access to social media content of the selected friend users. In a particular embodiment, these include:
      • access to location-agnostic friend content via the user icons, friend carousel 918 and/or individual friend panels 909; and
      • location-agnostic collection icons (e.g., Friend Story icons 932, as described below with reference to FIGS. 10A-10C) displayed in association with respective friend users in a list of search results.


        Search Bar Mechanism


Two example embodiments of operation of a search mechanism provided via the search bar 665 is illustrated schematically with reference to FIG. 10A and FIGS. 10B-10D respectively. Discussing first the example embodiment of FIG. 10A, it will be seen that selection of the search bar 665 (FIG. 6A) causes display of a drop-down search interface 1010 that includes a search box 1020 for entering a text-based search query, and a number of lists of suggestions 1030 in respective user interface cells displayed below the search box 1020. In the example embodiments of FIGS. 10B-10D, individual suggestion cells correspond to individual snaps, stories, places, and/or friends. As can be seen with reference to a corresponding screenshot of the search interface 1010 in FIG. 10C, the particular cells displayed as part of the suggestions 1030 are dynamically filtered in response to text entry in the search box 1020, to include only stories, friends, or places that satisfy the entered search query.


When the user clicks on a selected cell in the list of suggestions 1030, the map GUI 612 in this example automatically navigates with a fly-over to the corresponding point on the map 618. If the selected cell is for a spike collection or cluster (also referred elsewhere herein as a spike story), the snaps in the corresponding story starts playing sequentially. If the selected cell is a friend cell, the map viewport 621 navigates to the corresponding friend bitmoji 640, and the associated a friend panel 909 pops up, as the case may be. In the example embodiment of FIG. 10A, at least some aspects of the display search results or suggestions 1030 are location-agnostic, returning search results from any location, without any constraint based on the user current location or the display area of the map 618. In particular, the “My Friends” section of the suggestions 1030 in the embodiment of FIG. 10A includes any friends for whom the user has viewing permission.


Thus, features provided by the search interface 1010 of FIG. 10A include:

    • Searching for a location anywhere in the world, and navigating to it by selecting the corresponding suggestion cell; and
    • Viewing, before typing, suggestions 1030 of interesting social media content, and, while or after typing, suggestions that dynamically satisfies the search query. In the example embodiment of FIG. 10A, these include:
      • Friends of the user, in section 1032, identified as a “My Friends”;
      • Trending place stories, event stories, and/or spike stories or clusters, irrespective of location, identified as “Trending Locations” in section 1034;
      • Nearby place stories, event stories, and/or spike stories or clusters, in section 1036, identified as “Popular Nearby.”


Note that the “My Friends” and “Trending Locations” in the example embodiment of FIG. 10A shows friends/content from all over the world, not just friends/content that shows up in your viewport. All friends are shown section 1032 in order of how recently seen. In contrast, the “Popular Nearby” entries have a location restraint, being in this example embodiment limited to stories falling within the area of the current map viewport 621. In other embodiments, the location restraint is based on the user's current location, as indicated by the client device 102.


The “Trending Locations” and “Popular Nearby” stories are ranked globally according to a metric based on the underlying social media activity, in this example embodiment being ranked according to the number of unique users contributing to a story. In some embodiments, the trending locations may be ranked according to anomality metrics or interestingness scores. In yet further embodiments, surfacing of stories in the search interface 1010 can be based on raw snap volume, snap density over time, rate of increase in snap volume, or the like.


When users click on an entry in the search box dropdown, the map GUI navigates with a fly-over to the corresponding point on the map 618, after which the story/spike cluster starts playing, or friend panel 909 pops up, as the case may be.


Searching functionality available via other example embodiments of the map GUI 612 will now be described with reference to FIGS. 10B-10D. FIGS. 10C and 10D show behavior of the search interface during and after typing by the user in a search box forming part of the search interface 1010. It will appreciated that items listed during and after typing are limited to items (e.g., friends, places, events, or stories) that satisfy the search string entered thus far. Each one of a number of different sections of suggestions 1030, in which respective entries are ranked by priority, will be described separately below. Different embodiments may employ different combinations of these suggestions sections.


FRIENDS ON THE MAP—This section, indicated by reference numeral 1040 in FIG. 10B, shows friends that are that are on the map 618. In this example embodiment, the displayed friends are limited to friends who are visible in the map viewport 621 (i.e., in the geographical area of the map 618 displayed immediately before launching the search interface 1010). In other embodiments, the displayed friends include any friends who are currently available somewhere on the map 618. In this example, the top four friends are listed, followed by a View More button if necessary. The user can tap on a friend cell to locate them on the map 618.


Each friend cell includes, if available, a location-agnostic collection icon in the form of a Friend Story icon 932. Any of the Friend Story icons 932 can be tapped to view the corresponding friend story modally. Viewing of a story comprises sequential replay of the series of snaps included in the story. Each Friend Story icon 932 in this example embodiment comprises a user interface element in the form of a circular thumbnail to the right of the respective friend name. In this example, the stories thus playable include any of the friend's stories, without regard to any location information that may be associated with the story or with any snaps forming part of the story, thus being in accordance with the disclosed feature of map-based access to location-agnostic social media content of a target friend user. In other embodiments, however, the stories surfaced for replay are limited to those geo-tagged on the current map view.


In addition to the Friend Story icon 932, each friend entry in this example embodiment comprises an associated bitmoji, name, last seen timestamp, and associated location indicator. The listed friends are ordered by update recency.


ALL FRIENDS—This section, identified by reference numeral 1050 in FIG. 10C is similar to the My Friends section 1032 of FIG. 10A, in that it surfaces friends that satisfy the search string, irrespective of whether or not that friend is present on the map. In addition to a My Story icon 832 were available, a user name and a score indicator is shown as subtext for each friend. In this example embodiment, the indicated score is a user score that is used throughout the application to represent a user's engagement level. In some embodiments, as previously described, tapping on a friend cell navigates the map to focus on the display location of that friend. In this example embodiment, however, tapping on cell launches the chat interface 950 modally (see FIG. 9B). Dismissing the chat brings the user back to the search interface 1010.


TOP STORIES—This section, identified by reference numeral 1042 in the example embodiment of FIG. 10B, showcases the top stories from around the world (selected by curators daily or ranked by quality score or viewer volume).


NEARBY STORIES—This section, identified by reference numeral 1044 in FIG. 10B, shows interesting event clusters nearby or within the viewport. These will be ranked by descending quality score. In some embodiments, the nearby stories can be ranked according to the anomality metric, or according to a ranking score based at least in part on the anomality metric. Thus, it will be seen that some embodiments of the disclosure provide for social media application search interface that automatically surfaces ephemeral galleries based at least in part on geographical proximity between the user device and geolocations associated with the respective galleries. Ranking of the surfaced ephemeral galleries may be based at least in part on respective anomality metrics.


LOCATIONS—This section, identified by reference numeral 1060 in FIG. 10D, shows all points of interest (POIs) or places (as defined by the CMS 1224) that matches the search query. In some embodiments, surfacing and ranking of locations satisfying the search string includes locations with stories available for replay, i.e. having an associated place story. Thus, for example, in the screenshot of FIG. 10D, Blue Lagoon is ranked above Blue Bottle Coffee because it has an associated collaborative story, even though the latter is closer to the location of the user device 102.


If the place has a story, a story icon 1063 in the form of a thumbnail is in this example embodiment shown before the title (see FIG. 10D). Tapping the story icon 1063 (or anywhere in the cell) centers the place on the map and auto-plays the story. If the place does not have a thumbnail, tapping the cell in this example embodiment reverts to the map viewport 621, focusing on the relevant location, without playing any story. Fallback prioritization is by proximity to current viewport (after POIs and/or places with playable stories have been prioritized to the top).


Location Based Search Via Target Location on Map


As an alternative to entering a text-based search query, the user can initiate a location-based search by selecting a target location on the map 618 separate from any of the story icons 631, 633, friend bitmojis 640, or any other selectable user interface element overlaid on the map 618. In this manner, the map 618 itself provides an interactive search mechanism. An example embodiment of such a location-based search is illustrated schematically with reference to FIGS. 11A and 11B.


In response to the user's clicking or tapping on a particular location on the map viewport 621, a search is conducted for social media items within a predefined radius from the click- or tap location. In this example embodiment, such a location-based search does not return a list of graphical user interface elements that are selectable to play respective items, but instead automatically triggers automated sequential replay of items returned as a result of the search.


In the example embodiment of FIG. 11A, selection of a target location 1110 is by haptic contact at the selected on-screen position, consisting of tapping the touchscreen 606 with a single finger 1120 of the user. Thus, tapping on a non-thumbnail place on the map 618 will radiate out a search around the target location 1110, as illustrated schematically in FIG. 11B by a substantially circular geographical search area 1130 centered on the target location 1110. Such a location-based search can have a predefined search radius from the tap location. If any snaps are found in the geographical search area 1130, they are automatically played back in sequence, as described before. If there are no snaps in that area, the search bounces back to show no results found.


In some embodiments, such a location-based search is dynamically restrained by a predefined search limit, so that the size of the geographical search area 1130 can be variable in different instances. In some embodiments, the search limit for a location-based search is a predefined maximum size defined by the number of snaps located in the search. In an example embodiment, the geographical search area 1130 will thus radiate out from the target location 1110 to a point where a predefined maximum number of snaps are found, after which all snaps from that area will start playing in sequence. Worded differently, a predefined search metric or limit is provided in some embodiments to determine when the search should be stopped. As mentioned, the search limit may be an upper limit to the number of snaps located, with the search radiating out no further from the target location once the number of snaps located reaches the upper limit. Thus, it will be seen that different location-based searches can return snaps from geographical search areas 1130 that differ in size, depending on the density of snaps in the vicinity of the target location 1110.


In some example embodiments, such a location-triggered social media content search (i.e., a search for social media content uploaded by other users triggered by a user click/tap at the target location 1110 that does not coincide with a story icon 631/633 or friend bitmoji 640) can be configured automatically to exclude social media items included in one or more of the clustered collections represented by respective icons 631, 633 on the map. Thus, in this embodiment, the social media application will not include in search results or replay any snaps that are included in any of the place stories or any of the spike stories on the map.


As mentioned, initiating a location-based search by clicking or tapping on a non-thumbnail area in this example embodiment triggers automatic replay of snaps located within a geographical search area 1130 centered on the target location 1110. In other embodiments, such a search input by target location selection may cause display of a graphical user interface element listing the snaps found within the search area, for example including a thumbnail and username for each found snap. The user can thereafter select from the list of found snaps those which are to be replayed.


In some embodiments, the snaps located in a location-based search are played back in chronological sequence, as indicated by respective timestamp data indicating when the corresponding snap was uploaded. In some example embodiments, a sequencing operation may be performed on the subset of snaps identified in a location-based search, so that the replay sequence does not strictly follow chronological sequence. In one example embodiment, an improved sequence for media playback in response to a user tap on the map viewport is achieved by a sequence of operations comprising (a) finding all snaps in a fixed radius of the tap point, (b) doing geo-temporal clustering of those snaps, (c) sorting those clusters by distance from tap, and (d) sorting within the clusters by time.


In some embodiments, the location-based search is by default performed for material uploaded within a predefined default time period. For example, the location-based search may identify all snaps that (a) are located within the geographical search area 1130; (b) are not included in any story represented by a corresponding story icon 631/633; and (c) have timestamps within a default preceding ephemeral timespan. Thus, in an example embodiment in which a snap is by default available for 24 hours via the map GUI 612, the location-based search may by default locate snaps having timestamps indicating upload dates within the past 24 hours.


In some embodiments, however, the preceding period with respect to which the search is performed is selectively variable by the user. For example, the search period timespan is automatically variable in response to an interval for which a search input gesture or signal is provided by the user.


In embodiments in which the map GUI 612 is displayed on a touchscreen 606 (as is the case in the example embodiment of FIGS. 11A and 11B), a geo-temporal search is triggered by haptic contact at a particular location within the map 618, with the search being geographically centered on a target location 1110 defined by the on-screen position of the haptic contact. In some embodiments, an input interval indicated by the time period for which the haptic contact is maintained with the touchscreen 606 automatically determines the preceding timespan with respect to which the search is carried out. In such a case, for example, a tap on the screen triggers a geo-temporal search for material within the default time period, while a press and hold automatically triggers a geo-temporal search for material within an extended time period which is longer than the default time period. In one example embodiment, a tap input triggers a geo-temporal search with a 12-hour timespan, while a tap and hold triggers a geo-temporal search with a 24-hour timespan. In other embodiments, the extended timespan is variable in graduated fashion, so that multiple different search timespans are selectable based on the press-and-hold interval. Note that the operations described with reference to the haptic contact on the touchscreen 606 can be performed analogously by a click-and-hold input in instances where user input is provided by a cursor control mechanism, such as a mouse.


Instead, or in addition, the search radius (i.e., the size of the geographical search area 1130) may be variable based on the length of the input interval, with longer input intervals (e.g., a longer hold period) corresponding to a larger search radius.


Location Based Searching via Friend Location or for Friend Content


Some embodiments of the map GUI 612 provide functionalities for searching for social media content with a location restraint based at least in part on a location attribute of the selected friend user. The location restraint may, for example, operate to limit the search to social media content geo-tagged within a predefined geographic range centered on a geographic location of the selected friend user.


For example, the user can in some example embodiments trigger a location-based search with a location constraint based on the location of a selected friend user. In one example embodiment, such a location-based search with respect to a particular friend location can be performed in a manner analogous to that described below with respect to a general location-based search as described with reference to FIGS. 11A and 11B. The various considerations and features discussed for general location-based searching can thus in some example embodiments apply, mutatis mutandis, to location-based searching based on friend location.


In one example embodiment, a friend-targeted location-based search can be triggered by user interaction with the friend icon or bitmoji 640 of a target friend user. In such an example embodiment, a click or tap input on the bitmoji 640 surfaces a menu or friend panel 909, while a press-and-hold input or a click-and-hold input automatically triggers a location-based search such as that previously described, the search area being centered on the location of the selected user. Instead, or in addition, a menu or friend panel 909 launched responsive to selection of the bitmoji 640 in some embodiments include a selectable user interface element to trigger a search for social media content targeted with a location constraint defined with respect to the location of the selected user.


In some embodiments, the friend-based social media content search additionally has an owner constraint such that the search results are limited to social media items of the selected friend user. In other embodiments or instances, the friend-based social media content search may search for content including but not limited to that uploaded or provided by the selected friend user.


Other example embodiments in which social media content searches via the map GUI 612 has a location constraint based on a selected friend user's location include instances where (while map focus is on a selected user) search results are limited to items currently displayed in the map viewport 621. The result section 1030 in the embodiment of FIG. 10B provides one such example. In other instances, the map GUI 612 provides for the option of searching for content exclusively contributed by a selected target user. Responsive to triggering such a friend-specific search, the user can change the focus and/or zoom level of the map viewport 621, with social media items surfaced in the map viewport 621 being limited to social media content posted by the target friend user.


As described with reference to some example embodiments herein, a social media application executing on the user device in some embodiments generates a map GUI having a map viewport on which displayed geographic locations of at least some friend users may differ from the actual geographic locations of those users. In some embodiments, the friend-centered location-based social media content search may be centered on the actual geographic location of the selected friend user, being distinct from a displayed location of the selected friend user on the map GUI. In other embodiments, the search may be performed with reference to the displayed location of the selected friend user.


Overview of Map GUI Functionality


In use, the map GUI 612 thus surfaces different types of location-based stories, which the user can view from the map 618. In the example embodiment of FIGS. 6A and 6B, the user can access via the map GUI 612 snaps posted to Our Story from anywhere in the world. This can be achieved by navigating to different geographical areas displayed within the map viewport 621. In particular, the displayed geographical area can be changed by zooming in or zooming out, and by moving the focus area of the map viewport 621. In the example embodiment of FIGS. 6A and 6B, in which the map GUI 612 is provided on a touchscreen 606, zooming in and zooming out can be achieved by haptic gestures in the form of a pinch-out or a pinch-in haptic input. Movement of the map 618 within the map viewport 621, so as to change the displayed geographical area, is achieved by a haptic dragging gesture at any point on the map 618.


In this example embodiment, the map 618 is not selectively rotatable by the user, having a fixed default orientation relative to the touchscreen 606. In other embodiments, the map 618 may have a fixed orientation relative to the Earth. In some embodiments, the map 618 is selectively rotatable, e.g., with all map content rotating around a fixed anchor.


As discussed at length above, in any particular map viewport 621, the displayed information can include:

    • the color-coded heatmap 625, visually displaying the geographical distribution of snap uploading activity within a preceding window (for example the default snap lifetime, in this example 24 hours), allowing the user readily to identify places with more or less activity. This enables the user more effectively to target location-based searches via the map GUI 612. In some embodiments, the color-coded heatmap 625 is shown only at a highest level of magnification. In this example embodiment, however, the color-coded heatmap 625 is rendered at all zoom levels.
    • Thumbnail icons 631, 633 for surfaced content forming part of ephemeral galleries or stories. As described previously, these include in this example embodiment place icons 631 for geo-anchored stories associated with particular labeled locations, and spike icons 633 for location-based stories surfaced based on anomalous levels of geo-spatial activity.
    • Friend bitmojis 640 of friend users most frequently contacted by the user who is logged in to the social media client application 104 executing on the client device 102 and by which the map GUI 612 is generated.


In some embodiments, no spike icons 633 are shown at some levels of magnification. In a particular example embodiment, no spike icons 633 are shown at the original zoom level at which the map GUI 612 loads by default. In such an example, only the heatmap 625, friend bitmojis 640, and a number of place icons 631 are displayed on the map 618 at the original zoom level. As the user zooms in, spike icons 633 are surfaced, representing respective clusters of activity.


It will be appreciated that different icons 631, 633 are surfaced at different zoom levels. In this example embodiment, the map GUI 612 displays no more than a predefined maximum number of place icons 631 and no more than a predefined maximum number of spike icons 633 in any particular view. For example, at any zoom level, the top three place stories (ranked by snap volume) are surfaced by displaying respective place icons 631 in the map viewport 621. Likewise, at any zoom level, the top three spike stories (ranked by anomality or unusualness metric value) are surfaced by displaying respective spike icons 633 in the map viewport 621.


In addition to viewing stories surfaced in the map 618 by respective story icons 631, 633, the user can use one or more of the search functionalities described above to access any snap uploaded to Our Story and whose gallery participation timer or availability lifetime has not yet expired.


It will be appreciated that the map GUI 612 is dynamic, in that the information displayed therein changes dynamically with time. New snaps may continually be uploaded to Our Story, while the underlying social media items upon which surfacing of the story icons 631, 633 and generation of the heatmap 625 is based can further continually change due to the expiration of the availability of snaps. In this example embodiment, however, the information displayed in the map viewport 621 is not dynamically updated during display of any particular geographical area. Instead, changing of the focus of the map viewport 621 is associated with receiving updated information with respect to the story icons 631, 633 and heatmap 625 from the application server 112.


It is a benefit of the map GUI 612 as described with the example embodiments that it provides for user-friendly and intuitive interaction with geographically distributed social media content. The provision of different types of social media galleries (e.g., represented respectively by spike icons 633 and place icons 631) provides a system that automatically surfaces only content which is most relevant for user-selection in such a manner that the very large number of individual social media items that may be available via a social media platform is reduced in complexity, and that allows selection of targeted content in which the user might be interested.


Example System



FIG. 12 shows an example embodiment of a social media platform system 1200 configured to provide a map-based graphical user interface for a social media application, such as the map GUI 612 described with reference to FIGS. 6A-11B. The system 1200 and its associated components can in some embodiments be provided server-side, for example by the social media application server system 108 (FIG. 1). In such instances, the respective components of the system 1200 can be provided by execution of the social media server application 114 on the application server 112. In other embodiments, one or more components of the system 1200 are provided client-side, for example by execution of the social media client application 104 on a respective client device 102 (FIG. 1). In yet further embodiments, the system 1200 is provided collaboratively server-side and client-side, the application server 112 and a client device 102 in communication therewith being configured to provide the respective system components by execution of the social media client application 104 on the client device 102 and by execution of the social media server application 114 on the application server 112.


The system 1200 includes a map engine 1208 to generate the map GUI 612, including the location-based social media information displayed in the map GUI 612. Thus, the map engine 1208 is configured to generate or to facilitate generation of the map 618 (FIG. 6A) in the map viewport 621 of the client device 102. To this end, the map engine 1208 can be configured to surface and cause display particular story icons 631, 633, to identify and cause display of respective friend bitmojis 640, to generate heatmap information and display or cause display of a heatmap 625 overlaid on the map 618, and to perform operations that provide other related functionalities of the map GUI 612 described with reference to FIGS. 6A-11B.


The system 1200 further includes a replay mechanism 1216 configured to cause automated sequential replay of the content of a set of social media items or snaps on the client device 102. The replay mechanism 1216 can thus cause sequential display of all of the snaps in a selected place story or spike story, as described previously herein. In some embodiments, the replay mechanism 1216 may provide for transmission of the set of snaps to the client device 102 in response to selection of a corresponding story icon 631/633. In some such embodiments, information automatically transmitted by the application server 112 to the client device 102 upon initial rendering of a map view in the map GUI 612 can include a first few (e.g., 2 or 3) snaps for each of the story icons 631, 633 surfaced in the map viewport 621. Upon selection of a particular story icon 631/633, the first few snaps in the story are immediately available for replay, with the subsequent snaps in the story being pulled from the application server 112 during presentation of the first few snaps.


The system 1200 also includes a content management system (CMS) 1224 enabling server-side administrative functionalities. The CMS 1224 provides an administration interface enabling operators to manage content, for example by defining various attributes of different place and/or event stories. The CMS 1224 in this example embodiment also includes the collection management system 204 (FIG. 2) as previously described. The CMS 1224 is configured for the automated or semiautomated compilation of the respective social media galleries or stories as previously described. This may include curation or moderation of respective stories by use of a server-side curation interface provided by the CMS 1224.


The system 1200 further includes a search engine 1233 configured to provide search functionalities with respect to social media content via the map GUI 612. In particular, the search engine 1233 in this example embodiment provides for user-directed searching both via the search interface 1010 (FIGS. 10A-10D) and via location-based searching by direct selection of a target location on the map 618 (FIGS. 11A-11B).


The system 1200 further includes a user location serving mechanism 1237 configured to determine respective user locations, in this example embodiment indicated by the respective device locations, to determine for each user the particular friend users who are viewable via the map GUI 612, and to provide the respective user location information for display of associated user icons at corresponding display locations. The user location serving mechanism 1237 in some embodiments comprise, as part of the server system 108, a user location datastore and a per-user access control list (ACL) that lists the particular friend users viewable by each user. In some embodiments, the per-user ACL specifies respective viewing level granularity for each viewable user. The user location serving mechanism 1237 in such example embodiments is additionally configured to determine and manage respective user display granularity. This includes calculating non-precise display locations for some users, and causing display of a corresponding user icons at the non-precise display locations.


The system 1200 also includes an analyzer 1250 that is configured to process social media activity data to calculate anomality metric values for different areas that is to be served by the map GUI 612. In some embodiments, the analyzer 1250 generates a historical model of the geospatial distribution of social media activity, using a probabilistic rendering of individual snaps. Activity data from a current or near live time window is mapped to the historical model and a respective anomality score for different respective locations in the map is calculated. Such anomality scores can be used by the map engine 1208 to surface content via the map GUI 612, to determine the size of spike icons 633, and the rendering of heatmap information, or the like.


Example Methods


Places CMS


Place Restriction and/or Exclusion


Another aspect of the disclosure relates to mechanisms or tools to provide to one or more administrators of a social media application one or more administrative functionalities with respect to different locations in the map. As will be described below, such administrative functionality can include the ability to select places that are to be displayed on the map GUI 612, and the ability to blacklist or otherwise restrict or vary user access to selected areas of the map. Such blacklisting or restriction of availability of social media items based on geo-tag information can include feeding in data from moderation to identify places from which high numbers of bad snaps originate. Automated identification of problematic areas in this manner facilitates blacklisting or, for example, age restriction of the identified problematic areas.


Some embodiments provide for automated geographically-based restriction or moderation based on user feedback or complaint information contemplated. In one example embodiment in an availability parameter for a defined geographical area (also referred to herein as a “place”, as will be described in greater detail below) can automatically be sent to be age-restricted or excluded when a volume or a frequency of complaints or reports received with respect to social media items (e.g., snaps) received from within the defined area exceeds a predefined threshold. In other embodiments, such an automated identification of problematic areas results in automated suggestion or surfacing of such places in a curation interface 1229 (FIG. 12), where a human administrator can determine and apply the appropriate setting.


These and other functionalities will be described in greater detail below as being provided by an internal administrator platform in the example form of an internal website also referred to herein as the Places Content Management System (Places CMS 2048, see FIGS. 12 and 20), via which multiple administrators can cooperatively perform administrative functions with respect to different geographic places and their attributes. It will be appreciated, however, that an analogous internal administration tool or mechanism may be provided in a different form, and that the functionalities described herein apply equally to such alternative architectures.


The Places CMS 2048 provides administrators with the ability to label particular geographic locations with a thumbnail and associated label. In embodiments where place icons 631 are displayed on the map GUI 612 both for administrator-defined places and for ad-hoc places based on the high activity (e.g., spike icons 633 for spike stories or clusters), these different types of place icons 631 can be distinguished by the associated label. Note that some embodiments may provide for display on the map of gallery icons in association only with administrator-defined places, but not for ad hoc places based on high or anomalous activity levels.


Such an example embodiment is displayed in FIG. 11A, in which the labeled place icons 631 Rockefeller Center, Bryant Park, and Empire State Building, are places defined and labeled via the Places CMS 2048, while the other, unlabeled icons (here comprising circular thumbnails without associated labels) are, as previously described, spike icons 633 for ad hoc geo-anchored ephemeral galleries surfaced based on high activity levels and/or high levels of anomality. In other embodiments, the only geo-anchored gallery icons displayed on the map are for administrator-defined places. In such cases, however, the particular predefined places in the current map viewport 621 for which the corresponding place icons 631 are displayed on the map GUI 612 are automatically determined based on a social media activity metrics, such as an anomality level discussed elsewhere.


For areas of the map that permanently or regularly have high levels of activity, administrators may choose to define and label such places with a permanent “popular place” thumbnail, as is the case for the three labeled thumbnails shown in FIG. 11A.


As mentioned, the Places CMS 2048 is an internal website where places can be defined. As shown in the FIG. 12, the Places CMS 2048 provides a curation interface 1229 when accessed by an administrator using a terminal device in communication with the Places CMS 2048. It will be appreciated that the curation interface 1229 is displayed on the user device or terminal of the administrator.


The Places CMS 2048 is in this example embodiment used to cause display of places on the map, to blacklist places from the map, and to selectively vary availability parameters for different geographical areas. FIG. 13A shows a screenshot of an curation interface 1229 for the Places CMS 2048.


An existing feature of some social media platforms is the ability for users to define geo-fences, and to apply geofilters to social media items with geo-tags located within respective geo-fences. A geofilter in this context is a decorative overlay applied to a social media item such as a photo or a snap. In this example embodiment the Places CMS 2048 use existing geofilters to assist in building a places list. Such generation and curation of the places list can include:


Displaying a predefined number of top places in the tool, based on how popular the filter is (if possible). Instead, place popularity can be measured by how many snaps on average are taken in the fence and shared to Our Story.


In this example, geofilters are used only for or the types of places the administrator wishes to label, so geo-fences for neighborhoods, cities, etc. are in this instance excluded.


The geofilter fence is used as place fence. The place fence is in this example also used when a user taps on the place in the map 618, responsive to which a resultant search is limited to social media items with geo-tags located within that place fence. Such a search is a variant of the location-based search described with reference to FIGS. 11A and 11B, with the difference that the search area is limited to the defined boundaries of the particular place within which the target location is situated.


If the geofilter has a center-point, that centerpoint is used for displaying the place on the map GUI 612. Otherwise a center of the fence polygon is used as centerpoint of the place fence.


To enable display of a place on the map, the place is named and a thumbnail is assigned to the place via the Places CMS 2048. In this instance, the administrator can use the original geofilter name if it is deemed appropriate. Otherwise, the administrator can manually label the respective places. As to selection of a thumbnail, the administrator is enabled to page through a predefined number of the most recent snaps in the relevant polygon (in this example embodiment, 100 stats), from which a particular snap can be selected for use as thumbnail image. In other embodiments, a thumbnail image for the relevant place may be automatically selected, e.g., the most recent thumbnail.


As described previously, the Places CMS 2048 additionally provides the functionality of blacklisting or otherwise restricting the surfacing of social media content to the map GUI 612 based on the geographical origin of the respective social media items. FIG. 13A shows a screenshot of one example of the curation interface 1229 provided by the Places CMS 2048 for defining places as particular geographical areas and/or for assigning different availability parameters to different defined places. In this example embodiment, places are by default assigned a general availability parameter, meaning that access to snaps from that place is unrestricted. The administrator can modify the availability parameter to be blacklisted/excluded (in which case snaps from that area are unavailable to all users), or aged restricted (in which case snaps from that area are available only to users older than a predefined threshold age). It will be appreciated that other availability parameters and statuses may be applied in other embodiments. The default availability parameter may in other embodiments also be different, for example requiring whitelisting by the administrator for access.


Note that the entries for hidden and unreviewed for some places in the screenshot of FIG. 13A pertains to the visibility by way of the associated story icons, note to whether or not snaps from the associate place is viewable. Thus, a snap originating from a hidden, or unreviewed place can still be viewed via the map GUI 612 (e.g. by one of the described search mechanisms). In contrast, snaps from blacklisted or aged-restricted places cannot thus be accessed.


As shown in the screenshot of FIG. 13B, the curation interface 1229 includes an “Add New Place” UI 1305 that provides an administrative user the ability to draw a polygon over one-off areas of the map to blacklist or otherwise restrict. This is achieved in this example by adding a new place (using UI 1305), and marking it as “blacklisted” in the curation interface 1229 of FIG. 13A. In the screenshot of FIG. 13A, an instance is shown in which the availability status of Cheetah's Strip Club has been set to “blacklisted,” using a dropdown status selector mechanism 1313. It will be appreciated that the blacklisting functionality can regularly be used to exclude defined areas from the social media application, so that social media items with geo-tags indicating origin from within the blacklisted area are excluded from accessibility to users via the map GUI 612. Areas thus blacklisted will typically be areas associated with inappropriate content, such as adult events or locations.


As mentioned, the Places CMS 2048 in some example embodiments provides the functionality to provide geographically-based content filtering not only in a binary manner in which any particular location is either included or excluded from the map for all users, but allows for variation in the availability of social media items from a particular geographical area based at least in part on one or more attributes of the requesting user. In a particular example embodiment, administrators are enabled to associate respective age ratings to various selected geographical areas, responsive to which social media content from those areas are available via the map GUI 612 only to users older than the respective age ratings.


Thus, for example, the administrator can, by using the Places CMS 2048, create a place associated with a particular adult establishment by drawing a polygon around it on the curation interface 1229, and can then assign an age restriction of 18 years to the defined place. Thereafter, snaps originating from that adult establishment will be viewable via the map GUI 612 only by users whose ages (e.g., as indicated age attribute associated with the respective users in a database of the social media platform) are greater than 18 years. It will be seen that, in this manner, different content is available on the map GUI 612 to different users, based on their respective user attributes.


As exemplified by the preceding description, one aspect of the disclosure thus provides for a method comprising making available social media content on a social media platform via a map-based GUI (map GUI 612) generated on a user device such that availability of respective social media items is variable based on associated geo-tag information.


In some embodiments, a number of defined geographical areas may be blacklisted, with any social media item having geo-tag information corresponding to one of the blacklisted areas being unavailable for viewing by users via the map GUI 612. Instead, or in addition, various defined geographical areas may be defined as restricted areas, with any social media item having geo-tag information corresponding to one of the restricted areas being available for viewing by users via the map GUI 612 only if one or more user attributes satisfy predefined availability criteria. In some embodiments, the availability criteria may define age restriction for respective restricted areas, so that social media content from the restricted areas are available being only by users who are older than a predefined threshold age. Different age restrictions may be applied to different restricted areas.


Some embodiments thus provide a method comprising:

  • receiving administrator input assigning an availability parameter for a particular geographic area, the assigned availability parameter being different from a default availability parameter associated with geographical areas that do not have an administrator-assigned availability parameter associated therewith;
  • generating a map-based GUI (e.g., map GUI 612) on a user device, the map GUI having an interactive map via which geo-tagged social media items are accessible for viewing on the user device; and
  • making available geo-tagged social media content via the map GUI, the method comprising restricting availability of each social media item having associated geo-tag information corresponding to the particular geographic area based at least in part on the assigned availability parameter.


The method may include, for each social media item, for each social media item: determining a location of the social media item based on geo-tagging information associated therewith; determining an availability parameter associated with the determined location; and determining an availability status for each social media item based on the respective associated availability parameter. As mentioned previously, the availability parameter for at least some geographical areas in some embodiments comprise an age restriction value. In such cases, the restricting of availability of the social media content comprises, for each social media item originating from a restricted area: determining a respective age restriction value corresponding to the location of the social media item; determining an age value associated with a user associated with the particular instance of the map GUI 612; and making the social media item accessible via the map GUI 612 conditional upon the age value of the user's being greater than a threshold age indicated by the corresponding age restriction value.


Some embodiments provide for geographical variation in automated social media content filtering and/or quality assessment. An administrator can in such embodiments define different filtering/quality estimation parameters (e.g., such as the by use of the techniques described below with reference to FIGS. 16-17C) for different geographical areas (e.g., defined by administrator-drawn polygons via the Places CMS 2048 as described above). The administrator can in such cases, for example, specify that different metadata fields and/or different quality assessment models be used for quality-based content filtering for different geographical areas.


To facilitate the identification of places that are candidates for blacklisting and/or age restriction, the Places CMS 2048 has the functionality of surfacing places that have been identified by user reports. These blacklisting candidates are surfaced in curation interface 1229 of FIG. 13A as Source=“Reported,” based on user reports of inappropriate or objectionable content. In some embodiments, the Places CMS 2048 provides a restriction resolution channel allowing users to contest blacklisting, age restriction, or any other form of restriction of availability associated with their respective area.


Turning now to FIG. 14, therein is shown an example method 1400 in which geographical variants in availability of social media items via a social media platform is implemented. The method 1400 is again described with reference to the earlier described map GUI 612 and Places CMS 2048, but it should be appreciated that the described techniques are not limited to these example embodiments.


At operation 1412, different nondefault availability parameters are applied respective defined geographical areas (further, places). E.g., using the curation interface 1229 (FIG. 13A) some places are blacklisted, other places are age restricted, and yet further places are left with the default availability setting.


In some embodiments, such place restriction can be implemented or prompted in an automated or semiautomated process comprising, at operation 1404 accessing moderation input or complaint information indicating user complaints or reports with respect to snaps originating from different places. At operation 1408, a list of candidate places for restriction is identified, e.g. based on an above-threshold complaint volume, frequency, or spike. Based on the candidate list, restriction suggestions are surfaced, in some embodiments, in the curation interface 1229. In one embodiment, identified candidate places are automatically blacklisted, with the administrator being able to change the availability parameter if it is deemed to have been applied incorrectly.


At operation 1416, social media content is received in the form of geo-tagged social media items (e.g., snaps) posted to the social media platform for general availability (e.g., submitted to Our Story), forming a set of snaps potentially available via the map GUI 612.


At operation 1420, the map engine 2008 automatically filters out all snaps received from places that are blacklisted. This provides a filter set of snaps available via the map GUI 612.


At operation 1424, the client device 102 sends the request or call for viewing a particular region within the map viewport 621. In response thereto, the map engine 2008 identifies an age value associated with the user account of the requesting client device 102, and then, at operation 1428, filters out or prevents access to all snaps to which the user is not allowed access, based on their age, thus allowing access only to an age-filtered set of snaps. This process may, for example, be responsive to a location-based search in a particular area. Instead, or in addition, the age filtering to the inclusion of snaps in stories accessible via the map GUI 612 (e.g., place stories, spike stories, and/or event stories).


Finally, the requested content (excluding any filtered out snaps) is delivered to the client device 102 for display thereon.


The above-described aspect of the disclosure includes the various example embodiments listed below as examples 1-20, which are to be read in view, at least, of the foregoing part of the description.


Variable Catchment Interval for Social Media Availability by Geography


Instead of, or in addition to, enabling restriction of access to particular geographical areas, the Places CMS 2048 in some embodiments provides administrative functionality to provide variation by geography in an interval subsequent to posting for which social media items are (a) made available via the map GUI 612, and/or (b) are included in social media content to generate, for example, heat map information or the like. As discussed at length previously, ephemeral social media content is social media content that is available via the relevant social media platform for only a predefined limited amount of time. Thus, for example, a snap uploaded to the user's “My Story” has, durable in some common implementations, an availability interval or lifetime of 24 hour subsequent to the time of posting. In the terminology used further herein, the My Story gallery thus has a catchment interval of 24 hours, by which is meant that only items uploaded to that gallery within the last 24 hours are available for viewing via the gallery.


In some embodiments, the Places CMS 2048 allows an administrator to define different catchment intervals for different geographical areas (e.g., places as defined by the curation interface 1229 of FIG. 13B). Thus, for example, some areas with high levels of activity and/or in which the recency of activity is deemed by the administrator to be of particular importance can be assigned a reduced catchment interval relative to a default catchment interval. In one example, Times Square is assigned a catchment interval of four hours, as opposed to a default 24 hour catchment interval.


Instead, or in addition, some areas can be assigned an increased catchment interval relative to the default catchment interval. Such increased catchment intervals are in some embodiments defined on an ad hoc basis based on the occurrence of unusual events associated with particular geographic areas. For example, the administrator can define a geographical area in which a hurricane has made landfall, and assign an increased catchment interval of 48 hours to that area, as opposed to the default catchment interval of 24 hours.


In some embodiments, geographical variation in catchment interval applies exclusively to the replay availability of the respective social media items, e.g., via place stories, spike stories, and/or location-based searches relevant to the defined geographical area. In such cases, other social media activity data, such as the heatmap generated based on a level of activity and/or anomality or unusualness metric values are unaffected by administrative definition of different catchment intervals for different geographical areas. Thus, for example, the variable size of a spike icon 633 is in some embodiments determined by an anomality value calculated for the associated area based on a default catchment interval, even though the associated area has a nondefault assigned catchment interval.


In other embodiments, variation in catchment intervals applies universally both to accessibility of individual social media items, and to other information and content displayed on the map GUI 612 as described elsewhere herein. In such instances, for example, the variable size of a spike icon 633 is determined by the anomality value calculated for the associated area based on a nondefault assigned catchment interval.


Turning now to FIG. 15, therein is shown an example method 1500 of enabling the generation of a map-based graphical user interface for a social media platform for ephemeral content, allowing for variation in catchment interval by geographical location. The example method 1500 is again described with reference to the example map GUI 612 discussed earlier.


At operation 1517, an administrator assigns, using an embodiment of the curation interface 1229 that has catchment-assignment functionality, different respective catchment intervals to different geographical areas, such that at at least two different geographical areas have different respective catchment intervals. For the purposes of this description, consider that a particular defined place (say the Empire State Building whose place icon 631 is shown in FIG. 6A) is assigned a catchment interval of four hours, as opposed to a default 12 hour catchment interval.


At operation 1524, a request for the replay of snaps with respect to a target area is received from a client device 102. In one instance, this comprises the user selecting the place icon 631 for the Empire State Building. In another instance, such a request may comprise a location-based search, either via the search bar 665 or by a tap-triggered search at a target location close to the Empire State Building.


At operation 1531, the respective set of snaps originating at that place (i.e. from within the defined boundaries of the place) is limited based on the corresponding catchment interval. In particular, the result set includes only snaps whose timestamp is no older than the corresponding catchment interval. Typically, the limiting of the result set occurs before receiving of the request. For example, the set of snaps together forming the place story for the Empire State Building is on an ongoing basis filtered to exclude any snaps falling outside of its four hour catchment interval.


Responsive to the request, the map engine 2008 serves the result set to the client device 102, at operation 1538. Note that result sets of different age span will thus be returned for different areas within the same map view. For example, no returned snap originating at the Empire State Building will have been posted more than four hours ago, while a location-based search in an adjacent area can return snaps as old as 12 hours.


These mechanisms beneficially allow for manageable snap collection sizes for areas of different snap density, thus reducing computational and communication load on various elements of the server system 108.


In this manner, different catchment intervals can be assigned to different geographical areas. These assignments can be permanent, semipermanent, or ad hoc. In the described example embodiment, catchment interval assignment is performed manually by an administrator. In some embodiments, however, catchment interval assignment can be at least partially automated, based on the identification of candidates for catchment interval variation based on predefined social media activity metrics. In one embodiment, the Places CMS 2048 is configured automatically to assign modified catchment intervals (or to surface a list of suggestions in the curation interface 1229) to defined places for which the respective snap frequency exceeds a threshold value for more than a threshold number of days within a predefined time window.


The above-described aspect of the disclosure includes the various example embodiments listed below as examples 21-31, which are to be read in view, at least, of the foregoing part of the description.


Automated Quality Estimation and Curation of Social Media Content


Another aspect of the disclosure provides for automated curation of collaborative social media collections (e.g., generally accessible ephemeral galleries, such as social media items posted to Live or Our Story in previously described example embodiments), based at least in part on an automated quality estimation for individual social media items. Thus, for example, the platform server system 108 for the social media platform previously described in some example embodiments includes a quality assessment system 2054 that calculates a quality estimate for respective geo-tagged social media items posted to Our Story. A quality filter is then applied based at least in part on the quality estimates, so that at least some user-provided social media items are automatically excluded from availability via the map GUI 612. In one example embodiment, any social media item with an automatically calculated quality score lower than a predefined threshold value is excluded from inclusion in any place story or from location-based search results via the map GUI 612.



FIG. 16 shows an example method 1600 for automated curation of social media content based at least in part on an automated quality estimation for respective social media items (in the present example embodiment, snaps). At operation 1609, a target set of snaps are retrieved for automated assessment. The target set of snaps can some embodiments be all snaps uploaded to the platform within a certain preceding time window, a collection of snaps associated with a place or event for providing corresponding story, or any other appropriate set of snaps.


At operation 1627, a quality estimate value or quality score is automatically determined for each snap. In this example embodiment, quality score determination is performed by a trained neural network. The method 1600 therefore includes the prior operations of, at operation 1618, labeling a set of training snaps with quality values, and, at operation 1636, training the neural network by feeding to it the set of labeled training snaps.


At operation 1645, the original set of snaps is filtered based on the respective quality scores for the individual snaps. For example, or snaps with a below-threshold quality score can in some embodiments be assigned a decline acceptability status, thereby being automatically be excluded from the original set. At operation 1654, the filtered subset of snaps is made available for public access via the map GUI 612 of the social media platform.


It will thus be seen that, in some embodiments, the automated quality estimation is performed using machine learning techniques, for example comprising the training of a deep neural network with example social media items (e.g., snaps) having varying quality assessment values and being associated, at operation 1618, with respective attributes or signals. Based on training a model in such a manner, an AI engine (see, for example FIGS. 17A-17D) thereafter performs automated quality assessment of new social media items submitted thereto. For ease of description, automated quality assessment is further described with reference to snaps, but it should be appreciated that the described techniques applies similarly or analogously to other social media items, such as images and augmented messages.


Such quality assessment is in some example embodiments based at least in part on visual media content (e.g., photographic or video content) and/or audio data of the relevant snaps. In this example embodiment, the machine learning model is trained on a labeled data set created using a labeling policy illustrated by the example labeling flowchart 1800 of FIG. 18A-18C. As will be seen with reference to the labeling flowchart 1800, each snap in the training data set is assessed by a human operator based on the content of the respective snap, and is assigned a quality label. In this example embodiment, the quality levels are binary, being identified either as good or bad based on the decision flowchart 1800.


The score from the trained machine learning model thus generates a score as to the content of new snaps based on the trained model. FIG. 17A schematically illustrates an example embodiment of such a scheme. During training, the visual media content 1707 (further, simply content 1707, which can in some embodiments include audio content) for each snap is fed with an associated label 1714 to train an AI engine 1721. At assessment, a content quality score (CQS) is generated by the AI engine 1721 for the content 1707 of each snap submitted thereto. In this example embodiment, quality assessment and filtering is based exclusively on the content quality score, so that the quality score (QS) can in this case be considered to be equal to the content quality score.


Instead, or in addition, at least some signals on which automated quality assessment is based in some embodiments include metadata associated with respective snaps. Some embodiments thus provide for inclusion of device and/or application metadata in association with respective snaps, meant to use this information as a signal (amongst other signals) when training a model to derive a quality score for snaps. For example videos that are very shaky (as can in some instances be indicated by metadata derived from device accelerometers during image-capture) can in some instances be excluded from the map GUI 612.


A nonexhaustive list of metadata fields that is in one example embodiment included by the client-side instance of the social media application (at least some of which are obtained from the device operating system, such as android or iOS clients), include:

    • Number of times the camera switched from back-facing to front-facing while taking the snap.
    • Shakiness of video recording. In some embodiments, this may be indicated by device accelerometer readings.
    • Speed of movement of the device during snap capture.
    • Altitude of the device during snap capture.
    • Whether or not the user is an official account or a collaborator.
    • Whether or not the flashlight of the device was used during video recording.
    • Device camera quality, e.g., determined with reference to device model.
    • Whether the user is a tourist or a local with respect to the location of the snap indicated by geo-tag information. For these purposes a historical geographical information associated with the device can be compared with the geographical location of the relevant social media item to identify whether or not the user was travelling when the snap was captured.
    • The nature of an internet connection, e.g., whether the use is on WiFi vs. WWAN.


In some embodiments, in addition to these metadata fields, the content quality score from a machine learning model trained on a manually labeled data set is produced and is associated with each respective uploaded snap as an additional metadata field. Note that the estimated content quality store is thus used in some embodiments in combination with one or more of the additional metadata fields derived from device information or from application information (as listed above) to calculate the quality score upon which quality estimation and filtering is based.


In some embodiments, such quality estimation is performed by a trained machine learning model. FIG. 17B schematically illustrates one such example embodiment. During training, an AI engine 1729 is trained by feeding to it snap metadata 1726 together with associated content quality scores (e.g., as determined by AI engine 1721). Bear in mind that the AI engine 1721 and 1729 are described as separate entities for ease of description, and can in other embodiments be separate neural networks provided by a common AI engine.


During assessment (FIG. 17B) a content quality score is determined by AI engine 1721 for the content 1707 of each snap. AI engine 1729 thereafter determines a respective quality score for the snap based on is content quality score and the associated metadata 1726.


Instead, as illustrated schematically by the example embodiment of FIG. 17C, the content quality score may be used together with at least some of the other described metadata fields for calculating a quality estimation algorithmically. Thus, at assessment, the content quality score is determined as before by AI engine 1721, with the result fed to a deterministic or algorithmic analyzer 1736 forming part of the quality assessment system 2054. In some embodiments, the analyzer 1736 outputs a quality score, as before. In other instances, a binary acceptability value (i.e., include or exclude) output may be provided.


In yet further embodiments, such as the example embodiment of FIG. 17D, a labeling flowchart analogous to the example of FIG. 18A-18B can include one or more decision points based at least in part on metadata fields based on user device sensor data and/or information. The data flows for this scheme at training and at assessment are evident from FIG. 17D.


In some embodiments, filtered-out snaps are excluded from all aspects of the map GUI 612, for example being excluded from social media activity/anomality calculations and heatmap rendering, as well as being unavailable as part of any publicly available ephemeral gallery, place story, or location-based search. In other embodiments, snaps that are filtered out from online availability due to below-threshold quality scores are factored into heatmap- or other activity calculations, but are unavailable for viewing via the map GUI 612.


As mentioned previously, this metadata is stored in a server-side database in association with respective snaps, and is used to filter out bad snaps from the map GUI 612. Note that the collected database is secured and kept private to ensure user confidentiality.


Note that the auto-estimation and filtering features apply in some embodiments only to snaps published or posted for general availability (e.g., submissions to “Our Story”), and that no such quality filtering is applied to submissions to a user's “My Story.” In this context, the term “general availability” means that the respective social media item is posted to the social media platform for general public access (e.g., being posted to Our Story), as opposed to being available only to users who have a defined relationship to the posting user (e.g., being posted to My Story, and being available for viewing only by friends of the particular user).


The above-described aspect of the disclosure includes the various example embodiments listed below as examples 32-45, which are to be read in view, at least, of the foregoing part of the description.


Location-Based Memories


In addition to providing access to ephemeral social media content during its limited availability interval, the map GUI 612 in some example embodiments provides location-based access to a user's own expired social media content. In this context, ephemeral social media content means social media items that are made available on the relevant social media platform for only a limited period of time (i.e., its availability interval or lifetime), and is thereafter inaccessible for online viewing by others. Thus, for example, a default availability interval for snaps on some existing social media platforms is 24 hours. After expiry of the availability interval, ephemeral social media items are no longer accessible to others via the social media platform, and is referred to herein as expired social media items or expired snaps.


A user may, however, wish to view social media items uploaded by themselves even after expiry of the availability interval. To this end, the map GUI 612 such as that described herein in some embodiments provides for location-based user access to their own expired snaps. Such functionality is also referred to herein as Memories.


In one embodiment, the map GUI 612 enables a user to switch to a historic, (also known as Memories mode), and then to explore their own expired snaps by the map GUI 612 by geography, and/or to search their own expired snaps with a geographical constraint. The map GUI 612 in Memory mode can in some embodiments provide for user specification of a search period, thus enabling the user to search for expired snaps posted on specified date or specified span of dates.


In some embodiments, a blanket search may be launched with respect to a geographical area currently shown in a map viewport 621, with a result of the search being limited to expired snaps with geo-tag information corresponding to the current map viewport 621. Instead, or in addition, a location-based search for expired snaps (either universally or for a specified limited time period) can be launched by clicking or tapping on the map GUI 612 at a selected location, analogously to the location-based search for Live snaps described earlier.


Some embodiments thus provide substantially equivalent search functionalities for the user's own expired snaps as are provided for searching for non-expired snaps (i.e., live ephemeral content) by all users. Additionally, the map GUI 612 in some embodiments provides for display of social media activity information with respect to the user's own historical snap activity as is provided for live content (see, e.g., operation 1970 in FIG. in 19).



FIG. 19 shows an example method 1900 of providing a map-based graphical user interface that enables location-based access to expired ephemeral content of the requesting user. These functionalities are further described with reference to the example embodiment of a map GUI 612 previously discussed with respect to other aspects of the disclosure.


At operation 1910, the map GUI 612 operates in normal mode, in which it provides access, at operation 1930, to live snaps uploaded by all users for general availability (e.g., posted to Our Story), using the various mechanisms described previously.


The user can, however, switch the map GUI 612 to a historical mode, at operation 1920. In some embodiments, the map GUI 612 includes a toggle that can be operated to switch back and forth between normal mode and memories mode. Instead, or in addition, searching in memories mode can comprise launching a memories search interface and/or text box.


In memories mode, the user can, at operation 1950, explore their own expired snaps via the map 618 of the map GUI 612. This can comprise navigating to an area of interest, and, at operation 1960, triggering a location-based search by tapping at a target location. In response, a location-based search similar to that described with reference to FIGS. 11A-11B is performed, with a result set being limited to expired snaps of the requesting user. The returned result set is reproduced on the requesting client device 102, at operation 1970.


Instead, the user can, at operation 1960, enter a search string, responsive to which the search results are returned, at operation 1970. In some embodiments, the result set for such a search is limited to those expired snaps with geo-tag information within the current map viewport 621.


During exploration via the map, at operation 1950, the map GUI 612 in some embodiments also provides for the display of geographically distributed historical activity information for the users on snap history. For example, the map 618 in some embodiments includes a heatmap 625 that indicates the geographical distribution of snap density of the users expired snaps (i.e., the number of snaps per unit area). Instead, or in addition, expired stories and/or ad hoc stories based on expired snaps can be surfaced on the map 618 in memories mode.


A benefit of the location-based Memories functionality is that is to provide the user with the ability to investigate their historical media activity more intuitively and accurately than is otherwise the case. Thus, for example, when a user wishes to view a particular snap posted from a known location (e.g., a concert or sporting event), can more readily locate the target snap by navigating to the relevant location on the map GUI 612 and launching a location-based Memories search with respect to that location. Absent such location-target historical searching, the user would require more information on the precise date and/or other tag information in order accurately to target the desired snap.


The above-described aspect of the disclosure includes the various example embodiments listed below as examples 46-57, which are to be read in view, at least, of the foregoing part of the description.


Example System



FIG. 20 shows an example embodiment of a social media platform system 2000 configured to provide a map-based graphical user interface for a social media application, such as the map GUI 612 described with reference to FIGS. 6A-11B. The system 2000 and its associated components can in some embodiments be provided server-side, for example by the social media application server system 108 (FIG. 1). In such instances, the respective components of the system 2000 can be provided by execution of the social media server application 114 on the application server 112. In other embodiments, one or more components of the system 2000 are provided client-side, for example by execution of the social media client application 104 on a respective client device 102 (FIG. 1). In yet further embodiments, the system 2000 is provided collaboratively server-side and client-side, the application server 112 and a client device 102 in communication therewith being configured to provide the respective system components by execution of the social media client application 104 on the client device 102 and by execution of the social media server application 114 on the application server 112.


The system 2000 includes a map engine 2008 to generate the map GUI 612, including the location-based social media information displayed in the map GUI 612. Thus, the map engine 2008 is configured to generate or to facilitate generation of the map 618 (FIG. 6A) in the map viewport 621 of the client device 102. To this end, the map engine 2008 can be configured to surface and cause display particular story icons 631, 633, to identify and cause display of respective friend bitmojis 640, to generate heatmap information and display or cause display of a heatmap 625 overlaid on the map 618, and to perform operations that provide other related functionalities of the map GUI 612 described with reference to FIGS. 6A-11B.


The system 2000 further includes a replay mechanism 2016 configured to cause automated sequential replay of the content of a set of social media items or snaps on the client device 102. The replay mechanism 2016 can thus cause sequential display of all of the snaps in a selected place story or spike story, as described previously herein. In some embodiments, the replay mechanism 2016 may provide for transmission of the set of snaps to the client device 102 in response to selection of a corresponding story icon 631/633. In some such embodiments, information automatically transmitted by the application server 112 to the client device 102 upon initial rendering of a map view in the map GUI 612 can include a first few (e.g., 2 or 3) snaps for each of the story icons 631, 633 surfaced in the map viewport 621. Upon selection of a particular story icon 631/633, the first few snaps in the story are immediately available for replay, with the subsequent snaps in the story being pulled from the application server 112 during presentation of the first few snaps.


The system 2000 also includes a content management system (CMS) 2024 enabling server-side administrative functionalities. The CMS 2024 provides an administration interface enabling operators to manage content, for example by defining various attributes of different place and/or event stories. The CMS 2024 in this example embodiment also includes the collection management system 204 (FIG. 2) as previously described. The CMS 2024 is configured for the automated or semiautomated compilation of the respective social media galleries or stories as previously described. This may include curation or moderation of respective stories by use of a server-side curation interface provided by the CMS 2024.


The system 2000 further includes a search engine 2033 configured to provide search functionalities with respect to social media content via the map GUI 612. In particular, the search engine 2033 in this example embodiment provides for user-directed searching both via the search interface 1010 (FIGS. 10A-10D) and via location-based searching by direct selection of a target location on the map 618 (FIGS. 11A-11B).


The system 2000 further includes a user location serving mechanism 2037 configured to determine respective user locations, in this example embodiment indicated by the respective device locations, to determine for each user the particular friend users who are viewable via the map GUI 612, and to provide the respective user location information for display of associated user icons at corresponding display locations. The user location serving mechanism 2037 in some embodiments comprise, as part of the server system 108, a user location datastore and a per-user access control list (ACL) that lists the particular friend users viewable by each user. In some embodiments, the per-user ACL specifies respective viewing level granularity for each viewable user. The user location serving mechanism 2037 in such example embodiments is additionally configured to determine and manage respective user display granularity. This includes calculating non-precise display locations for some users, and causing display of a corresponding user icons at the non-precise display locations.


The system 2000 also includes an analyzer 2050 that is configured to process social media activity data to calculate anomality metric values for different areas that is to be served by the map GUI 612. In some embodiments, the analyzer 2050 generates a historical model of the geospatial distribution of social media activity, using a probabilistic rendering of individual snaps. Activity data from a current or near live time window is mapped to the historical model and a respective anomality score for different respective locations in the map is calculated. Such anomality scores can be used by the map engine 2008 to surface content, to determine the size of spike icons 633, and the rendering of heatmap information, or the like.


Machine and Software Architecture


These systems, system components, methods, applications, and so forth described in conjunction with FIGS. 1-20 are implemented in some embodiments in the context of a machine and an associated software architecture. The sections below describe representative software architecture(s) and machine (e.g., hardware) architecture(s) that are suitable for use with the disclosed embodiments.


Software architectures are used in conjunction with hardware architectures to create devices and machines configured for particular purposes. For example, a particular hardware architecture coupled with a particular software architecture will create a mobile device, such as a mobile phone, tablet device, or so forth. A slightly different hardware and software architecture may yield a smart device for use in the “internet of things,” while yet another combination produces a server computer for use within a cloud computing architecture. The software and hardware architectures presented here are example architectures for implementing the disclosure, and are not exhaustive as to possible architectures that can be employed for implementing the disclosure.


Recapitulation of Selected Example Embodiments

From the preceding description it will be seen that a number of example embodiments and combinations of example embodiments are disclosed. The disclosed embodiments include, but are not limited to, the enumerated list of example embodiments that follow.


Example 1: A method comprising:

  • at a server system for a social media platform, assigning an availability parameter to a defined geographical area, the assigned availability parameter being different from a default availability parameter that is by default associated with multiple geographical areas managed by the server system;
  • causing generation of a map-based graphical user interface (GUI) on a user device, the map-based GUI having an interactive map providing access to geo-tagged social media items, each geo-tagged social media item having an associated geographical location; and
  • based at least in part on the assigned availability parameter, making available for viewing via the map-based GUI social media content uploaded to the social media platform, such that availability of each social media item having an associated geographic location corresponding to the defined geographical area is automatically restricted based on the assigned availability parameter.


Example 2: The method of example 1, wherein the making available of the social media content comprises filtering the social media content to exclude each social media item having a geographic location corresponding to the defined geographical area.


Example 3: The method of example 2, wherein the filtering comprises, for each of multiple social media items comprising the social media content:

  • identifying the geographical location of the social media item based on geo-tagging information associated therewith;
  • identifying a particular one of multiple defined geographical areas within which the identified geographic location falls;
  • identifying the respective availability parameter associated with the identified defined geographical area; and
  • determining an availability status of the social media item based on the identified availability parameter.


Example 4: The method of any one of examples 1-3, wherein the assigned availability parameter indicates exclusion from availability, such that any social media item with a geographical location within the defined geographical area is excluded from availability via the map-based GUI for all users.


Example 5: The method of any one of examples 1-3, wherein the assigned availability parameter indicates conditional exclusion based on one or more user attributes, such that availability via the map-based GUI of each social media item having a geographic location within the defined geographical area is variable dependent on the one or more attributes of a user associated with the user device.


Example 6: The method of example 5, wherein the availability parameter indicates an age restriction value.


Example 7: The method of example 6, wherein the making available of the social media content comprises, for each social media item having a geographical location within the defined geographical area:

  • determining an age value of the user associated with the user device; and
  • making the social media item accessible via the map-based GUI conditional upon the age value of the user being greater than a threshold age indicated by the age restriction value associated with the defined geographical area.


Example 8: The method of any one of examples 1-7, further comprising:

  • at the server system, providing a curation interface enabling management of multiple defined geographical areas, wherein the assigning of the availability parameter to the defined geographical area is responsive to selective user input by a human operator via the curation interface.


Example 9: The method of example 8, further comprising enabling definition of the geographical area by the human operator via the curation interface.


Example 10: The method of any one of examples 1-9, wherein the assigning of the availability parameter is performed in an automated procedure based at least in part on user reports received with respect to social media items originating from the defined geographical area.


Example 11: A system comprising:

  • one or more computer processor devices; and
  • one or more memories having stored thereon machine-readable instructions that, when executed, configure the one or more computer processor devices to perform operations comprising:
    • at a server system for a social media platform, assigning an availability parameter to a defined geographical area, the assigned availability parameter being different from a default availability parameter that is by default associated with multiple geographical areas managed by the server system;
    • causing generation of a map-based graphical user interface (GUI) on a user device, the map-based GUI having an interactive map providing access to geo-tagged social media items, each geo-tagged social media item having an associated geographical location; and
    • based at least in part on the assigned availability parameter, making available for viewing via the map-based GUI social media content uploaded to the social media platform, such that availability of each social media item having an associated geographic location corresponding to the defined geographical area is restricted based on the assigned availability parameter.


Example 12: The system of example 11, wherein the making available of the social media content comprises filtering the social media content to exclude each social media item having a geographic location corresponding to the defined geographical area.


Example 13: The system of example 12, wherein the instructions configure the one or more computer processor devices to filter the social media content in a process comprising, for each of multiple social media items comprising the social media content:

  • identifying the geographical location of the social media item based on geo-tagging information associated therewith;
  • identifying a particular one of multiple defined geographical areas within which the identified geographic location falls;
  • identifying the respective availability parameter associated with the identified defined geographical area; and
  • determining an availability status of the social media item based on the identified availability parameter.


Example 14: The system of any one of examples 11-13, wherein the assigned availability parameter indicates exclusion from availability, such that any social media item with a geographical location within the defined geographical area is excluded from availability via the map-based GUI for all users.


Example 15: The system of any one of examples 11-13, wherein the assigned availability parameter indicates conditional exclusion based on one or more user


attributes, such that availability via the map-based GUI of each social media item having a geographic location within the defined geographical area is variable dependent on the one or more attributes of a user associated with the user device.


Example 16: The system of example 15, wherein the availability parameter indicates an age restriction value.


Example 17: The system of example 16, wherein the instructions configure the one or more computer processor devices to make the social media content available in a process comprising, for each social media item having a geographical location within the defined geographical area:

  • determining an age value of the user associated with the user device; and
  • making the social media item accessible via the map-based GUI conditional upon the age value of the user being greater than a threshold age indicated by the age restriction value associated with the defined geographical area.


Example 18: The system of examples 11-17, wherein the instructions further configure the one or more computer processor devices to:

  • at the server system, provide a curation interface enabling management of multiple defined geographical areas, wherein the assigning of the availability parameter to the defined geographical area is responsive to selective user input by a human operator via the curation interface.


Example 19: The system of examples 11-18, wherein the instructions configure the one or more computer processor devices such that the assigning of the availability parameter is performed in an automated procedure based at least in part on user reports received with respect to social media items originating from the defined geographical area.


Example 20: A computer readable storage medium having stored thereon instructions that cause the machine, when executing the instructions, to perform operations comprising:

  • at a server system for a social media platform, assigning an availability parameter to a defined geographical area, the assigned availability parameter being different from a default availability parameter that is by default associated with multiple geographical areas managed by the server system;
  • causing generation of a map-based graphical user interface (GUI) on a user device, the map-based GUI having an interactive map providing access to geo-tagged social media items, each geo-tagged social media item having an associated geographical location; and
  • based at least in part on the assigned availability parameter, making available for viewing via the map-based GUI social media content uploaded to the social media platform, such that availability of each social media item having an associated geographic location corresponding to the defined geographical area is automatically restricted based on the assigned availability parameter.


Example 21: A method comprising:

  • at a server system for a social media platform, defining multiple geographical areas;
  • associating a respective catchment interval with each of the multiple geographical areas, such that at least two different geographical areas have different respective catchment intervals; and
  • making available for user access via the social media platform a set of ephemeral social media items, each of which has:
    • respective geo-tag information indicating a corresponding geographic location; and
    • a respective timestamp, an age value of the ephemeral social media item being indicated by a time elapsed since the corresponding timestamp;
  • wherein the set of ephemeral social media items is limited to items for which the respective age value is smaller than the applicable catchment interval, the applicable catchment interval being, for each item, the catchment interval of that one of the multiple geographical areas which corresponds to the respective geographic location of the item.


Example 22: The method of example 21, further comprising:

  • by default assigning a default catchment interval to geographical areas; and
  • assigning a modified catchment interval to a particular geographical area, the modified catchment interval being different from the default catchment interval.


Example 23: The method of example 22, further comprising:

  • enabling generation of a map-based graphical user interface (GUI) for the social media platform on a user device, the map-based GUI having an interactive map via which geo-tagged social media content is accessible on the user device;
  • receiving a user request via the map-based GUI to access social media items associated with the particular geographic area; and
  • responsive to the user request, causing display, in association with the particular geographic area of the interactive map, of a plurality of social media items selected from the set of ephemeral social media items, the plurality of social media items being limited to items which:
    • have a geotag-indicated geographic location that falls within the particular geographic area; and
    • have an age value smaller than the modified catchment interval.


Example 24: The method of example 23, wherein the modified catchment interval is longer than the default catchment interval.


Example 25: The method of example 23, wherein the modified catchment interval is shorter than the default catchment interval.


Example 26: The method of any one of examples 23-25, further comprising:

  • causing display in the map of social media activity information that indicates an underlying social media activity metric for with the particular geographic area,
  • wherein social media items upon which the underlying social media activity metric is based are limited to items having respective age values smaller than the modified catchment interval.


Example 27: The method of any one of examples 23-25, further comprising:

  • causing display in the map of social media activity information that indicates an underlying social media activity metric for the particular geographic area;
  • wherein the method further comprises calculating the underlying social media activity metric similarly for different geographical areas, without regard to differences between respective catchment intervals.


Example 28: The method of any one of examples 23-27, wherein assignment of the modified catchment interval is by operator input received via a curation interface generated by the server system.


Example 29: The method of any one of examples 23-27, wherein the assigning of the modified catchment interval comprises an at least partially automated procedure, being based on automated identification of candidates for catchment interval variation based on predefined social media activity metrics.


Example 30: A system comprising:

  • one or more computer processor devices; and
  • one or more memories having stored thereon computer-readable instructions that configure the one or more computer processor devices, when executing the instructions, to perform operations comprising the method of any one of examples 21-29.


Example 31: A computer readable storage medium having stored thereon instructions for causing a machine, when executing the instructions, to perform operations comprising the method of any one of examples 21-29.


Example 32: A method comprising:

  • accessing multiple social media items posted to a social media platform for general availability via the social media platform, each social media item comprising visual media content;
  • in an automated procedure performed using an quality assessment system comprising one or more computer processor devices configured to perform automated procedure, generating for each of the multiple social media items a respective quality estimate value; and
  • making available for online viewing on the social media platform by respective user devices a subset of the multiple social media items, one or more of the multiple social media items being excluded from the subset of items based on their respective quality estimate values.


Example 33: The method of example 32, further comprising:

  • in an automated operation performed using one or more computer devices configured to perform the automated procedure, determining for each of the multiple social media items a respective acceptability status based at least in part on the corresponding quality estimate value; and
  • excluding the one or more social media items from availability via social media platform based on their respective acceptability statuses.


Example 34: The method of any one of examples 32 or 33, further comprising forming the subset of social media items by excluding from availability each of the multiple social media items having a respective quality estimate value lower than a predefined threshold value.


Example 35: The method of any one of examples 32-34, wherein, for each social media item, the generating of the corresponding quality estimate value is based at least in part on generating a content quality score with respect to the visual media content of the social media item.


Example 36: The method of example 35, wherein the generating of the content quality scores is performed using a trained artificial neural network.


Example 37: The method of example 36, further comprising the prior operation of training the neural network by feeding to the artificial neural network training data pertaining to multiple historical social media items, the training data for each historical social media item comprising corresponding visual media content together with an associated quality label.


Example 38: The method of example 37, where in the quality labels are binary, indicating the visual media content of each respective historical social media item as being either acceptable or unacceptable.


Example 39: The method of any one of examples 32-38, wherein the generating of the quality estimate value is based at least in part on metadata captured with respect to one or more device attributes of a user device by which the visual media content of the respective social media item was captured.


Example 40: The method of example 39, wherein the one or more device attributes includes metadata indicating which camera of the user device captured the corresponding visual media content.


Example 41: The method of example 39 or example 40, wherein the one or more device attributes includes movement data indicating speed of movement of the user device during image-capture.


Example 42: The method of any one of examples 39-41, wherein the one or more device attributes includes altitude data indicating device altitude during image-capture.


Example 43: The method of any one of examples 39-42, wherein the one or more device attributes includes image shakiness indicated by accelerometer data of the user device during image-capture.


Example 44: A system comprising:

  • one or more computer processor devices; and
  • one or more memory devices having stored thereon instructions that configure the one or more computer processor devices, when executing the instructions, to perform operations comprising the method of any one of examples 32-43.


Example 45: A non-transitory computer readable medium having stored thereon instructions for causing a machine, when executing the instructions, to perform operations comprising the method of any one of examples 32-43.


Example 46: A method comprising:

  • causing display of a map-based graphical user interface (GUI) for a social media platform on a user device associated with a particular user, the map-based GUI including enabling user navigation to display a target geographical area; and
  • providing access via the interactive map to geotagged historical social media content previously uploaded by the particular user.


Example 47: The method of example 46, wherein the historical social media content comprises expired ephemeral social media items.


Example 48: The method of example 46 or example 47, wherein the map-based GUI is selectively switchable between:

  • a default mode in which the map-based GUI provides access to social media content uploaded by multiple other users; and
  • a historical mode in which the map-based GUI provides access exclusively to the geo-tagged historical social media content previously uploaded by the particular user.


Example 49: The method of any one of examples 46-49, further comprising:

  • receiving via the map-based GUI a search query for historical social media content posted by the particular user, the search query including a geographical constraint; and
  • based on the search query, identifying a result set that comprises a plurality of social media items previously uploaded by the particular user and having associated geotag data that satisfy the geographical constraint; and causing display on the user device of the identified the result set.


Example 50: The method of example 49, wherein the geographical constraint comprises that geo-tag information of social media items included in the result set fall within a specified geographical area.


Example 51: The method of example 50, wherein the specified geographical area corresponds to an area displayed in a map viewport of the map-based GUI.


Example 52: The method of example 50, wherein the specified geographical area is defined based on a target location indicated by user interaction with the interactive map.


Example 53: The method of any one of examples 46-52, further comprising causing display on a map of the map-based GUI of geographically distributed social media activity information with respect to the geo-tagged historical social media content previously uploaded by the particular user.


Example 54: The method of example 53, where in the geographically distributed social media activity information comprises a heat map indicating geographical distribution of an activity metric for the historical social media content of the particular user.


Example 55: The method of example 54, wherein the activity metric is based at least in part on a density metric of the historical geo-tagged social media content of the particular user.


Example 56: A system comprising:

  • one or more computer processor devices:
  • one or more memory devices having stored thereon instructions that configure the one or more computer processor devices, when executing the instructions, to perform operations comprising the method of any one of examples 46-55.


Example 57: A non-transitory computer readable storage medium having stored thereon instructions for causing a machine, when executing the instructions, to perform operations comprising the method of any one of examples 46-55.


Software Architecture



FIG. 21 is a block diagram illustrating an example software architecture 2106, which may be used in conjunction with various hardware architectures herein described. FIG. 21 is a non-limiting example of a software architecture, and it will be appreciated that many other architectures may be implemented to facilitate the functionality described herein. The software architecture 2106 may execute on hardware such as a machine 2200 of FIG. 22 that includes, among other things, processors 2204, memory 2214, and I/O components 2218. A representative hardware layer 2152 is illustrated and can represent, for example, the machine 2200 of FIG. 22. The representative hardware layer 2152 includes a processing unit 2154 having associated executable instructions 2104. The executable instructions 2104 represent the executable instructions of the software architecture 2106, including implementation of the methods, components, and so forth described herein. The hardware layer 2152 also includes memory and/or storage modules memory/storage 2156, which also have the executable instructions 2104. The hardware layer 2152 may also comprise other hardware 2158.


In the example architecture of FIG. 21, the software architecture 2106 may be conceptualized as a stack of layers where each layer provides particular functionality. For example, the software architecture 2106 may include layers such as an operating system 2102, libraries 2120, frameworks/middleware 2118, applications 2116, and a presentation layer 2114. Operationally, the applications 2116 and/or other components within the layers may invoke application programming interface (API) calls 2108 through the software stack and receive a response in the form of messages 2108. The layers illustrated are representative in nature, and not all software architectures have all layers. For example, some mobile or special-purpose operating systems may not provide a frameworks/middleware 2118, while others may provide such a layer. Other software architectures may include additional or different layers.


The operating system 2102 may manage hardware resources and provide common services. The operating system 2102 may include, for example, a kernel 2122, services 2124, and drivers 2126. The kernel 2122 may act as an abstraction layer between the hardware and the other software layers. For example, the kernel 2122 may be responsible for memory management, processor management (e.g., scheduling), component management, networking, security settings, and so on. The services 2124 may provide other common services for the other software layers. The drivers 2126 are responsible for controlling or interfacing with the underlying hardware. For instance, the drivers 2126 include display drivers, camera drivers, Bluetooth® drivers, flash memory drivers, serial communication drivers (e.g., Universal Serial Bus (USB) drivers), Wi-Fi® drivers, audio drivers, power management drivers, and so forth depending on the hardware configuration.


The libraries 2120 provide a common infrastructure that is used by the applications 2116 and/or other components and/or layers. The libraries 2120 provide functionality that allows other software components to perform tasks in an easier fashion than by interfacing directly with the underlying operating system 2102 functionality (e.g., kernel 2122, services 2124, and/or drivers 2126). The libraries 2120 may include system libraries 2144 (e.g., C standard library) that may provide functions such as memory allocation functions, string manipulation functions, mathematical functions, and the like. In addition, the libraries 2120 may include API libraries 2146 such as media libraries (e.g., libraries to support presentation and manipulation of various media formats such as MPEG4, H.264, MP3, AAC, AMR, JPG, PNG), graphics libraries (e.g., an OpenGL framework that may be used to render 2D and 3D graphic content on a display), database libraries (e.g., SQLite that may provide various relational database functions), web libraries (e.g., WebKit that may provide web browsing functionality), and the like. The libraries 2120 may also include a wide variety of other libraries 2148 to provide many other APIs to the applications 2116 and other software components/modules.


The frameworks/middleware 2118 provides a higher-level common infrastructure that may be used by the applications 2116 and/or other software components/modules. For example, the frameworks/middleware 2118 may provide various graphic user interface (GUI) functions, high-level resource management, high-level location services, and so forth. The frameworks/middleware 2118 may provide a broad spectrum of other APIs that may be utilized by the applications 2116 and/or other software components/modules, some of which may be specific to a particular operating system 2102 or platform.


The applications 2116 include built-in applications 2138 and/or third-party applications 2140. Examples of representative built-in applications 2138 may include, but are not limited to, a contacts application, a browser application, a book reader application, a location application, a media application, a messaging application, and/or a game application. The third-party applications 2140 may include an application developed using the ANDROID™ or IOS™ software development kit (SDK) by an entity other than the vendor of the particular platform, and may be mobile software running on a mobile operating system such as IOS™ ANDROID™, WINDOWS® Phone, or other mobile operating systems. The third-party applications 2140 may invoke the API calls 2108 provided by the mobile operating system (such as the operating system 2102) to facilitate functionality described herein.


The applications 2116 may use built-in operating system 2102 functions (e.g., kernel 2122, services 2124, and/or drivers 2126), libraries 2120, and frameworks/middleware 2118 to create user interfaces to interact with users of the system. Alternatively, or additionally, in some systems interactions with a user may occur through a presentation layer, such as the presentation layer 2114. In these systems, the application/component “logic” can be separated from the aspects of the application/component that interact with a user.


Hardware Architecture



FIG. 22 is a block diagram illustrating components of a machine 2200, according to some example embodiments, able to read instructions from a machine-readable medium (e.g., a machine-readable storage medium) and perform any one or more of the methodologies discussed herein. Specifically, FIG. 22 shows a diagrammatic representation of the machine 2200 in the example form of a computer system, within which instructions 2210 (e.g., software, a program, an application, an applet, an app, or other executable code) for causing the machine 2200 to perform any one or more of the methodologies discussed herein may be executed. As such, the instructions 2210 may be used to implement modules or components described herein. The instructions 2210 transform the general, non-programmed machine 2200 into a particular machine 2200 programmed to carry out the described and illustrated functions in the manner described. In alternative embodiments, the machine 2200 operates as a standalone device or may be coupled (e.g., networked) to other machines. In a networked deployment, the machine 2200 may operate in the capacity of a server machine or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine 2200 may comprise, but not be limited to, a server computer, a client computer, a personal computer (PC), a tablet computer, a laptop computer, a netbook, a set-top box (STB), a personal digital assistant (PDA), an entertainment media system, a cellular telephone, a smart phone, a mobile device, a wearable device (e.g., a smart watch), a smart home device (e.g., a smart appliance), other smart devices, a web appliance, a network router, a network switch, a network bridge, or any machine capable of executing the instructions 2210, sequentially or otherwise, that specify actions to be taken by the machine 2200. Further, while only a single machine 2200 is illustrated, the term “machine” shall also be taken to include a collection of machines that individually or jointly execute the instructions 2210 to perform any one or more of the methodologies discussed herein.


The machine 2200 may include processors 2204, memory/storage 2206, and I/O components 2218, which may be configured to communicate with each other such as via a bus 2202. The memory/storage 2206 may include a memory 2214, such as a main memory, or other memory storage, and a storage unit 2216, both accessible to the processors 2204 such as via the bus 2202. The storage unit 2216 and memory 2214 store the instructions 2210 embodying any one or more of the methodologies or functions described herein. The instructions 2210 may also reside, completely or partially, within the memory 2214, within the storage unit 2216, within at least one of the processors 2204 (e.g., within the processor's cache memory), or any suitable combination thereof, during execution thereof by the machine 2200. Accordingly, the memory 2214, the storage unit 2216, and the memory of the processors 2204 are examples of machine-readable media. In some embodiments, the processors 2204 comprise a number of distributed processors 2208-2212, each of which have access to associated memories storing instructions 2210.


The I/O components 2218 may include a wide variety of components to receive input, provide output, produce output, transmit information, exchange information, capture measurements, and so on. The specific I/O components 2218 that are included in a particular machine 2200 will depend on the type of machine. For example, portable machines such as mobile phones will likely include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 2218 may include many other components that are not shown in FIG. 22. The I/O components 2218 are grouped according to functionality merely for simplifying the following discussion, and the grouping is in no way limiting. In various example embodiments, the I/O components 2218 may include output components 2226 and input components 2228. The output components 2226 may include visual components (e.g., a display such as a plasma display panel (PDP), a light-emitting diode (LED) display, a liquid crystal display (LCD), a projector, or a cathode ray tube (CRT)), acoustic components (e.g., speakers), haptic components (e.g., a vibratory motor, resistance mechanisms), other signal generators, and so forth. The input components 2228 may include alphanumeric input components (e.g., a keyboard, a touchscreen configured to receive alphanumeric input, a photo-optical keyboard, or other alphanumeric input components), point-based input components (e.g., a mouse, a touchpad, a trackball, a joystick, a motion sensor, or other pointing instruments), tactile input components (e.g., a physical button, a touchscreen that provides location and/or force of touches or touch gestures, or other tactile input components), audio input components (e.g., a microphone), and the like.


In further example embodiments, the I/O components 2218 may include biometric components 2230, motion components 2234, environment components 2236, or position components 2238 among a wide array of other components. For example, the biometric components 2230 may include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram-based identification), and the like. The motion components 2234 may include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth. The environment components 2236 may include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometers that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas sensors to detect concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment. The position components 2238 may include location sensor components (e.g., a Global Positioning System (GPS) receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.


Communication may be implemented using a wide variety of technologies. The I/O components 2218 may include communication components 2240 operable to couple the machine 2200 to a network 2232 or devices 2220 via a coupling 2224 and a coupling 2222 respectively. For example, the communication components 2240 may include a network interface component or other suitable device to interface with the network 2232. In further examples, the communication components 2240 may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities. The devices 2220 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a Universal Serial Bus (USB)).


Moreover, the communication components 2240 may detect identifiers or include components operable to detect identifiers. For example, the communication components 2240 may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 2240, such as location via Internet Protocol (IP) geolocation, location via Wi-Fi® signal triangulation, location via detecting an NFC beacon signal that may indicate a particular location, and so forth.


GLOSSARY

“CARRIER SIGNAL” in this context refers to any intangible medium that is capable of storing, encoding, or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible media to facilitate communication of such instructions. Instructions may be transmitted or received over the network using a transmission medium via a network interface device and using any one of a number of well-known transfer protocols.


“CLIENT DEVICE” in this context refers to any machine that interfaces to a communications network to obtain resources from one or more server systems or other client devices. A client device may be, but is not limited to, a mobile phone, desktop computer, laptop, portable digital assistant (PDA), smart phone, tablet, ultra book, netbook, laptop, multi-processor system, microprocessor-based or programmable consumer electronic system, game console, set-top box, or any other communication device that a user may use to access a network.


“COMMUNICATIONS NETWORK” in this context refers to one or more portions of a network that may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks. For example, a network or a portion of a network may include a wireless or cellular network, and the coupling may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or another type of cellular or wireless coupling. In this example, the coupling may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1×RTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High-Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long-Term Evolution (LTE) standard, others defined by various standard-setting organizations, other long-range protocols, or other data-transfer technology.


“EMPHEMERAL MESSAGE” in this context refers to a message that is accessible for a time-limited duration. An ephemeral message may be a text, an image, a video and the like. The access time for the ephemeral message may be set by the message sender. Alternatively, the access time may be a default setting or a setting specified by the recipient. Regardless of the setting technique, the message is transitory. “Snaps” as referenced in the description are ephemeral messages. Ephemeral messages are not limited to communications having specified individual recipients, but include social media items uploaded to a gallery or a collection for viewing by multiple users. Thus, the term ephemeral message includes a photo or video clip (which may be augmented or unaugmented) made available for a time-limited duration for viewing public or by a


“MACHINE-READABLE MEDIUM” in this context refers to a component, a device, or other tangible media able to store instructions and data temporarily or permanently and may include, but is not limited to, random-access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache memory, other types of storage (e.g., Erasable Programmable Read-Only Memory (EPROM)), and/or any suitable combination thereof. The term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, or associated caches and servers) able to store instructions. The term “machine-readable medium” shall also be taken to include any medium, or combination of multiple media, that is capable of storing instructions (e.g., code) for execution by a machine, such that the instructions, when executed by one or more processors of the machine, cause the machine to perform any one or more of the methodologies described herein. Accordingly, a “machine-readable medium” refers to a single storage apparatus or device, as well as “cloud-based” storage systems or storage networks that include multiple storage apparatus or devices. The term “machine-readable medium” excludes signals per se.


“COMPONENT” in this context refers to a device, a physical entity, or logic having boundaries defined by function or subroutine calls, branch points, application programming interfaces (APIs), or other technologies that provide for the partitioning or modularization of particular processing or control functions. Components may be combined via their interfaces with other components to carry out a machine process. A component may be a packaged functional hardware unit designed for use with other components and a part of a program that usually performs a particular function of related functions. Components may constitute either software components (e.g., code embodied on a machine-readable medium) or hardware components. A “hardware component” is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various example embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware components of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware component that operates to perform certain operations as described herein. A hardware component may also be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware component may include dedicated circuitry or logic that is permanently configured to perform certain operations. A hardware component may be a special-purpose processor, such as a Field-Programmable Gate Array (FPGA) or an Application-Specific Integrated Circuit (ASIC). A hardware component may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware component may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware components become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware component mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations. Accordingly, the phrase “hardware component” (or “hardware-implemented component”) should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering embodiments in which hardware components are temporarily configured (e.g., programmed), each of the hardware components need not be configured or instantiated at any one instance in time. For example, where a hardware component comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware components) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware component at one instance of time and to constitute a different hardware component at a different instance of time. Hardware components can provide information to, and receive information from, other hardware components. Accordingly, the described hardware components may be regarded as being communicatively coupled. Where multiple hardware components exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware components. In embodiments in which multiple hardware components are configured or instantiated at different times, communications between such hardware components may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware components have access. For example, one hardware component may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware component may then, at a later time, access the memory device to retrieve and process the stored output. Hardware components may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information). The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented components that operate to perform one or more operations or functions described herein. As used herein, “processor-implemented component” refers to a hardware component implemented using one or more processors. Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented components. Moreover, the one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an application programming interface (API)). The performance of certain of the operations may be distributed among the processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processors or processor-implemented components may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the processors or processor-implemented components may be distributed across a number of geographic locations.


“PROCESSOR” in this context refers to any circuit or virtual circuit (a physical circuit emulated by logic executing on an actual processor) that manipulates data values according to control signals (e.g., “commands,” “op codes,” “machine code,” etc.) and which produces corresponding output signals that are applied to operate a machine. A processor may, for example, be a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an Application-Specific Integrated Circuit (ASIC), a Radio-Frequency Integrated Circuit (RFIC), or any combination thereof. A processor may further be a multi-core processor having two or more independent processors (sometimes referred to as “cores”) that may execute instructions contemporaneously.


“TIMESTAMP” in this context refers to a sequence of characters or encoded information identifying when a certain event occurred, for example giving date and time of day, sometimes accurate to a small fraction of a second.


Language


Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated, unless that the context and/or logic clearly indicates otherwise. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.


Although an overview of the disclosed subject matter has been described with reference to specific example embodiments, various modifications and changes may be made to these embodiments without departing from the broader scope of embodiments of the present disclosure.


The embodiments illustrated herein are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. The Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.


As used herein, the term “or” may be construed in either an inclusive or exclusive sense. Moreover, plural instances may be provided for resources, operations, or structures described herein as a single instance. Additionally, boundaries between various resources, operations, modules, engines, and data stores are somewhat arbitrary, and particular operations are illustrated in a context of specific illustrative configurations. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A method comprising: at a server system for a social media platform, defining multiple geographical areas;associating a respective catchment interval with each of the multiple geographical areas, such that at least two different geographical areas have different respective catchment intervals; andmaking available for user access via the social media platform a set of ephemeral social media items, each of which has: respective geo-tag information indicating a corresponding geographic location; anda respective timestamp, an age value of the ephemeral social media item being indicated by a time elapsed since the corresponding timestamp;wherein the set of ephemeral social media items is limited to items for which the respective age value is smaller than the applicable catchment interval, the applicable catchment interval being, for each item, the catchment interval of that one of the multiple geographical areas which corresponds to the respective geographic location of the item.
  • 2. The method of claim 1, further comprising: by default assigning a default catchment interval to geographical areas; andassigning a modified catchment interval to a particular geographical area, the modified catchment interval being different from the default catchment interval.
  • 3. The method of claim 2, further comprising: enabling generation of a map-based graphical user interface (GUI) for the social media platform on a user device, the map-based GUI having an interactive map via which geo-tagged social media content is accessible on the user device;receiving a user request via the map-based GUI to access social media items associated with the particular geographic area; andresponsive to the user request, causing display, in association with the particular geographic area of the interactive map, of a plurality of social media items selected from the set of ephemeral social media items, the plurality of social media items being limited to items which: have a geotag-indicated geographic location that falls within the particular geographic area; andhave an age value smaller than the modified catchment interval.
  • 4. The method of claim 3, wherein the modified catchment interval is longer than the default catchment interval.
  • 5. The method of claim 3, wherein the modified catchment interval is shorter than the default catchment interval.
  • 6. The method of claim 3, further comprising: causing display in the map of social media activity information that indicates an underlying social media activity metric within the particular geographic area,wherein social media items upon which the underlying social media activity metric is based are limited to items having respective age values smaller than the modified catchment interval.
  • 7. The method of claim 3, further comprising: causing display in the map of social media activity information that indicates an underlying social media activity metric for the particular geographic area;wherein the method further comprises calculating the underlying social media activity metric similarly for different geographical areas, without regard to differences between respective catchment intervals.
  • 8. The method of claim 3, wherein assignment of the modified catchment interval is by operator input received via a curation interface generated by the server system.
  • 9. The method of claim 3, wherein the assigning of the modified catchment interval comprises an at least partially automated procedure, being based on automated identification of candidates for catchment interval variation based on predefined social media activity metrics.
  • 10. A system comprising: one or more computer processor devices; andone or more memories having stored thereon computer-readable instructions that configure the one or more computer processor devices, when executing the instructions, to perform operations comprising: at a server system for a social media platform, defining multiple geographical areas;associating a respective catchment interval with each of the multiple geographical areas, such that at least two different geographical areas have different respective catchment intervals; andmaking available for user access via the social media platform a set of ephemeral social media items, each of which has: respective geo-tag information indicating a corresponding geographic location; anda respective timestamp, an age value of the ephemeral social media item being indicated by a time elapsed since the corresponding timestamp;wherein the set of ephemeral social media items is limited to items for which the respective age value is smaller than the applicable catchment interval, the applicable catchment interval being, for each item, the catchment interval of that one of the multiple geographical areas which corresponds to the respective geographic location of the item.
  • 11. The system of claim 10, wherein the instructions further configure the one or more computer processor devices to perform operations comprising: by default assigning a default catchment interval to geographical areas; andassigning a modified catchment interval to a particular geographical area, the modified catchment interval being different from the default catchment interval.
  • 12. The system of claim 11, wherein the instructions further configure the one or more computer processor devices to perform operations comprising: enabling generation of a map-based graphical user interface (GUI) for the social media platform on a user device, the map-based GUI having an interactive map via which geo-tagged social media content is accessible on the user device;receiving a user request via the map-based GUI to access social media items associated with the particular geographic area; andresponsive to the user request, causing display, in association with the particular geographic area of the interactive map, of a plurality of social media items selected from the set of ephemeral social media items, the plurality of social media items being limited to items which: have a geotag-indicated geographic location that falls within the particular geographic area; andhave an age value smaller than the modified catchment interval.
  • 13. The system of claim 12, wherein the modified catchment interval is longer than the default catchment interval.
  • 14. The system of claim 12, wherein the modified catchment interval is shorter than the default catchment interval.
  • 15. The system of claim 13, wherein the instructions further configure the one or more computer processor devices to perform operations comprising: causing display in the map of social media activity information that indicates an underlying social media activity metric within the particular geographic area,wherein social media items upon which the underlying social media activity metric is based are limited to items having respective age values smaller than the modified catchment interval.
  • 16. The system of claim 13, wherein the instructions further configure the one or more computer processor devices to perform operations comprising: causing display in the map of social media activity information that indicates an underlying social media activity metric for the particular geographic area; andcalculating the underlying social media activity metric similarly for different geographical areas, without regard to differences between respective catchment intervals.
  • 17. The system of claim 13, wherein assignment of the modified catchment interval is by operator input received via a curation interface generated by the server system.
  • 18. The system of claim 13, wherein the instructions configure the one or more computer processor devices such that the assigning of the modified catchment interval comprises an at least partially automated procedure, being based on automated identification of candidates for catchment interval variation based on predefined social media activity metrics.
  • 19. A computer readable storage medium having stored thereon instructions for causing a machine, when executing the instructions, to perform operations comprising: at a server system for a social media platform, defining multiple geographical areas;associating a respective catchment interval with each of the multiple geographical areas, such that at least two different geographical areas have different respective catchment intervals; andmaking available for user access via the social media platform a set of ephemeral social media items, each of which has: respective geo-tag information indicating a corresponding geographic location; anda respective timestamp, an age value of the ephemeral social media item being indicated by a time elapsed since the corresponding timestamp;wherein the set of ephemeral social media items is limited to items for which the respective age value is smaller than the applicable catchment interval, the applicable catchment interval being, for each item, the catchment interval of that one of the multiple geographical areas which corresponds to the respective geographic location of the item.
PRIORITY APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/965,811, filed Apr. 27, 2018, which is a non-provisional application which claims the benefit of priority to U.S. Provisional Application Ser. No. 62/556,134, filed Sep. 8, 2017; U.S. Provisional Application Ser. No. 62/552,958, filed Aug. 31, 2017; and U.S. Provisional Application Ser. No. 62/491,115, filed Apr. 27, 2017, the contents of which are incorporated herein by reference in their entireties.

US Referenced Citations (1085)
Number Name Date Kind
666223 Shedlock Jan 1901 A
4581634 Williams Apr 1986 A
4975690 Torres Dec 1990 A
5072412 Henderson, Jr. et al. Dec 1991 A
5493692 Theimer et al. Feb 1996 A
5713073 Warsta Jan 1998 A
5754939 Herz et al. May 1998 A
5826269 Hussey Oct 1998 A
5855008 Goldhaber et al. Dec 1998 A
5880731 Liles et al. Mar 1999 A
5883639 Walton et al. Mar 1999 A
5999932 Paul Dec 1999 A
6012098 Bayeh et al. Jan 2000 A
6014090 Rosen et al. Jan 2000 A
6023270 Brush, II et al. Feb 2000 A
6029141 Bezos et al. Feb 2000 A
6038295 Mattes Mar 2000 A
6049711 Yehezkel et al. Apr 2000 A
6154764 Nitta et al. Nov 2000 A
6158044 Tibbetts Dec 2000 A
6167435 Druckenmiller et al. Dec 2000 A
6204840 Petelycky et al. Mar 2001 B1
6205432 Gabbard et al. Mar 2001 B1
6216141 Straub et al. Apr 2001 B1
6223165 Lauffer Apr 2001 B1
6233318 Picard et al. May 2001 B1
6283858 Hayes, Jr. et al. Sep 2001 B1
6285381 Sawano et al. Sep 2001 B1
6285987 Roth et al. Sep 2001 B1
6310694 Okimoto et al. Oct 2001 B1
6317789 Rakavy et al. Nov 2001 B1
6334149 Davis, Jr. et al. Dec 2001 B1
6349203 Asaoka et al. Feb 2002 B1
6353170 Eyzaguirre et al. Mar 2002 B1
6374292 Srivastava et al. Apr 2002 B1
6446004 Cao et al. Sep 2002 B1
6449657 Stanbach et al. Sep 2002 B2
6456852 Bar et al. Sep 2002 B2
6473794 Guheen et al. Oct 2002 B1
6484196 Maurille Nov 2002 B1
6487586 Ogilvie et al. Nov 2002 B2
6487601 Hubacher et al. Nov 2002 B1
6523008 Avrunin Feb 2003 B1
6542749 Tanaka et al. Apr 2003 B2
6549768 Fraccaroli Apr 2003 B1
6618593 Drutman et al. Sep 2003 B1
6622174 Ukita et al. Sep 2003 B1
6631463 Floyd et al. Oct 2003 B1
6636247 Hamzy et al. Oct 2003 B1
6636855 Holloway et al. Oct 2003 B2
6643684 Malkin et al. Nov 2003 B1
6658095 Yoakum et al. Dec 2003 B1
6665531 Soderbacka et al. Dec 2003 B1
6668173 Greene Dec 2003 B2
6684238 Dutta Jan 2004 B1
6684257 Gamut et al. Jan 2004 B1
6698020 Zigmond et al. Feb 2004 B1
6700506 Winkler Mar 2004 B1
6701347 Ogilvie Mar 2004 B1
6711608 Ogilvie Mar 2004 B1
6720860 Narayanaswami Apr 2004 B1
6724403 Santoro et al. Apr 2004 B1
6757713 Ogilvie et al. Jun 2004 B1
6772195 Hatlelid et al. Aug 2004 B1
6832222 Zimowski Dec 2004 B1
6834195 Brandenberg et al. Dec 2004 B2
6836792 Chen Dec 2004 B1
6839411 Saltanov et al. Jan 2005 B1
6842779 Nishizawa Jan 2005 B1
6898626 Ohashi May 2005 B2
6959324 Kubik et al. Oct 2005 B1
6970088 Kovach Nov 2005 B2
6970907 Ullmann et al. Nov 2005 B1
6980909 Root et al. Dec 2005 B2
6981040 Konig et al. Dec 2005 B1
7020494 Spriestersbach et al. Mar 2006 B2
7027124 Foote et al. Apr 2006 B2
7072963 Anderson et al. Jul 2006 B2
7073129 Robarts et al. Jul 2006 B1
7079158 Lambertsen Jul 2006 B2
7085571 Kalhan et al. Aug 2006 B2
7110744 Freeny, Jr. Sep 2006 B2
7124164 Chemtob Oct 2006 B1
7149893 Leonard et al. Dec 2006 B1
7173651 Knowles Feb 2007 B1
7188143 Szeto Mar 2007 B2
7203380 Chiu et al. Apr 2007 B2
7206568 Sudit Apr 2007 B2
7227937 Yoakum et al. Jun 2007 B1
7237002 Estrada et al. Jun 2007 B1
7240089 Boudreau Jul 2007 B2
7243163 Friend et al. Jul 2007 B1
7269426 Kokkonen et al. Sep 2007 B2
7278168 Chaudhury et al. Oct 2007 B1
7280123 Bentley et al. Oct 2007 B2
7280658 Amini et al. Oct 2007 B2
7315823 Brondrup Jan 2008 B2
7342587 Danzig et al. Mar 2008 B2
7349768 Bruce et al. Mar 2008 B2
7356564 Hartselle et al. Apr 2008 B2
7376715 Cunningham et al. May 2008 B2
7394345 Ehlinger et al. Jul 2008 B1
7411493 Smith Aug 2008 B2
7423580 Markhovsky et al. Sep 2008 B2
7454442 Cobleigh et al. Nov 2008 B2
7468729 Levinson Dec 2008 B1
7478402 Christensen et al. Jan 2009 B2
7496347 Puranik Feb 2009 B2
7508419 Toyama et al. Mar 2009 B2
7512649 Faybishenko et al. Mar 2009 B2
7519670 Hagale et al. Apr 2009 B2
7535469 Kim et al. May 2009 B2
7535890 Rojas May 2009 B2
7546554 Chiu et al. Jun 2009 B2
7607096 Oreizy et al. Oct 2009 B2
7627828 Collison et al. Dec 2009 B1
7636755 Blattner et al. Dec 2009 B2
7639251 Gu et al. Dec 2009 B2
7639943 Kalajan Dec 2009 B1
7650231 Gadler Jan 2010 B2
7668537 DeVries Feb 2010 B2
7689649 Heikes et al. Mar 2010 B2
7703140 Nath et al. Apr 2010 B2
7770137 Forbes et al. Aug 2010 B2
7775885 Van et al. Aug 2010 B2
7778973 Choi Aug 2010 B2
7779444 Glad Aug 2010 B2
7787886 Markhovsky et al. Aug 2010 B2
7792789 Prahlad et al. Sep 2010 B2
7796946 Eisenbach Sep 2010 B2
7801954 Cadiz et al. Sep 2010 B2
7818336 Amidon et al. Oct 2010 B1
7856360 Kramer et al. Dec 2010 B2
7859551 Bulman et al. Dec 2010 B2
7885931 Seo et al. Feb 2011 B2
7912896 Wolovitz et al. Mar 2011 B2
7925703 Dinan et al. Apr 2011 B2
8001204 Burtner et al. Aug 2011 B2
8032586 Challenger et al. Oct 2011 B2
8077931 Chatman et al. Dec 2011 B1
8082255 Carlson, Jr. et al. Dec 2011 B1
8088044 Tchao et al. Jan 2012 B2
8090351 Klein Jan 2012 B2
8095878 Bates et al. Jan 2012 B2
8098904 Ioffe et al. Jan 2012 B2
8099109 Altman et al. Jan 2012 B2
8108774 Finn et al. Jan 2012 B2
8112716 Kobayashi Feb 2012 B2
8117281 Robinson et al. Feb 2012 B2
8130219 Fleury et al. Mar 2012 B2
8131597 Hudetz Mar 2012 B2
8135166 Rhoads Mar 2012 B2
8136028 Loeb et al. Mar 2012 B1
8146001 Reese Mar 2012 B1
8146005 Jones et al. Mar 2012 B2
8151191 Nicol Apr 2012 B2
8161115 Yamamoto Apr 2012 B2
8161417 Lee Apr 2012 B1
8169505 Hoshi May 2012 B2
8170957 Richard May 2012 B2
8195203 Tseng Jun 2012 B1
8195748 Hallyn Jun 2012 B2
8199747 Rojas et al. Jun 2012 B2
8208943 Petersen Jun 2012 B2
8214443 Hamburg Jul 2012 B2
8234350 Gu et al. Jul 2012 B1
8238947 Lottin et al. Aug 2012 B2
8244593 Klinger et al. Aug 2012 B2
8276092 Narayanan et al. Sep 2012 B1
8279319 Date Oct 2012 B2
8280406 Ziskind et al. Oct 2012 B2
8285199 Hsu et al. Oct 2012 B2
8287380 Nguyen et al. Oct 2012 B2
8301159 Hamynen et al. Oct 2012 B2
8306922 Kunal et al. Nov 2012 B1
8312086 Velusamy et al. Nov 2012 B2
8312097 Siegel et al. Nov 2012 B1
8326315 Phillips et al. Dec 2012 B2
8326327 Hymel et al. Dec 2012 B2
8332475 Rosen et al. Dec 2012 B2
8352546 Dollard Jan 2013 B1
8379130 Forutanpour et al. Feb 2013 B2
8384719 Reville et al. Feb 2013 B2
8385950 Wagner et al. Feb 2013 B1
RE44054 Kim Mar 2013 E
8396708 Park et al. Mar 2013 B2
8402097 Szeto Mar 2013 B2
8405773 Hayashi et al. Mar 2013 B2
8413059 Lee et al. Apr 2013 B2
8418067 Cheng et al. Apr 2013 B2
8423409 Rao Apr 2013 B2
8425322 Gillo et al. Apr 2013 B2
8457367 Sipe et al. Jun 2013 B1
8458601 Castelli et al. Jun 2013 B2
8462198 Lin et al. Jun 2013 B2
8471914 Sakiyama et al. Jun 2013 B2
8472935 Fujisaki Jun 2013 B1
8484158 Deluca et al. Jul 2013 B2
8495503 Brown et al. Jul 2013 B2
8495505 Smith et al. Jul 2013 B2
8504926 Wolf Aug 2013 B2
8510383 Hurley et al. Aug 2013 B2
8527345 Rothschild et al. Sep 2013 B2
8554627 Svendsen et al. Oct 2013 B2
8559980 Pujol Oct 2013 B2
8560612 Kilmer et al. Oct 2013 B2
8564621 Branson et al. Oct 2013 B2
8564710 Nonaka et al. Oct 2013 B2
8570326 Gorev Oct 2013 B2
8570907 Garcia, Jr. et al. Oct 2013 B2
8581911 Becker et al. Nov 2013 B2
8594680 Ledlie et al. Nov 2013 B2
8597121 del Valle Dec 2013 B2
8601051 Wang Dec 2013 B2
8601379 Marks et al. Dec 2013 B2
8613089 Holloway et al. Dec 2013 B1
8632408 Gillo et al. Jan 2014 B2
8639767 Harris et al. Jan 2014 B1
8648865 Dawson et al. Feb 2014 B2
8655389 Jackson et al. Feb 2014 B1
8659548 Hildreth Feb 2014 B2
8660358 Bergboer et al. Feb 2014 B1
8660369 Llano et al. Feb 2014 B2
8660793 Ngo et al. Feb 2014 B2
8682350 Altman et al. Mar 2014 B2
8683354 Khandelwal et al. Mar 2014 B2
8692830 Nelson et al. Apr 2014 B2
8700012 Ferren et al. Apr 2014 B2
8718333 Wolf et al. May 2014 B2
8724622 Rojas May 2014 B2
8730231 Snoddy et al. May 2014 B2
8732168 Johnson May 2014 B2
8738719 Lee et al. May 2014 B2
8744523 Fan et al. Jun 2014 B2
8745132 Obradovich Jun 2014 B2
8761800 Kuwahara Jun 2014 B2
8768876 Shim et al. Jul 2014 B2
8775972 Spiegel Jul 2014 B2
8788680 Naik Jul 2014 B1
8790187 Walker et al. Jul 2014 B2
8797415 Arnold Aug 2014 B2
8798646 Wang et al. Aug 2014 B1
8810513 Ptucha et al. Aug 2014 B2
8812171 Filev et al. Aug 2014 B2
8832201 Wall Sep 2014 B2
8832552 Arrasvuori et al. Sep 2014 B2
8839327 Amento et al. Sep 2014 B2
8856349 Jain et al. Oct 2014 B2
8874677 Rosen et al. Oct 2014 B2
8886227 Schmidt et al. Nov 2014 B2
8887035 Mcdonald et al. Nov 2014 B2
8890926 Tandon et al. Nov 2014 B2
8892999 Nims et al. Nov 2014 B2
8893010 Brin et al. Nov 2014 B1
8909679 Root et al. Dec 2014 B2
8909714 Agarwal et al. Dec 2014 B2
8909725 Sehn Dec 2014 B1
8914752 Spiegel Dec 2014 B1
8924250 Bates et al. Dec 2014 B2
8935656 Dandia et al. Jan 2015 B2
8963926 Brown et al. Feb 2015 B2
8972357 Shim et al. Mar 2015 B2
8989786 Feghali Mar 2015 B2
8995433 Rojas Mar 2015 B2
9002643 Xu Apr 2015 B2
9015285 Ebsen et al. Apr 2015 B1
9020745 Johnston et al. Apr 2015 B2
9040574 Wang et al. May 2015 B2
9055416 Rosen et al. Jun 2015 B2
9083770 Drose et al. Jul 2015 B1
9086776 Ye et al. Jul 2015 B2
9094137 Sehn et al. Jul 2015 B1
9100806 Rosen et al. Aug 2015 B2
9100807 Rosen et al. Aug 2015 B2
9105014 Collet et al. Aug 2015 B2
9113301 Spiegel et al. Aug 2015 B1
9119027 Sharon et al. Aug 2015 B2
9123074 Jacobs et al. Sep 2015 B2
9143382 Bhogal et al. Sep 2015 B2
9143681 Ebsen et al. Sep 2015 B1
9148424 Yang Sep 2015 B1
9152477 Campbell et al. Oct 2015 B1
9191776 Root et al. Nov 2015 B2
9204252 Root Dec 2015 B2
9224220 Toyoda et al. Dec 2015 B2
9225805 Kujawa et al. Dec 2015 B2
9225897 Sehn et al. Dec 2015 B1
9237202 Sehn Jan 2016 B1
9241184 Weerasinghe Jan 2016 B2
9247377 Pai et al. Jan 2016 B2
9256860 Herger et al. Feb 2016 B2
9258459 Hartley Feb 2016 B2
9264463 Rubinstein et al. Feb 2016 B2
9276886 Samaranayake Mar 2016 B1
9294425 Son Mar 2016 B1
9298257 Hwang et al. Mar 2016 B2
9314692 Konoplev et al. Apr 2016 B2
9330483 Du et al. May 2016 B2
9344606 Hartley et al. May 2016 B2
9357174 Li et al. May 2016 B2
9361510 Yao et al. Jun 2016 B2
9369422 Ozog Jun 2016 B1
9378576 Bouaziz et al. Jun 2016 B2
9385983 Sehn Jul 2016 B1
9392308 Ahmed et al. Jul 2016 B2
9396354 Murphy et al. Jul 2016 B1
9402057 Kaytaz et al. Jul 2016 B2
9407712 Sehn Aug 2016 B1
9407816 Sehn Aug 2016 B1
9412192 Mandel et al. Aug 2016 B2
9430783 Sehn Aug 2016 B1
9439041 Parvizi et al. Sep 2016 B2
9443227 Evans et al. Sep 2016 B2
9450907 Pridmore et al. Sep 2016 B2
9459778 Hogeg et al. Oct 2016 B2
9460541 Li et al. Oct 2016 B2
9482882 Hanover et al. Nov 2016 B1
9482883 Meisenholder Nov 2016 B1
9485747 Rodoper et al. Nov 2016 B1
9489661 Evans et al. Nov 2016 B2
9489760 Li et al. Nov 2016 B2
9491134 Rosen et al. Nov 2016 B2
9503845 Vincent Nov 2016 B2
9508197 Quinn et al. Nov 2016 B2
9532171 Allen et al. Dec 2016 B2
9537811 Allen et al. Jan 2017 B2
9544257 Ogundokun et al. Jan 2017 B2
9560006 Prado et al. Jan 2017 B2
9576400 Van Os et al. Feb 2017 B2
9589357 Li et al. Mar 2017 B2
9592449 Barbalet et al. Mar 2017 B2
9628950 Noeth et al. Apr 2017 B1
9635195 Green et al. Apr 2017 B1
9641870 Cormie et al. May 2017 B1
9648376 Chang et al. May 2017 B2
9652896 Jurgenson et al. May 2017 B1
9659244 Anderton et al. May 2017 B2
9693191 Sehn Jun 2017 B2
9697635 Quinn et al. Jul 2017 B2
9705831 Spiegel Jul 2017 B2
9706040 Kadirvel et al. Jul 2017 B2
9710821 Heath Jul 2017 B2
9742713 Spiegel et al. Aug 2017 B2
9744466 Fujioka Aug 2017 B2
9746990 Anderson et al. Aug 2017 B2
9749270 Collet et al. Aug 2017 B2
9773284 Huang et al. Sep 2017 B2
9785796 Murphy et al. Oct 2017 B1
9792714 Li et al. Oct 2017 B2
9824463 Ingrassia et al. Nov 2017 B2
9825898 Sehn Nov 2017 B2
9839844 Dunstan et al. Dec 2017 B2
9854219 Sehn Dec 2017 B2
9883838 Kaleal, III et al. Feb 2018 B2
9894476 Fraccaroli Feb 2018 B2
9898849 Du et al. Feb 2018 B2
9911073 Spiegel et al. Mar 2018 B1
9936165 Li et al. Apr 2018 B2
9959037 Chaudhri et al. May 2018 B2
9961520 Brooks et al. May 2018 B2
9980100 Charlton et al. May 2018 B1
9990373 Fortkort Jun 2018 B2
9990653 Lewis et al. Jun 2018 B1
10039988 Lobb et al. Aug 2018 B2
10097492 Tsuda et al. Oct 2018 B2
10116598 Tucker et al. Oct 2018 B2
10146748 Barndollar et al. Dec 2018 B1
10155168 Blackstock et al. Dec 2018 B2
10158589 Collet et al. Dec 2018 B2
10178507 Roberts Jan 2019 B1
10194270 Yokoyama et al. Jan 2019 B2
10212541 Brody et al. Feb 2019 B1
10237692 Shan et al. Mar 2019 B2
10242477 Charlton et al. Mar 2019 B1
10242503 McPhee et al. Mar 2019 B2
10262250 Spiegel et al. Apr 2019 B1
10362219 Wilson et al. Jul 2019 B2
10375519 Pai et al. Aug 2019 B2
10382378 Garcia et al. Aug 2019 B2
10432498 Mcclendon Oct 2019 B1
10475225 Park et al. Nov 2019 B2
10496661 Morgan et al. Dec 2019 B2
10504266 Blattner et al. Dec 2019 B2
10573048 Ni et al. Feb 2020 B2
10657701 Osman et al. May 2020 B2
10938758 Allen et al. Mar 2021 B2
10952013 Brody et al. Mar 2021 B1
10963529 Amitay et al. Mar 2021 B1
11385763 Amitay et al. Jul 2022 B2
11392264 Amitay et al. Jul 2022 B1
11409407 Amitay et al. Aug 2022 B2
11418906 Brody et al. Aug 2022 B2
11451956 Amitay et al. Sep 2022 B1
11474663 Amitay et al. Oct 2022 B2
20020035607 Checkoway et al. Mar 2002 A1
20020047868 Miyazawa Apr 2002 A1
20020059193 Decime et al. May 2002 A1
20020067362 Agostino Nocera et al. Jun 2002 A1
20020078456 Hudson et al. Jun 2002 A1
20020087631 Sharma Jul 2002 A1
20020097257 Miller et al. Jul 2002 A1
20020122659 Mcgrath et al. Sep 2002 A1
20020128047 Gates Sep 2002 A1
20020144154 Tomkow Oct 2002 A1
20020169644 Greene Nov 2002 A1
20030001846 Davis et al. Jan 2003 A1
20030016247 Lai et al. Jan 2003 A1
20030017823 Mager et al. Jan 2003 A1
20030020623 Cao et al. Jan 2003 A1
20030023874 Prokupets et al. Jan 2003 A1
20030037124 Yamaura et al. Feb 2003 A1
20030052925 Daimon et al. Mar 2003 A1
20030101230 Benschoter et al. May 2003 A1
20030110503 Perkes Jun 2003 A1
20030126215 Udell Jul 2003 A1
20030148773 Spriestersbach et al. Aug 2003 A1
20030164856 Prager et al. Sep 2003 A1
20030206171 Kim et al. Nov 2003 A1
20030217106 Adar et al. Nov 2003 A1
20030229607 Zellweger et al. Dec 2003 A1
20040027371 Jaeger Feb 2004 A1
20040064429 Hirstius et al. Apr 2004 A1
20040078367 Anderson et al. Apr 2004 A1
20040111467 Willis Jun 2004 A1
20040158739 Wakai et al. Aug 2004 A1
20040189465 Capobianco et al. Sep 2004 A1
20040203959 Coombes Oct 2004 A1
20040215625 Svendsen et al. Oct 2004 A1
20040243531 Dean Dec 2004 A1
20040243688 Wugofski Dec 2004 A1
20050021444 Bauer et al. Jan 2005 A1
20050022211 Veselov et al. Jan 2005 A1
20050048989 Jung Mar 2005 A1
20050078804 Yomoda Apr 2005 A1
20050097176 Schatz et al. May 2005 A1
20050102381 Jiang et al. May 2005 A1
20050104976 Currans May 2005 A1
20050114783 Szeto May 2005 A1
20050119936 Buchanan et al. Jun 2005 A1
20050122405 Voss et al. Jun 2005 A1
20050144241 Stata et al. Jun 2005 A1
20050162419 Kim et al. Jul 2005 A1
20050020661 Cordelli Sep 2005 A1
20050193340 Amburgey et al. Sep 2005 A1
20050193345 Klassen et al. Sep 2005 A1
20050198128 Anderson Sep 2005 A1
20050223066 Buchheit et al. Oct 2005 A1
20050280660 Seo et al. Dec 2005 A1
20050288954 McCarthy et al. Dec 2005 A1
20060026067 Nicholas et al. Feb 2006 A1
20060031412 Adams et al. Feb 2006 A1
20060107297 Toyama et al. May 2006 A1
20060114338 Rothschild Jun 2006 A1
20060119882 Harris et al. Jun 2006 A1
20060145944 Tarlton et al. Jul 2006 A1
20060242239 Morishima et al. Oct 2006 A1
20060252438 Ansamaa et al. Nov 2006 A1
20060265417 Amato et al. Nov 2006 A1
20060270419 Crowley et al. Nov 2006 A1
20060287878 Wadhwa et al. Dec 2006 A1
20060294465 Ronen et al. Dec 2006 A1
20070004426 Pfleging et al. Jan 2007 A1
20070011270 Klein et al. Jan 2007 A1
20070038715 Collins et al. Feb 2007 A1
20070040931 Nishizawa Feb 2007 A1
20070064899 Boss et al. Mar 2007 A1
20070073517 Panje Mar 2007 A1
20070073823 Cohen et al. Mar 2007 A1
20070075898 Markhovsky et al. Apr 2007 A1
20070082707 Flynt et al. Apr 2007 A1
20070113181 Blattner et al. May 2007 A1
20070136228 Petersen Jun 2007 A1
20070168863 Blattner et al. Jul 2007 A1
20070176921 Iwasaki et al. Aug 2007 A1
20070192128 Celestini Aug 2007 A1
20070198340 Lucovsky et al. Aug 2007 A1
20070198495 Buron et al. Aug 2007 A1
20070208751 Cowan et al. Sep 2007 A1
20070210936 Nicholson Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070214216 Carrer et al. Sep 2007 A1
20070218987 Luchene et al. Sep 2007 A1
20070233556 Koningstein Oct 2007 A1
20070233801 Eren et al. Oct 2007 A1
20070233859 Zhao et al. Oct 2007 A1
20070243887 Bandhole et al. Oct 2007 A1
20070244750 Grannan et al. Oct 2007 A1
20070255456 Funayama Nov 2007 A1
20070258656 Aarabi et al. Nov 2007 A1
20070281690 Altman et al. Dec 2007 A1
20080022329 Glad Jan 2008 A1
20080025701 Ikeda Jan 2008 A1
20080032703 Krumm et al. Feb 2008 A1
20080033930 Warren Feb 2008 A1
20080043041 Hedenstroem et al. Feb 2008 A2
20080049704 Witteman et al. Feb 2008 A1
20080055269 Lemay et al. Mar 2008 A1
20080062141 Chandhri Mar 2008 A1
20080070593 Altman et al. Mar 2008 A1
20080076505 Ngyen et al. Mar 2008 A1
20080092233 Tian et al. Apr 2008 A1
20080094387 Chen Apr 2008 A1
20080097979 Heidloff et al. Apr 2008 A1
20080104503 Beall et al. May 2008 A1
20080109159 Shi et al. May 2008 A1
20080109844 Baldeschweiler et al. May 2008 A1
20080120409 Sun et al. May 2008 A1
20080147730 Lee et al. Jun 2008 A1
20080148150 Mall Jun 2008 A1
20080158222 Li et al. Jul 2008 A1
20080158230 Sharma et al. Jul 2008 A1
20080168033 Ott et al. Jul 2008 A1
20080168489 Schraga Jul 2008 A1
20080189177 Anderton et al. Aug 2008 A1
20080201638 Nair Aug 2008 A1
20080207176 Brackbill et al. Aug 2008 A1
20080208692 Garaventi et al. Aug 2008 A1
20080209329 Defranco et al. Aug 2008 A1
20080021421 Rasanen et al. Sep 2008 A1
20080216092 Serlet Sep 2008 A1
20080222108 Prahlad et al. Sep 2008 A1
20080222545 Lemay Sep 2008 A1
20080255976 Altberg et al. Oct 2008 A1
20080256446 Yamamoto Oct 2008 A1
20080256577 Funaki et al. Oct 2008 A1
20080266421 Takahata et al. Oct 2008 A1
20080270938 Carlson Oct 2008 A1
20080288338 Wiseman et al. Nov 2008 A1
20080306826 Kramer et al. Dec 2008 A1
20080309617 Kong et al. Dec 2008 A1
20080313329 Wang et al. Dec 2008 A1
20080313346 Kujawa et al. Dec 2008 A1
20080318616 Chipalkatti et al. Dec 2008 A1
20090006191 Arankalle et al. Jan 2009 A1
20090006565 Velusamy et al. Jan 2009 A1
20090013268 Amit Jan 2009 A1
20090015703 Kim et al. Jan 2009 A1
20090016617 Bregman-amitai et al. Jan 2009 A1
20090024956 Kobayashi Jan 2009 A1
20090030774 Rothschild et al. Jan 2009 A1
20090030884 Pulfer et al. Jan 2009 A1
20090030999 Gatzke et al. Jan 2009 A1
20090040324 Nonaka Feb 2009 A1
20090042588 Lottin et al. Feb 2009 A1
20090044113 Jones et al. Feb 2009 A1
20090047972 Neeraj Feb 2009 A1
20090055484 Vuong et al. Feb 2009 A1
20090058822 Chaudhri Mar 2009 A1
20090070688 Gyorfi et al. Mar 2009 A1
20090079846 Chou Mar 2009 A1
20090008971 Wood et al. Apr 2009 A1
20090089678 Sacco et al. Apr 2009 A1
20090093261 Ziskind Apr 2009 A1
20090099925 Mehta et al. Apr 2009 A1
20090100367 Dargahi et al. Apr 2009 A1
20090106672 Burstrom Apr 2009 A1
20090132341 Klinger May 2009 A1
20090132453 Hangartner et al. May 2009 A1
20090132665 Thomsen et al. May 2009 A1
20090144639 Nims et al. Jun 2009 A1
20090148045 Lee et al. Jun 2009 A1
20090150778 Nicol Jun 2009 A1
20090153492 Popp Jun 2009 A1
20090153552 Fidaleo et al. Jun 2009 A1
20090157450 Athsani et al. Jun 2009 A1
20090157752 Gonzalez Jun 2009 A1
20090158170 Narayanan et al. Jun 2009 A1
20090160970 Fredlund et al. Jun 2009 A1
20090163182 Gatti et al. Jun 2009 A1
20090164459 Jennings et al. Jun 2009 A1
20090177299 Bartel Marinus Jul 2009 A1
20090177976 Bokor et al. Jul 2009 A1
20090192900 Collision Jul 2009 A1
20090199242 Johnson et al. Aug 2009 A1
20090202114 Morin et al. Aug 2009 A1
20090215469 Fisher et al. Aug 2009 A1
20090228811 Adams et al. Sep 2009 A1
20090232354 Camp, Jr. et al. Sep 2009 A1
20090234815 Boerries et al. Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090249222 Schmidt et al. Oct 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090254840 Churchill et al. Oct 2009 A1
20090265604 Howard et al. Oct 2009 A1
20090265647 Martin et al. Oct 2009 A1
20090284551 Stanton Nov 2009 A1
20090288022 Almstrand et al. Nov 2009 A1
20090291672 Treves et al. Nov 2009 A1
20090292608 Polachek Nov 2009 A1
20090300525 Jolliff et al. Dec 2009 A1
20090303984 Clark et al. Dec 2009 A1
20090319178 Khosravy et al. Dec 2009 A1
20090319607 Belz et al. Dec 2009 A1
20090327073 Li Dec 2009 A1
20090328122 Amento et al. Dec 2009 A1
20100011422 Mason et al. Jan 2010 A1
20100023885 Reville et al. Jan 2010 A1
20100058212 Belitz et al. Mar 2010 A1
20100062794 Han Mar 2010 A1
20100073487 Sogoh et al. Mar 2010 A1
20100082427 Burgener et al. Apr 2010 A1
20100082693 Hugg et al. Apr 2010 A1
20100083140 Dawson et al. Apr 2010 A1
20100083148 Finn et al. Apr 2010 A1
20100100568 Papin et al. Apr 2010 A1
20100100828 Khandelwal et al. Apr 2010 A1
20100113065 Narayan et al. May 2010 A1
20100115407 Kim et al. May 2010 A1
20100115426 Liu et al. May 2010 A1
20100121915 Wang May 2010 A1
20100130233 Parker May 2010 A1
20100131880 Lee et al. May 2010 A1
20100131895 Wohlert May 2010 A1
20100153144 Miller et al. Jun 2010 A1
20100159944 Pascal et al. Jun 2010 A1
20100161658 Hamynen et al. Jun 2010 A1
20100161831 Haas et al. Jun 2010 A1
20100162149 Sheleheda et al. Jun 2010 A1
20100179953 Kan et al. Jul 2010 A1
20100179991 Lorch et al. Jul 2010 A1
20100183280 Beauregard et al. Jul 2010 A1
20100185552 Deluca et al. Jul 2010 A1
20100185665 Horn et al. Jul 2010 A1
20100191631 Weidmann Jul 2010 A1
20100197318 Petersen et al. Aug 2010 A1
20100197319 Petersen et al. Aug 2010 A1
20100198683 Aarabi Aug 2010 A1
20100198694 Muthukrishnan Aug 2010 A1
20100198826 Petersen et al. Aug 2010 A1
20100198828 Petersen et al. Aug 2010 A1
20100198862 Jennings et al. Aug 2010 A1
20100198870 Petersen et al. Aug 2010 A1
20100198917 Petersen et al. Aug 2010 A1
20100201482 Robertson et al. Aug 2010 A1
20100201536 Robertson et al. Aug 2010 A1
20100203968 Gill et al. Aug 2010 A1
20100205242 Marchioro, II et al. Aug 2010 A1
20100214436 Kim et al. Aug 2010 A1
20100223128 Dukellis et al. Sep 2010 A1
20100223343 Bosan et al. Sep 2010 A1
20100227682 Reville et al. Sep 2010 A1
20100250109 Johnston et al. Sep 2010 A1
20100257196 Waters et al. Oct 2010 A1
20100259386 Holley et al. Oct 2010 A1
20100262915 Bocking et al. Oct 2010 A1
20100273509 Sweeney et al. Oct 2010 A1
20100274724 Bible, Jr. et al. Oct 2010 A1
20100279713 Dicke Nov 2010 A1
20100281045 Dean Nov 2010 A1
20100290756 Karaoguz et al. Nov 2010 A1
20100299060 Snavely et al. Nov 2010 A1
20100306669 Della Pasqua Dec 2010 A1
20100332980 Sun et al. Dec 2010 A1
20110004071 Faiola et al. Jan 2011 A1
20110010205 Richards Jan 2011 A1
20110029512 Folgner et al. Feb 2011 A1
20110040783 Uemichi et al. Feb 2011 A1
20110040804 Peirce et al. Feb 2011 A1
20110047404 Metzler et al. Feb 2011 A1
20110050909 Ellenby et al. Mar 2011 A1
20110050915 Wang et al. Mar 2011 A1
20110064388 Brown et al. Mar 2011 A1
20110066664 Goldman et al. Mar 2011 A1
20110066743 Hurley et al. Mar 2011 A1
20110083101 Sharon et al. Apr 2011 A1
20110093780 Dunn Apr 2011 A1
20110099507 Nesladek et al. Apr 2011 A1
20110102630 Rukes May 2011 A1
20110115798 Nayar et al. May 2011 A1
20110119133 Igelman et al. May 2011 A1
20110126096 Ohashi et al. May 2011 A1
20110137881 Cheng et al. Jun 2011 A1
20110145564 Moshir et al. Jun 2011 A1
20110148864 Lee et al. Jun 2011 A1
20110153759 Rathod Jun 2011 A1
20110159890 Fortescue et al. Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110164163 Bilbrey et al. Jul 2011 A1
20110167125 Achlioptas Jul 2011 A1
20110197194 D'Angelo et al. Aug 2011 A1
20110202598 Evans et al. Aug 2011 A1
20110202968 Nurmi Aug 2011 A1
20110211534 Schmidt et al. Sep 2011 A1
20110211764 Krupka et al. Sep 2011 A1
20110213845 Logan et al. Sep 2011 A1
20110215966 Kim et al. Sep 2011 A1
20110225048 Nair Sep 2011 A1
20110238762 Soni et al. Sep 2011 A1
20110238763 Shin et al. Sep 2011 A1
20110239136 Goldman et al. Sep 2011 A1
20110239143 Ye et al. Sep 2011 A1
20110246330 Tikku et al. Oct 2011 A1
20110249891 Li Oct 2011 A1
20110255736 Thompson et al. Oct 2011 A1
20110273575 Lee Nov 2011 A1
20110282799 Huston Nov 2011 A1
20110283188 Farrenkopf Nov 2011 A1
20110285703 Jin Nov 2011 A1
20110286586 Saylor et al. Nov 2011 A1
20110292051 Nelson et al. Dec 2011 A1
20110300837 Misiag Dec 2011 A1
20110314419 Dunn et al. Dec 2011 A1
20110320373 Lee et al. Dec 2011 A1
20120013770 Stafford et al. Jan 2012 A1
20120015673 Klassen et al. Jan 2012 A1
20120028659 Whitney et al. Feb 2012 A1
20120033718 Kauffman et al. Feb 2012 A1
20120036015 Sheikh Feb 2012 A1
20120036443 Ohmori et al. Feb 2012 A1
20120054797 Skog et al. Mar 2012 A1
20120059722 Rao Mar 2012 A1
20120059826 Mate et al. Mar 2012 A1
20120062805 Candelore Mar 2012 A1
20120069028 Bouguerra Mar 2012 A1
20120084731 Filman et al. Apr 2012 A1
20120084835 Thomas et al. Apr 2012 A1
20120099800 Llano et al. Apr 2012 A1
20120108293 Law et al. May 2012 A1
20120110096 Smarr et al. May 2012 A1
20120113106 Choi et al. May 2012 A1
20120113143 Adhikari et al. May 2012 A1
20120113272 Hata May 2012 A1
20120123830 Svendsen et al. May 2012 A1
20120123871 Svendsen et al. May 2012 A1
20120123875 Svendsen et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120124176 Curtis et al. May 2012 A1
20120124458 Cruzada May 2012 A1
20120130717 Xu et al. May 2012 A1
20120131507 Sparandara et al. May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120001651 Lalancette et al. Jun 2012 A1
20120139830 Hwang et al. Jun 2012 A1
20120141046 Chen et al. Jun 2012 A1
20120143760 Abulafia et al. Jun 2012 A1
20120144452 Dyor et al. Jun 2012 A1
20120150978 Monaco Jun 2012 A1
20120166971 Sachson et al. Jun 2012 A1
20120169855 Oh Jul 2012 A1
20120172062 Altman et al. Jul 2012 A1
20120173991 Roberts et al. Jul 2012 A1
20120176401 Hayward et al. Jul 2012 A1
20120184248 Speede Jul 2012 A1
20120197724 Kendall Aug 2012 A1
20120200743 Blanchflower et al. Aug 2012 A1
20120209921 Adafin et al. Aug 2012 A1
20120209924 Evans et al. Aug 2012 A1
20120210244 De Francisco et al. Aug 2012 A1
20120212632 Mate et al. Aug 2012 A1
20120220264 Kawabata Aug 2012 A1
20120221687 Hunter Aug 2012 A1
20120226748 Bosworth et al. Sep 2012 A1
20120229506 Nishikawa Sep 2012 A1
20120233000 Fisher et al. Sep 2012 A1
20120236162 Imamura Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120250951 Chen Oct 2012 A1
20120252418 Kandekar et al. Oct 2012 A1
20120254325 Majeti et al. Oct 2012 A1
20120271883 Montoya et al. Oct 2012 A1
20120278387 Garcia et al. Nov 2012 A1
20120278692 Shi Nov 2012 A1
20120290637 Perantatos et al. Nov 2012 A1
20120290977 Devecka Nov 2012 A1
20120299954 Wada et al. Nov 2012 A1
20120302256 Pai et al. Nov 2012 A1
20120304052 Tanaka et al. Nov 2012 A1
20120304080 Wormaid et al. Nov 2012 A1
20120307096 Ford et al. Dec 2012 A1
20120307112 Kunishige et al. Dec 2012 A1
20120315987 Walling Dec 2012 A1
20120319904 Lee et al. Dec 2012 A1
20120323933 He et al. Dec 2012 A1
20120324018 Metcalf et al. Dec 2012 A1
20130006759 Srivastava et al. Jan 2013 A1
20130024757 Doll et al. Jan 2013 A1
20130031180 Abendroth et al. Jan 2013 A1
20130036165 Tseng et al. Feb 2013 A1
20130036364 Johnson Feb 2013 A1
20130045753 Obermeyer et al. Feb 2013 A1
20130050260 Reitan Feb 2013 A1
20130055083 Fino Feb 2013 A1
20130057587 Leonard et al. Mar 2013 A1
20130059607 Herz et al. Mar 2013 A1
20130060690 Oskolkov et al. Mar 2013 A1
20130063369 Malhotra et al. Mar 2013 A1
20130067027 Song et al. Mar 2013 A1
20130071093 Hanks et al. Mar 2013 A1
20130073970 Piantino et al. Mar 2013 A1
20130073971 Huang et al. Mar 2013 A1
20130073984 Lessin et al. Mar 2013 A1
20130080254 Thramann Mar 2013 A1
20130085790 Palmer et al. Apr 2013 A1
20130086072 Peng et al. Apr 2013 A1
20130090171 Holton et al. Apr 2013 A1
20130095857 Garcia et al. Apr 2013 A1
20130103760 Golding et al. Apr 2013 A1
20130103766 Gupta Apr 2013 A1
20130104053 Thornton et al. Apr 2013 A1
20130110631 Mitchell et al. May 2013 A1
20130110885 Brundrett, III May 2013 A1
20130111354 Marra May 2013 A1
20130111514 Slavin et al. May 2013 A1
20130124091 Matas et al. May 2013 A1
20130128059 Kristensson May 2013 A1
20130129084 Appleton May 2013 A1
20130129252 Lauper May 2013 A1
20130132477 Bosworth et al. May 2013 A1
20130141463 Barnett et al. Jun 2013 A1
20130145286 Feng et al. Jun 2013 A1
20130151988 Sorin et al. Jun 2013 A1
20130152000 Liu et al. Jun 2013 A1
20130155169 Hoover et al. Jun 2013 A1
20130159110 Rajaram et al. Jun 2013 A1
20130159919 Leydon Jun 2013 A1
20130169822 Zhu et al. Jul 2013 A1
20130173729 Starenky et al. Jul 2013 A1
20130174059 Van Wie et al. Jul 2013 A1
20130179520 Lee et al. Jul 2013 A1
20130182133 Tanabe Jul 2013 A1
20130185131 Sinha et al. Jul 2013 A1
20130191198 Carlson et al. Jul 2013 A1
20130194301 Robbins et al. Aug 2013 A1
20130198176 Kim Aug 2013 A1
20130201187 Tong et al. Aug 2013 A1
20130218965 Abrol et al. Aug 2013 A1
20130218968 Mcevilly et al. Aug 2013 A1
20130222323 Mckenzie Aug 2013 A1
20130227476 Frey Aug 2013 A1
20130232194 Knapp et al. Sep 2013 A1
20130249948 Reitan Sep 2013 A1
20130254900 Sathish et al. Sep 2013 A1
20130257877 Davis Oct 2013 A1
20130258040 Kaytaz et al. Oct 2013 A1
20130260800 Asakawa et al. Oct 2013 A1
20130263031 Oshiro et al. Oct 2013 A1
20130265450 Barnes, Jr. Oct 2013 A1
20130267253 Case et al. Oct 2013 A1
20130275505 Gauglitz et al. Oct 2013 A1
20130290443 Collins et al. Oct 2013 A1
20130304646 De Geer Nov 2013 A1
20130311255 Cummins et al. Nov 2013 A1
20130311452 Jacoby Nov 2013 A1
20130325964 Berberat Dec 2013 A1
20130332068 Kesar et al. Dec 2013 A1
20130339868 Sharpe Dec 2013 A1
20130344896 Kirmse et al. Dec 2013 A1
20130346869 Asver et al. Dec 2013 A1
20130346877 Borovoy et al. Dec 2013 A1
20140006129 Heath Jan 2014 A1
20140011538 Mulcahy et al. Jan 2014 A1
20140011576 Barbalet et al. Jan 2014 A1
20140019264 Wachman et al. Jan 2014 A1
20140032682 Prado et al. Jan 2014 A1
20140043204 Basnayake et al. Feb 2014 A1
20140043329 Wang et al. Feb 2014 A1
20140045530 Gordon et al. Feb 2014 A1
20140047016 Rao Feb 2014 A1
20140047045 Baldwin et al. Feb 2014 A1
20140047335 Lewis et al. Feb 2014 A1
20140049652 Moon et al. Feb 2014 A1
20140052485 Shidfar Feb 2014 A1
20140052633 Gandhi Feb 2014 A1
20140055554 Du et al. Feb 2014 A1
20140057660 Wager Feb 2014 A1
20140082651 Sharifi Mar 2014 A1
20140085293 Konoplev et al. Mar 2014 A1
20140089771 Pilskalns Mar 2014 A1
20140089816 Dipersia et al. Mar 2014 A1
20140092130 Anderson et al. Apr 2014 A1
20140096029 Schultz Apr 2014 A1
20140099880 Thistoll et al. Apr 2014 A1
20140114565 Aziz et al. Apr 2014 A1
20140122658 Haeger et al. May 2014 A1
20140122787 Shalvi et al. May 2014 A1
20140125678 Wang et al. May 2014 A1
20140129343 Finster et al. May 2014 A1
20140129953 Spiegel May 2014 A1
20140143143 Fasoli et al. May 2014 A1
20140143241 Barello et al. May 2014 A1
20140149519 Redfern et al. May 2014 A1
20140155102 Cooper et al. Jun 2014 A1
20140157139 Coroy et al. Jun 2014 A1
20140160149 Blackstock et al. Jun 2014 A1
20140173424 Hogeg et al. Jun 2014 A1
20140173457 Wang et al. Jun 2014 A1
20140189592 Benchenaa et al. Jul 2014 A1
20140199970 Klotz Jul 2014 A1
20140201527 Krivorot Jul 2014 A1
20140207679 Cho Jul 2014 A1
20140214471 Schreiner, III Jul 2014 A1
20140218394 Hochmuth Aug 2014 A1
20140221089 Fortkort Aug 2014 A1
20140222564 Kranendonk et al. Aug 2014 A1
20140223372 Dostie et al. Aug 2014 A1
20140258405 Perkin Sep 2014 A1
20140265359 Cheng et al. Sep 2014 A1
20140266703 Dalley, Jr. et al. Sep 2014 A1
20140279061 Elimeliah et al. Sep 2014 A1
20140279436 Dorsey et al. Sep 2014 A1
20140279540 Jackson Sep 2014 A1
20140280058 St. Clair Sep 2014 A1
20140280537 Pridmore et al. Sep 2014 A1
20140282096 Rubinstein et al. Sep 2014 A1
20140287779 O'keefe et al. Sep 2014 A1
20140289216 Voellmer et al. Sep 2014 A1
20140289833 Briceno Sep 2014 A1
20140306884 Sano et al. Oct 2014 A1
20140306986 Gottesman et al. Oct 2014 A1
20140317302 Naik Oct 2014 A1
20140324627 Haver et al. Oct 2014 A1
20140324629 Jacobs Oct 2014 A1
20140325383 Brown et al. Oct 2014 A1
20140347368 Kishore et al. Nov 2014 A1
20140359024 Spiegel Dec 2014 A1
20140359032 Spiegel et al. Dec 2014 A1
20140362091 Bouaziz et al. Dec 2014 A1
20140372420 Slep Dec 2014 A1
20140380195 Graham Dec 2014 A1
20140380511 Faaborg et al. Dec 2014 A1
20150020086 Chen et al. Jan 2015 A1
20150046278 Pei et al. Feb 2015 A1
20150067880 Ward et al. Mar 2015 A1
20150071619 Brough Mar 2015 A1
20150084892 Shirota et al. Mar 2015 A1
20150086087 Ricanek, Jr. et al. Mar 2015 A1
20150087263 Branscomb et al. Mar 2015 A1
20150088464 Yuen et al. Mar 2015 A1
20150088622 Ganschow et al. Mar 2015 A1
20150095020 Leydon Apr 2015 A1
20150096042 Mizrachi Apr 2015 A1
20150116529 Wu et al. Apr 2015 A1
20150121251 Kadirvel et al. Apr 2015 A1
20150123967 Quinn et al. May 2015 A1
20150128020 Chávez et al. May 2015 A1
20150153934 Zherebtsov et al. Jun 2015 A1
20150155007 Barfield, Jr. et al. Jun 2015 A1
20150160832 Walkin et al. Jun 2015 A1
20150169139 Leva et al. Jun 2015 A1
20150169142 Longo et al. Jun 2015 A1
20150169827 Laborde Jun 2015 A1
20150169938 Yao et al. Jun 2015 A1
20150172393 Oplinger et al. Jun 2015 A1
20150172534 Miyakawa et al. Jun 2015 A1
20150178260 Brunson Jun 2015 A1
20150181380 Altman et al. Jun 2015 A1
20150186531 Agarwal et al. Jul 2015 A1
20150187100 Berry et al. Jul 2015 A1
20150193522 Choi et al. Jul 2015 A1
20150193585 Sunna Jul 2015 A1
20150193819 Chang Jul 2015 A1
20150195235 Trussel et al. Jul 2015 A1
20150199082 Scholler et al. Jul 2015 A1
20150201030 Longo et al. Jul 2015 A1
20150206349 Rosenthal et al. Jul 2015 A1
20150213604 Li et al. Jul 2015 A1
20150220774 Ebersman et al. Aug 2015 A1
20150222814 Li et al. Aug 2015 A1
20150227602 Ramu et al. Aug 2015 A1
20150232065 Ricci et al. Aug 2015 A1
20150234942 Harmon Aug 2015 A1
20150245168 Martin Aug 2015 A1
20150261917 Smith Sep 2015 A1
20150264432 Cheng Sep 2015 A1
20150268830 Martynov Sep 2015 A1
20150295866 Collet et al. Oct 2015 A1
20150304806 Vincent Oct 2015 A1
20150312184 Langholz et al. Oct 2015 A1
20150334077 Feldman Nov 2015 A1
20150347519 Hornkvist et al. Dec 2015 A1
20150350136 Flynn, III et al. Dec 2015 A1
20150350262 Rainisto et al. Dec 2015 A1
20150365795 Allen et al. Dec 2015 A1
20150369623 Blumenberg et al. Dec 2015 A1
20150370830 Murphy-Chutorian et al. Dec 2015 A1
20150378502 Hu et al. Dec 2015 A1
20160006927 Sehn Jan 2016 A1
20160012066 Ning et al. Jan 2016 A1
20160014063 Hogeg et al. Jan 2016 A1
20160021153 Hull et al. Jan 2016 A1
20160035111 Ingrassia et al. Feb 2016 A1
20160045834 Burns Feb 2016 A1
20160055164 Cantarero et al. Feb 2016 A1
20160078095 Man et al. Mar 2016 A1
20160080438 Liang Mar 2016 A1
20160085773 Chang et al. Mar 2016 A1
20160085863 Allen et al. Mar 2016 A1
20160086500 Kaleal, III Mar 2016 A1
20160086670 Gross et al. Mar 2016 A1
20160093078 Davis et al. Mar 2016 A1
20160099901 Allen et al. Apr 2016 A1
20160134840 Mcculloch May 2016 A1
20160018931 O'kane Jun 2016 A1
20160158600 Rolley Jun 2016 A1
20160163084 Corazza et al. Jun 2016 A1
20160164823 Nordstrom et al. Jun 2016 A1
20160179823 Yang Jun 2016 A1
20160180887 Sehn Jun 2016 A1
20160182422 Sehn et al. Jun 2016 A1
20160182875 Sehn Jun 2016 A1
20160188997 Desnoyer et al. Jun 2016 A1
20160210500 Feng et al. Jul 2016 A1
20160217292 Faaborg et al. Jul 2016 A1
20160234060 Pai et al. Aug 2016 A1
20160234149 Tsuda et al. Aug 2016 A1
20160239248 Sehn Aug 2016 A1
20160241504 Raji et al. Aug 2016 A1
20160275721 Park et al. Sep 2016 A1
20160277419 Allen et al. Sep 2016 A1
20160286244 Chang et al. Sep 2016 A1
20160292273 Murphy et al. Oct 2016 A1
20160292905 Nehmadi et al. Oct 2016 A1
20160294891 Miller Oct 2016 A1
20160313957 Ebert et al. Oct 2016 A1
20160321708 Sehn Nov 2016 A1
20160343160 Blattner et al. Nov 2016 A1
20160350297 Riza Dec 2016 A1
20160359957 Laliberte Dec 2016 A1
20160359987 Laliberte Dec 2016 A1
20160359993 Hendrickson et al. Dec 2016 A1
20160378278 Sirpal Dec 2016 A1
20170006094 Abou Mahmoud et al. Jan 2017 A1
20170006322 Dury et al. Jan 2017 A1
20170010768 Watson et al. Jan 2017 A1
20170027528 Kaleal, III et al. Feb 2017 A1
20170034173 Miller et al. Feb 2017 A1
20170039452 Osindero et al. Feb 2017 A1
20170039752 Quinn et al. Feb 2017 A1
20170061308 Chen et al. Mar 2017 A1
20170064240 Mangat et al. Mar 2017 A1
20170080346 Abbas Mar 2017 A1
20170087473 Siegel et al. Mar 2017 A1
20170113140 Blackstock et al. Apr 2017 A1
20170118145 Aittoniemi et al. Apr 2017 A1
20170124116 League May 2017 A1
20170126592 El May 2017 A1
20170132649 Oliva et al. May 2017 A1
20170161382 Ouimet et al. Jun 2017 A1
20170199855 Fishbeck Jul 2017 A1
20170235848 Van Dusen et al. Aug 2017 A1
20170263029 Yan et al. Sep 2017 A1
20170286752 Gusarov et al. Oct 2017 A1
20170287006 Azmoodeh et al. Oct 2017 A1
20170293673 Purumala et al. Oct 2017 A1
20170295250 Samaranayake et al. Oct 2017 A1
20170310934 Du et al. Oct 2017 A1
20170312634 Ledoux et al. Nov 2017 A1
20170324688 Collet et al. Nov 2017 A1
20170336960 Chaudhri et al. Nov 2017 A1
20170339006 Austin et al. Nov 2017 A1
20170352179 Hardee et al. Dec 2017 A1
20170353477 Faigon et al. Dec 2017 A1
20170374003 Allen et al. Dec 2017 A1
20170374508 Davis et al. Dec 2017 A1
20180005420 Bondich et al. Jan 2018 A1
20180024726 Hviding Jan 2018 A1
20180025367 Jain Jan 2018 A1
20180032212 Choi et al. Feb 2018 A1
20180047200 O'hara et al. Feb 2018 A1
20180060363 Ko et al. Mar 2018 A1
20180068019 Novikoff et al. Mar 2018 A1
20180088777 Daze et al. Mar 2018 A1
20180091732 Wilson et al. Mar 2018 A1
20180097762 Garcia et al. Apr 2018 A1
20180113587 Allen et al. Apr 2018 A1
20180115503 Baldwin et al. Apr 2018 A1
20180205681 Gong et al. Jul 2018 A1
20180315076 Andreou Nov 2018 A1
20180315133 Brody et al. Nov 2018 A1
20180315134 Amitay et al. Nov 2018 A1
20190001223 Blackstock et al. Jan 2019 A1
20190057616 Cohen et al. Feb 2019 A1
20190188920 Mcphee et al. Jun 2019 A1
20190220932 Amitay et al. Jul 2019 A1
20200117339 Amitay et al. Apr 2020 A1
20200117340 Amitay et al. Apr 2020 A1
20200120097 Amitay et al. Apr 2020 A1
20200120170 Amitay et al. Apr 2020 A1
20200404464 Constantinides Dec 2020 A1
20210243548 Brody et al. Aug 2021 A1
20210266277 Allen et al. Aug 2021 A1
20210286840 Amitay et al. Sep 2021 A1
20210357104 Amitay et al. Nov 2021 A1
20220291812 Amitay et al. Sep 2022 A1
20230113334 Amitay et al. Apr 2023 A1
Foreign Referenced Citations (117)
Number Date Country
2887596 Jul 2015 CA
101127109 Feb 2008 CN
102461218 May 2012 CN
102664819 Sep 2012 CN
103116853 May 2013 CN
103124894 May 2013 CN
104054077 Sep 2014 CN
104508426 Apr 2015 CN
104616540 May 2015 CN
104854615 Aug 2015 CN
105893579 Aug 2016 CN
105897565 Aug 2016 CN
106066990 Nov 2016 CN
106157155 Nov 2016 CN
106530008 Mar 2017 CN
107210948 Sep 2017 CN
108885795 Nov 2018 CN
109863532 Jun 2019 CN
110168478 Aug 2019 CN
110799937 Feb 2020 CN
110800018 Feb 2020 CN
110832538 Feb 2020 CN
110945555 Mar 2020 CN
111010882 Apr 2020 CN
111343075 Jun 2020 CN
111489264 Aug 2020 CN
111343075 Sep 2022 CN
2051480 Apr 2009 EP
2151797 Feb 2010 EP
2184092 May 2010 EP
2399928 Sep 2004 GB
2001230801 Aug 2001 JP
2014006881 Jan 2014 JP
5497931 Mar 2014 JP
2014191414 Oct 2014 JP
19990073076 Oct 1999 KR
20010078417 Aug 2001 KR
20040063436 Jul 2004 KR
1020050036963 Apr 2005 KR
20060124865 Dec 2006 KR
20110014224 Feb 2011 KR
20110054492 May 2011 KR
101060961 Aug 2011 KR
1020120070898 Jul 2012 KR
20130075380 Jul 2013 KR
20130111868 Oct 2013 KR
20140015725 Feb 2014 KR
101445263 Sep 2014 KR
101548880 Sep 2015 KR
20160001847 Jan 2016 KR
20160018954 Feb 2016 KR
101604654 Mar 2016 KR
20160028636 Mar 2016 KR
20160051536 May 2016 KR
101698031 Jan 2017 KR
20170025454 Mar 2017 KR
20170035657 Mar 2017 KR
102434361 Aug 2022 KR
102449545 Oct 2022 KR
102455041 Oct 2022 KR
WO-1996024213 Aug 1996 WO
WO-1999063453 Dec 1999 WO
WO-2000058882 Oct 2000 WO
WO-2001029642 Apr 2001 WO
WO-2001050703 Jul 2001 WO
WO-2003094072 Nov 2003 WO
WO-2004095308 Nov 2004 WO
WO-2006107182 Oct 2006 WO
WO-2006118755 Nov 2006 WO
WO-2007092668 Aug 2007 WO
WO-2007134402 Nov 2007 WO
WO-2009043020 Apr 2009 WO
WO-2011040821 Apr 2011 WO
WO-2011119407 Sep 2011 WO
WO-2012000107 Jan 2012 WO
WO-2012139276 Oct 2012 WO
WO-2013008238 Jan 2013 WO
WO-2013008251 Jan 2013 WO
WO-2013027893 Feb 2013 WO
WO-2013045753 Apr 2013 WO
WO-2013152454 Oct 2013 WO
WO-2013166588 Nov 2013 WO
WO-2014006129 Jan 2014 WO
WO-2014031899 Feb 2014 WO
WO-2014068573 May 2014 WO
WO-2014115136 Jul 2014 WO
WO-2014194262 Dec 2014 WO
WO-2014194439 Dec 2014 WO
WO-2015192026 Dec 2015 WO
WO-2016044424 Mar 2016 WO
WO-2016054562 Apr 2016 WO
WO-2016065131 Apr 2016 WO
WO-2016090605 Jun 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100342 Jun 2016 WO
WO-2016112299 Jul 2016 WO
WO-2016149594 Sep 2016 WO
WO-2016179166 Nov 2016 WO
WO-2016179235 Nov 2016 WO
WO-2017173319 Oct 2017 WO
WO-2017176739 Oct 2017 WO
WO-2017176992 Oct 2017 WO
WO-2018005644 Jan 2018 WO
WO-2018006053 Jan 2018 WO
WO-2018081013 May 2018 WO
WO-2018102562 Jun 2018 WO
WO-2018129531 Jul 2018 WO
WO-2018200042 Nov 2018 WO
WO-2018200043 Nov 2018 WO
WO-2018201102 Nov 2018 WO
WO-2018201104 Nov 2018 WO
WO-2018201106 Nov 2018 WO
WO-2018201107 Nov 2018 WO
WO-2018201108 Nov 2018 WO
WO-2018201109 Nov 2018 WO
WO-2019089613 May 2019 WO
Non-Patent Literature Citations (421)
Entry
“U.S. Appl. No. 12/471,811, Advisory Action dated Mar. 28, 2012”, 6 pgs.
“U.S. Appl. No. 12/471,811, Examiner Interview Summary dated Feb. 2, 2012”, 3 pgs.
“U.S. Appl. No. 12/471,811, Examiner Interview Summary dated Apr. 18, 2011”, 3 pgs.
“U.S. Appl. No. 12/471,811, Examiner Interview Summary dated May 27, 2014”, 2 pgs.
“U.S. Appl. No. 12/471,811, Final Office Action dated Dec. 23, 2011”, 20 pgs.
“U.S. Appl. No. 12/471,811, Non Final Office Action dated Jan. 13, 2011”, 15 pgs.
“U.S. Appl. No. 12/471,811, Non Final Office Action dated Jun. 28, 2011”, 26 pgs.
“U.S. Appl. No. 12/471,811, Non Final Office Action dated Oct. 24, 2014”, 21 pgs.
“U.S. Appl. No. 12/471,811, Notice of Allowance dated Apr. 1, 2015”, 6 pgs.
“U.S. Appl. No. 12/471,811, Response filed Jan. 26, 2015 to Non Final Office Action dated Oct. 24, 2014”, 18 pgs.
“U.S. Appl. No. 12/471,811, Response filed Feb. 23, 2012 to Final Office Action dated Dec. 23, 2011”, 12 pgs.
“U.S. Appl. No. 12/471,811, Response filed Mar. 28, 2012 to Advisory Action dated Mar. 28, 2012”, 14 pgs.
“U.S. Appl. No. 12/471,811, Response filed Apr. 13, 2011 to Non Final Office Action dated Jan. 13, 2011”, 5 pgs.
“U.S. Appl. No. 12/471,811, Response filed Sep. 28, 2011 to Non Final Office Action dated Jun. 28, 2011”, 19 pgs.
“U.S. Appl. No. 13/979,974, Corrected Notice of Allowability dated Nov. 19, 2018”, 2 pgs.
“U.S. Appl. No. 13/979,974, Examiner Interview Summary dated Jun. 29, 2017”, 3 pgs.
“U.S. Appl. No. 13/979,974, Examiner Interview Summary dated Sep. 15, 2017”, 3 pgs.
“U.S. Appl. No. 13/979,974, Final Office Action dated Apr. 25, 2018”, 18 pgs.
“U.S. Appl. No. 13/979,974, Final Office Action dated Jun. 9, 2017”, 20 pgs.
“U.S. Appl. No. 13/979,974, Final Office Action dated Oct. 12, 2016”, 13 pgs.
“U.S. Appl. No. 13/979,974, Non Final Office Action dated Feb. 22, 2017”, 17 pgs.
“U.S. Appl. No. 13/979,974, Non Final Office Action dated Apr. 27, 2016”, 16 pgs.
“U.S. Appl. No. 13/979,974, Non Final Office Action dated Oct. 3, 2017”, 17 pgs.
“U.S. Appl. No. 13/979,974, Notice of Allowance dated Aug. 10, 2018”, 9 pgs.
“U.S. Appl. No. 13/979,974, Response filed Jan. 3, 2018 to Non Final Office Action dated Oct. 3, 2017”, 8 pgs.
“U.S. Appl. No. 13/979,974, Response filed May 22, 2017 to Non Final Office Action dated Feb. 22, 2017”, 10 pgs.
“U.S. Appl. No. 13/979,974, Response filed Jul. 25, 2018 to Final Office Action dated Apr. 25, 2018”, 10 pgs.
“U.S. Appl. No. 13/979,974, Response filed Jul. 26, 2016 to Non Final Office Action dated Apr. 27, 2016”, 8 pgs.
“U.S. Appl. No. 13/979,974, Response filed Sep. 11, 2017 to Final Office Action dated Jun. 9, 2017”, 8 pgs.
“U.S. Appl. No. 13/979,974, Response filed Jan. 12, 2017 to Non Final Office Action dated Apr. 27, 2016”, 8 pgs.
“U.S. Appl. No. 14/753,200, Non Final Office Action dated Oct. 11, 2016”, 6 pgs.
“U.S. Appl. No. 14/753,200, Notice of Allowance dated Apr. 27, 2017”, 7 pgs.
“U.S. Appl. No. 14/753,200, Response filed Feb. 13, 2017 to Non Final Office Action dated Oct. 11, 2016”, 9 pgs.
“U.S. Appl. No. 15/086,749, Final Office Action dated Oct. 31, 2017”, 15 pgs.
“U.S. Appl. No. 15/086,749, Final Office Action dated Dec. 31, 2018”, 14 pgs.
“U.S. Appl. No. 15/086,749, Non Final Office Action dated Mar. 13, 2017”, 12 pgs.
“U.S. Appl. No. 15/086,749, Non Final Office Action dated Apr. 30, 2018”, 14 pgs.
“U.S. Appl. No. 15/086,749, Notice of Allowance dated Feb. 26, 2019”, 7 pgs.
“U.S. Appl. No. 15/086,749, Response filed Feb. 11, 2019 to Final Office Action dated Dec. 31, 2018”, 10 pgs.
“U.S. Appl. No. 15/086,749, Response filed Apr. 2, 2018 to Final Office Action dated Oct. 31, 2017”, 14 pgs.
“U.S. Appl. No. 15/086,749, Response filed Aug. 29, 2018 to Non Final Office Action dated Apr. 30, 2018”, 12 pgs.
“U.S. Appl. No. 15/199,472, Final Office Action dated Mar. 1, 2018”, 31 pgs.
“U.S. Appl. No. 15/199,472, Final Office Action dated Nov. 15, 2018”, 37 pgs.
“U.S. Appl. No. 15/199,472, Non Final Office Action dated Jul. 25, 2017”, 30 pgs.
“U.S. Appl. No. 15/199,472, Non Final Office Action dated Sep. 21, 2018”, 33 pgs.
“U.S. Appl. No. 15/199,472, Notice of Allowance dated Mar. 18, 2019”, 23 pgs.
“U.S. Appl. No. 15/199,472, Response filed Jan. 15, 2019 to Final Office Action dated Nov. 15, 2018”, 14 pgs.
“U.S. Appl. No. 15/199,472, Response filed Jan. 25, 2018 to Non Final Office Action dated Jul. 25, 2017”, 13 pgs.
“U.S. Appl. No. 15/199,472, Response filed Aug. 31, 2018 to Final Office Action dated Mar. 1, 2018”, 14 pgs.
“U.S. Appl. No. 15/199,472, Response filed Oct. 17, 2018 to Non Final Office Action dated Sep. 31, 2018”, 11 pgs.
“U.S. Appl. No. 15/365,046, Non Final Office Action dated Dec. 20, 2018”, 36 pgs.
“U.S. Appl. No. 15/365,046, Response filed Mar. 20, 2019 to Non Final Office Action dated Dec. 20, 2018”, 20 pgs.
“U.S. Appl. No. 15/369,499, Corrected Notice of Allowability dated Jan. 28, 2021”, 3 pgs.
“U.S. Appl. No. 15/369,499, Examiner Interview Summary dated Sep. 21, 2020”, 3 pgs.
“U.S. Appl. No. 15/369,499, Examiner Interview Summary dated Oct. 9, 2020”, 2 pgs.
“U.S. Appl. No. 15/369,499, Final Office Action dated Jan. 31, 2019”, 22 pgs.
“U.S. Appl. No. 15/369,499, Final Office Action dated Jun. 15, 2020”, 17 pgs.
“U.S. Appl. No. 15/369,499, Final Office Action dated Oct. 1, 2019”, 17 pgs.
“U.S. Appl. No. 15/369,499, Non Final Office Action dated Mar. 2, 2020”, 17 pgs.
“U.S. Appl. No. 15/369,499, Non Final Office Action dated Jun. 17, 2019”, 17 pgs.
“U.S. Appl. No. 15/369,499, Non Final Office Action dated Aug. 15, 2018”, 22 pgs.
“U.S. Appl. No. 15/369,499, Notice of Allowance dated Oct. 26, 2020”, 17 pgs.
“U.S. Appl. No. 15/369,499, Response filed Feb. 3, 2020 to Final Office Action dated Oct. 1, 2019”, 10 pgs.
“U.S. Appl. No. 15/369,499, Response filed Mar. 14, 2019 to Final Office Action dated Jan. 31, 2019”, 12 pgs.
“U.S. Appl. No. 15/369,499, Response filed Jun. 2, 2020 to Non Final Office Action dated Mar. 2, 2020”, 9 pgs.
“U.S. Appl. No. 15/369,499, Response filed Sep. 15, 2020 to Final Office Action dated Jun. 15, 2020”, 10 pgs.
“U.S. Appl. No. 15/369,499, Response filed Nov. 15, 2018 to Non Final Office Action dated Aug. 15, 2018”, 10 pgs.
“U.S. Appl. No. 15/369,499, Response filed Sep. 10, 2019 to Non-Final Office Action dated Jun. 17, 2019”, 9 pgs.
“U.S. Appl. No. 15/583,142, Jan. 28, 2019 to Response Filed Non Final Office Action dated Oct. 25, 2018”, 19 pgs.
“U.S. Appl. No. 15/583,142, Final Office Action dated Mar. 22, 2019”, 11 pgs.
“U.S. Appl. No. 15/583,142, Non Final Office Action dated Oct. 25, 2018”, 14 pgs.
“U.S. Appl. No. 15/628,408, Corrected Notice of Allowability dated Jul. 21, 2021”, 7 pgs.
“U.S. Appl. No. 15/628,408, Examiner Interview Summary dated Jul. 27, 2022”, 2 pgs.
“U.S. Appl. No. 15/628,408, Final Office Action dated Apr. 13, 2020”, 45 pgs.
“U.S. Appl. No. 15/628,408, Final Office Action dated Jun. 10, 2019”, 44 pgs.
“U.S. Appl. No. 15/628,408, Final Office Action dated Jun. 10, 2022”, 33 pgs.
“U.S. Appl. No. 15/628,408, Non Final Office Action dated Jan. 2, 2019”, 28 pgs.
“U.S. Appl. No. 15/628,408, Non Final Office Action dated Feb. 4, 2022”, 30 pgs.
“U.S. Appl. No. 15/628,408, Non Final Office Action dated Oct. 30, 2019”, 45 pgs.
“U.S. Appl. No. 15/628,408, Notice of Allowance dated Jul. 8, 2021”, 11 pgs.
“U.S. Appl. No. 15/628,408, Notice of Allowance dated Sep. 29, 2020”, 13 pgs.
“U.S. Appl. No. 15/628,408, Response filed Jan. 30, 2020 to Non Final Office Action dated Oct. 30, 2019”, 17 pgs.
“U.S. Appl. No. 15/628,408, Response filed Apr. 2, 2019 to Non Final Office Action dated Jan. 2, 2019”, 15 pgs.
“U.S. Appl. No. 15/628,408, Response filed May 4, 2022 to Non Final Office Action dated Feb. 4, 2022”, 9 pgs.
“U.S. Appl. No. 15/628,408, Response filed Jul. 13, 2020 to Final Office Action dated Apr. 13, 2020”, 20 pgs.
“U.S. Appl. No. 15/628,408, Response filed Aug. 12, 2019 to Final Office Action dated Jun. 10, 2019”, 12 pgs.
“U.S. Appl. No. 15/628,408, Supplemental Amendment filed Apr. 4, 2019 to Non Final Office Action dated Jan. 2, 2019”, 12 pgs.
“U.S. Appl. No. 15/628,408, Supplemental Notice of Allowability dated Oct. 21, 2021”, 2 pgs.
“U.S. Appl. No. 15/661,953, Examiner Interview Summary dated Nov. 13, 2018”, 3 pgs.
“U.S. Appl. No. 15/661,953, Non Final Office Action dated Mar. 26, 2018”, 6 pgs.
“U.S. Appl. No. 15/661,953, Notice of Allowance dated Aug. 10, 2018”, 7 pgs.
“U.S. Appl. No. 15/661,953, PTO Response to Rule 312 Communication dated Oct. 30, 2018”, 2 pgs.
“U.S. Appl. No. 15/661,953, PTO Response to Rule 312 Communication dated Nov. 7, 2018”, 2 pgs.
“U.S. Appl. No. 15/661,953, Response Filed Jun. 26, 2018 to Non Final Office Action dated Mar. 26, 2018”, 13 pgs.
“U.S. Appl. No. 15/901,387, Non Final Office Action dated Oct. 30, 2019”, 40 pgs.
“U.S. Appl. No. 15/965,466, Notice of Allowance dated Sep. 2, 2022”, 10 pgs.
“U.S. Appl. No. 15/965,466, Response filed Jun. 15, 2022 to Non Final Office Action dated Dec. 15, 2021”, 13 pgs.
“U.S. Appl. No. 15/965,744, Response filed Jul. 5, 2022 to Non Final Office Action dated Mar. 4, 2022”, 13 pgs.
“U.S. Appl. No. 15/965,749, Corrected Notice of Allowability dated Jun. 16, 2022”, 2 pgs.
“U.S. Appl. No. 15/965,756, Response filed Aug. 1, 2022 to Non Final Office Action dated Mar. 31, 2022”, 12 pgs.
“U.S. Appl. No. 15/965,764, Corrected Notice of Allowability dated Jun. 28, 2022”, 2 pgs.
“U.S. Appl. No. 15/965,764, PTO Response to Rule 312 Communication dated Aug. 16, 2022”, 2 pgs.
“U.S. Appl. No. 15/965,775, Corrected Notice of Allowability dated Jun. 15, 2022”, 2 pgs.
“U.S. Appl. No. 16/115,259, Final Office Action dated Apr. 4, 2022”, 18 pgs.
“U.S. Appl. No. 16/115,259, Final Office Action dated Jul. 13, 2021”, 18 pgs.
“U.S. Appl. No. 16/115,259, Final Office Action dated Jul. 22, 2020”, 20 pgs.
“U.S. Appl. No. 16/115,259, Final Office Action dated Dec. 16, 2019”, 23 pgs.
“U.S. Appl. No. 16/115,259, Non Final Office Action dated Jan. 11, 2021”, 17 pgs.
“U.S. Appl. No. 16/115,259, Non Final Office Action dated Apr. 9, 2020”, 18 pgs.
“U.S. Appl. No. 16/115,259, Non Final Office Action dated Jul. 30, 2019”, 21 pgs.
“U.S. Appl. No. 16/115,259, Non Final Office Action dated Nov. 8, 2021”, 17 pgs.
“U.S. Appl. No. 16/115,259, Preliminary Amendment filed Oct. 18, 2018 t”, 6 pgs.
“U.S. Appl. No. 16/115,259, Response filed Feb. 8, 2022 to Non Final Office Action dated Nov. 8, 2021”, 9 pgs.
“U.S. Appl. No. 16/115,259, Response filed Mar. 13, 2020 to Final Office Action dated Dec. 16, 2019”, 9 pgs.
“U.S. Appl. No. 16/115,259, Response filed May 11, 2021 to Non Final Office Action dated Jan. 11, 2021”, 14 pgs.
“U.S. Appl. No. 16/115,259, Response filed Jul. 9, 2020 to Non Final Office Action dated Apr. 9, 2020”, 8 pgs.
“U.S. Appl. No. 16/115,259, Response filed Oct. 13, 2021 to Final Office Action dated Jul. 13, 2021”, 10 pgs.
“U.S. Appl. No. 16/115,259, Response filed Oct. 22, 2020 to Final Office Action dated Jul. 22, 2020”, 10 pgs.
“U.S. Appl. No. 16/115,259, Response filed Oct. 30, 2019 to Non Final Office Action dated Jul. 30, 2019”, 9 pgs.
“U.S. Appl. No. 16/193,938, Preliminary Amendment filed Nov. 27, 2018”, 7 pgs.
“U.S. Appl. No. 16/232,824, Final Office Action dated Jun. 23, 2022”, 26 pgs.
“U.S. Appl. No. 16/365,300, Examiner Interview Summary dated Nov. 29, 2021”, 2 pgs.
“U.S. Appl. No. 16/365,300, Final Office Action dated Mar. 25, 2022”, 29 pgs.
“U.S. Appl. No. 16/365,300, Final Office Action dated Apr. 15, 2021”, 31 pgs.
“U.S. Appl. No. 16/365,300, Final Office Action dated May 13, 2020”, 44 pgs.
“U.S. Appl. No. 16/365,300, Non Final Office Action dated Aug. 3, 2021”, 29 pgs.
“U.S. Appl. No. 16/365,300, Non Final Office Action dated Sep. 28, 2020”, 40 pgs.
“U.S. Appl. No. 16/365,300, Non Final Office Action dated Oct. 30, 2019”, 40 pgs.
“U.S. Appl. No. 16/365,300, Response filed Jan. 28, 2021 to Non Final Office Action dated Sep. 28, 2020”, 17 pgs.
“U.S. Appl. No. 16/365,300, Response filed Jan. 30, 2020 to Non Final Office Action dated Oct. 30, 2019”, 16 pgs.
“U.S. Appl. No. 16/365,300, Response filed Jul. 15, 2021 to Final Office Action dated Apr. 15, 2021”, 11 pgs.
“U.S. Appl. No. 16/365,300, Response filed Jul. 25, 2022 to Final Office Action dated Mar. 25, 2022”, 13 pgs.
“U.S. Appl. No. 16/365,300, Response filed Aug. 13, 2020 to Final Office Action dated May 13, 2020”, 16 pgs.
“U.S. Appl. No. 16/365,300, Response filed Dec. 2, 2021 to Non Final Office Action dated Aug. 3, 2021”, 10 pgs.
“U.S. Appl. No. 17/131,598, Non Final Office Action dated Sep. 27, 2022”, 27 pgs.
“U.S. Appl. No. 17/248,841, Notice of Allowability dated Jul. 18, 2022”, 2 pgs.
“U.S. Appl. No. 17/249,201, Corrected Notice of Allowability dated Jun. 24, 2022”, 2 pgs.
“U.S. Appl. No. 17/249,201, Corrected Notice of Allowability dated Sep. 22, 2022”, 2 pgs.
“U.S. Appl. No. 17/249,201, Notice of Allowance dated Jun. 9, 2022”, 7 pgs.
“U.S. Appl. No. 17/314,963, Non Final Office Action dated Feb. 2, 2022”, 24 pgs.
“U.S. Appl. No. 17/314,963, Response filed May 2, 2022 to Non Final Office Action dated Feb. 2, 2022”, 10 pgs.
“Chinese Application Serial No. 202010079763.5, Response filed Jun. 1, 2022 to Office Action dated Apr. 12, 2022”, w/ English Claims, 12 pgs.
“European Application Serial No. 17776809.0, Extended European Search Report dated Feb. 27, 2019”, 7 pgs.
“European Application Serial No. 18791925.3, Communication Pursuant to Article 94(3) EPC dated May 11, 2021”, 7 pgs.
“European Application Serial No. 18791925.3, Extended European Search Report dated Jan. 2, 2020”, 6 pgs.
“European Application Serial No. 18791925.3, Response Filed Jul. 27, 2020 to Extended European Search Report dated Jan. 2, 2020”, 19 pgs.
“European Application Serial No. 22165083.1, Extended European Search Report dated Jul. 12, 2022”, 7 pgs.
“European Application Serial No. 22173072.4, Extended European Search Report dated Aug. 26, 2022”, 6 pgs.
“International Application Serial No. PCT/CA2013/000454, International Preliminary Report on Patentability dated Nov. 20, 2014”, 9 pgs.
“International Application Serial No. PCT/CA2013/000454, International Search Report dated Aug. 20, 2013”, 3 pgs.
“International Application Serial No. PCT/CA2013/000454, Written Opinion dated Aug. 20, 2013”, 7 pgs.
“International Application Serial No. PCT/US2017/025460, International Preliminary Report on Patentability dated Oct. 11, 2018”, 9 pgs.
“International Application Serial No. PCT/US2017/025460, International Search Report dated Jun. 20, 2017”, 2 pgs.
“International Application Serial No. PCT/US2017/025460, Written Opinion dated Jun. 20, 2017”, 7 pgs.
“International Application Serial No. PCT/US2017/040447, International Preliminary Report on Patentability dated Jan. 10, 2019”, 8 pgs.
“International Application Serial No. PCT/US2017/040447, International Search Report dated Oct. 2, 2017”, 4 pgs.
“International Application Serial No. PCT/US2017/040447, Written Opinion dated Oct. 2, 2017”, 6 pgs.
“International Application Serial No. PCT/US2017/057918, International Search Report dated Jan. 19, 2018”, 3 pgs.
“International Application Serial No. PCT/US2017/057918, Written Opinion dated Jan. 19, 2018”, 7 pgs.
“International Application Serial No. PCT/US2017/063981, International Search Report dated Mar. 22, 2018”, 3 pgs.
“International Application Serial No. PCT/US2017/063981, Written Opinion dated Mar. 22, 2018”, 8 pgs.
“International Application Serial No. PCT/US2018/000112, International Preliminary Report on Patentability dated Nov. 7, 2019”, 6 pgs.
“International Application Serial No. PCT/US2018/000112, International Search Report dated Jul. 20, 2018”, 2 pgs.
“International Application Serial No. PCT/US2018/000112, Written Opinion dated Jul. 20, 2018”, 4 pgs.
“International Application Serial No. PCT/US2018/030044, International Preliminary Report on Patentability dated Nov. 7, 2019”, 8 pgs.
“International Application Serial No. PCT/US2018/030044, International Search Report dated Jun. 26, 2018”, 2 pgs.
“International Application Serial No. PCT/US2018/030044, Written Opinion dated Jun. 26, 2018”, 6 pgs.
“Introducing Google Latitude”, Google UK, [Online] Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=XecGMKqiA5A>, [Retrieved on: Oct. 23, 2019], (Feb. 3, 2009), 1 pg.
“Korean Application Serial No. 10-2019-7034715, Office Action dated Jun. 27, 2022”, w/ English Translation, 7 pgs.
“Korean Application Serial No. 10-2019-7034715, Response filed Nov. 22, 2021 to Office Action dated May 21, 2021”, w/ English Claims, 22 pgs.
“Korean Application Serial No. 10-2019-7034751, Response filed Jun. 7, 2022 to Office Action dated Mar. 7, 2022”, w/ English Claims, 27 pgs.
“Korean Application Serial No. 10-2019-7034899, Final Office Action dated Dec. 3, 2021”, w/ English translation, 10 pgs.
“Korean Application Serial No. 10-2019-7034899, Notice of Preliminary Rejection dated May 27, 2021”, With English translation, 17 pgs.
“Korean Application Serial No. 10-2019-7034899, Response filed Aug. 11, 2021 to Notice of Preliminary Rejection dated May 27, 2021”, With English claims, 26 pgs.
“Korean Application Serial No. 10-2019-7035443, Response filed May 6, 2022 to Office Action dated Apr. 12, 2022”, w/ English Claims, 17 pgs.
“Korean Application Serial No. 10-2019-7034596, Response filed Sep. 7, 2022 to Office Action filed Mar. 7, 2022”, w/ English Claims, 32 pgs.
“Korean Application Serial No. 10-2019-7034596, Response filed Nov. 18, 2021 to Office Action dated May 18, 2021”, w/ English Claims, 23 pgs.
“Korean Application Serial No. 10-2019-7034715, Response filed Jun. 7, 2022 to Office Action dated Mar. 7, 2022”, w/ English Claims, 18 pgs.
“Korean Application Serial No. 10-2019-7034751, Response filed Nov. 22, 2021 to Office Action dated May 21, 2021”, w/ English Claims, 28 pgs.
“Korean Application Serial No. 10-2019-7034899, Office Action dated Jan. 24, 2022”, w/ English Translation, 12 pgs.
“Korean Application Serial No. 10-2019-7034899, Response filed Jan. 5, 2022 to Office Action dated Dec. 3, 2021”, w/ English Translation of Claims, 12 pgs.
“List of IBM Patents or Patent Applications Treated as Related; {Appendix P)”, IBM, (Sep. 14, 2018), 2 pgs.
“Tiled web map—Wikipedia”, <URL:https://en.wikipedia.org/w/index.php?title=Tiled_web_map&oldid=758691778>, (Jan. 6, 2017), 1-3.
Broderick, Ryan, “Every thing You Need to Know About Japan's Amazing Photo Booths”, [Online] Retrieved from the Internet: <URL: https://www.buzzfeed.com/ryanhatesthis/look-how-kawaii-i-am?utm_term-.kra5QwGNZ#.muYoVB7qJ>, (Jan. 22, 2016), 30 pgs.
Castelluccia, Claude, et al., “EphPub: Toward robust Ephemeral Publishing”, 19th IEEE International Conference on Network Protocols (ICNP), (Oct. 17, 2011), 18 pgs.
Chan, Connie, “The Elements of Stickers”, [Online] Retrieved from the Internet: <URL: https://a16z.com/2016/06/17/stickers/>, (Jun. 20, 2016), 15 pgs.
Collet, Jean Luc, et al., “Interactive avatar in messaging environment”, U.S. Appl. No. 12/471,811, filed May 26, 2009, (May 26, 2009), 31 pgs.
Fajman, “An Extensible Message Format for Message Disposition Notifications”, Request for Comments: 2298, National Institutes of Health, (Mar. 1998), 28 pgs.
Finn, Greg, “Miss Google Latitude? Google Plus With Location Sharing Is Now A Suitable Alternative”, Cypress North, [Online] Retrieved from the Internet: <URL: https://cypressnorth.com/social-media/miss-google-latitude-google-location-sharing-now-suitable-alternative/>, [Retrieved on: Oct. 24, 2019], (Nov. 27, 2013), 10 pgs.
Gundersen, Eric, “Foursquare Switches to MapBox Streets, Joins the OpenStreetMap Movement”, [Online] Retrieved from the Internet: <URL: https://blog.mapbox.com/foursquare-switches-to-mapbox-streets-joins-the-openstreetmap-movement-29e6a17f4464>, (Mar. 6, 2012), 4 pgs.
Lapenna, Joe, “The Official Google Blog. Check in with Google Latitude”, Google Blog, [Online] Retrieved from the Internet: <https://web.archive.org/web/20110201201006/https://googleblog.blogspot.com/2011/02/check-in-with-google-latitude.html>, [Retrieved on: Oct. 23, 2019], (Feb. 1, 2011), 6 pgs.
Leyden, John, “This SMS will self-destruct in 40 seconds”, [Online] Retrieved from the Internet: <URL: http://www.theregister.co.uk/2005/12/12/stealthtext/>, (Dec. 12, 2005), 1 pg.
Melanson, Mike, “This text message will self destruct in 60 seconds”, [Online] Retrieved from the Internet: <URL: http://readwrite.com/2011/02/11/this_text_message_will_self_destruct_in_60_seconds>, (Feb. 18, 2015), 4 pgs.
Neis, Pascal, “The OpenStreetMap Contributors Map aka Who's around me?”, [Online] Retrieved from the Internet by the examiner on Jun. 5, 2019: <URL: https://neis-one.org/2013/01/oooc/>, (Jan. 6, 2013), 7 pgs.
Perez, Sarah, “Life 360, The Family Locator With More Users Than Foursquare, Raises A $10 Million Series B”, [Online] Retrieved from the Internet: <URL: https://techcrunch.com/2013/07/10/life360-the-family-locator-with-more-users-than-foursquare-raises-10-million-series-b/>, (Jul. 10, 2013), 2 pgs.
Petovello, Mark, “How does a GNSS receiver estimate velocity?”, InsideGNSS, [Online] Retrieved from the Internet: <URL: http://insidegnss.com/wp-content/uploads/2018/01/marapr15-SOLUTIONS.pdf>., (Mar.-Apr. 2015), 3 pgs.
Rhee, Chi-Hyoung, et al., “Cartoon-like Avatar Generation Using Facial Component Matching”, International Journal of Multimedia and Ubiquitous Engineering, (Jul. 30, 2013), 69-78.
Sawers, Paul, “Snapchat for iOS Lets You Send Photos to Friends and Set How long They're Visible For”, [Online] Retrieved from the Internet: <URL: https://thenextweb.com/apps/2012/05/07/snapchat-for-ios-lets-you-send-photos-to-friends-and-set-how-long-theyre-visible-for/>, (May 7, 2012), 5 pgs.
Shein, Esther, “Ephemeral Data”, Communications of the ACM, vol. 56, No. 9, (Sep. 2013), 3 pgs.
Sulleyman, Aatif, “Google Maps Could Let Strangers Track Your Real-Time Location For Days At A Time”, The Independent, [Online] Retrieved from the Internet: <URL: https://www.independent.co.uk/life-style/gadgets-and-tech/news/google-maps-track-location-real-time-days-privacy-security-stalk-gps-days-a7645721.html>, (Mar. 23, 2017), 5 pgs.
Vaas, Lisa, “StealthText, Should You Choose to Accept It”, [Online] Retrieved from the Internet: <URL: http://www.eweek.eom/print/c/a/MessagingandCollaboration/StealthTextShouldYouChoosetoAcceptIt>, (Dec. 13, 2005), 2 pgs.
Wilmott, Clancy, et al., “Playful Mapping in the Digital Age”, Playful Mapping Collective, Institute of Network Cultures, Amsterdam, (2016), 158 pgs.
Zibreg, “How to share your real time location on Google Maps”, idownloadblog.com, [Online] Retrieved from the Internet: <URL: https://www.idownloadblog.com/2017/04/12/how-to-share-location-google-maps/>, [Retrieved on: Oct. 23, 2019], (Apr. 12, 2017), 23 pgs.
“A Whole New Story”, Snap, Inc., [Online] Retrieved from the Internet: <URL: https://www.snap.com/en-US/news/>, (2017), 13 pgs.
“Adding photos to your listing”, eBay, [Online] Retrieved from the Internet: <URL: http://pages.ebay.com/help/sell/pictures.html>, (accessed May 24, 17), 4 pgs.
“U.S. Appl. No. 15/859,101, Examiner Interview Summary dated Sep. 18, 2018”, 3 pgs.
“U.S. Appl. No. 15/859,101, Non Final Office Action dated Jun. 15, 2018”, 10 pgs.
“U.S. Appl. No. 15/859,101, Notice of Allowance dated Oct. 4, 2018”, 9 pgs.
“U.S. Appl. No. 15/859,101, Response filed Sep. 17, 2018 to Non Final Office Action dated Jun. 15, 2018”, 17 pgs.
“U.S. Appl. No. 15/965,361, Non Final Office Action dated Jun. 22, 2020”, 35 pgs.
“U.S. Appl. No. 15/965,466, Final Office Action dated May 18, 2021”, 18 pgs.
“U.S. Appl. No. 15/965,466, Non Final Office Action dated Nov. 20, 2020”, 17 pgs.
“U.S. Appl. No. 15/965,466, Non Final Office Action dated Dec. 15, 2021”, 15 pgs.
“U.S. Appl. No. 15/965,466, Response filed Mar. 22, 2021 to Non Final Office Action dated Nov. 20, 2020”, 13 pgs.
“U.S. Appl. No. 15/965,466, Response filed Oct. 18, 2021 to Final Office Action dated May 18, 2021”, 12 pgs.
“U.S. Appl. No. 15/965,744, Examiner Interview Summary dated Feb. 21, 2020”, 3 pgs.
“U.S. Appl. No. 15/965,744, Final Office Action dated Feb. 6, 2020”, 19 pgs.
“U.S. Appl. No. 15/965,744, Final Office Action dated Jul. 28, 2021”, 29 pgs.
“U.S. Appl. No. 15/965,744, Non Final Office Action dated Feb. 1, 2021”, 29 pgs.
“U.S. Appl. No. 15/965,744, Non Final Office Action dated Mar. 4, 2022”, 31 pgs.
“U.S. Appl. No. 15/965,744, Non Final Office Action dated Jun. 12, 2019”, 18 pgs.
“U.S. Appl. No. 15/965,744, Response filed Jun. 1, 2021 to Non Final Office Action dated Feb. 1, 2021”, 11 pgs.
“U.S. Appl. No. 15/965,744, Response filed Jun. 8, 2020 to Final Office Action dated Feb. 6, 2020”, 11 pgs.
“U.S. Appl. No. 15/965,744, Response filed Nov. 12, 2019 to Non Final Office Action dated Jun. 12, 2019”, 10 pgs.
“U.S. Appl. No. 15/965,744, Response filed Nov. 29, 2021 to Final Office Action dated Jul. 28, 2021”, 13 pgs.
“U.S. Appl. No. 15/965,749, Examiner Interview Summary dated Jul. 29, 2020”, 3 pgs.
“U.S. Appl. No. 15/965,749, Final Office Action dated Jun. 11, 2020”, 12 pgs.
“U.S. Appl. No. 15/965,749, Non Final Office Action dated Jan. 27, 2020”, 9 pgs.
“U.S. Appl. No. 15/965,749, Non Final Office Action dated Jul. 9, 2021”, 14 pgs.
“U.S. Appl. No. 15/965,749, Non Final Office Action dated Jul. 10, 2019”, 8 pgs.
“U.S. Appl. No. 15/965,749, Non Final Office Action dated Nov. 30, 2020”, 13 pgs.
“U.S. Appl. No. 15/965,749, Notice of Allowance dated Feb. 2, 2022”, 25 pgs.
“U.S. Appl. No. 15/965,749, Response filed Feb. 28, 2020 to Non Final Office Action dated Jan. 27, 2020”, 12 pgs.
“U.S. Appl. No. 15/965,749, Response filed Mar. 30, 2021 to Non Final Office Action dated Nov. 30, 2020”, 13 pgs.
“U.S. Appl. No. 15/965,749, Response filed Oct. 10, 2019 to Non-Final Office Action dated Jul. 10, 2019”, 11 pgs.
“U.S. Appl. No. 15/965,749, Response filed Oct. 12, 2020 to Final Office Action dated Jun. 11, 2020”, 14 pgs.
“U.S. Appl. No. 15/965,749, Response filed Nov. 9, 2021 to Non Final Office Action dated Jul. 9, 2021”, 14 pgs.
“U.S. Appl. No. 15/965,749, Supplemental Notice of Allowability dated Apr. 7, 2022”, 3 pgs.
“U.S. Appl. No. 15/965,749, Supplemental Notice of Allowability dated May 5, 2022”, 3 pgs.
“U.S. Appl. No. 15/965,754, Corrected Notice of Allowability dated Jan. 6, 2021”, 2 pgs.
“U.S. Appl. No. 15/965,754, Corrected Notice of Allowability dated Mar. 1, 2021”, 2 pgs.
“U.S. Appl. No. 15/965,754, Final Office Action dated Jul. 17, 2020”, 14 pgs.
“U.S. Appl. No. 15/965,754, Non Final Office Action dated Mar. 30, 2020”, 13 pgs.
“U.S. Appl. No. 15/965,754, Notice of Allowance dated Nov. 16, 2020”, 7 pgs.
“U.S. Appl. No. 15/965,754, Response filed Jun. 30, 2020 to Non Final Office Action dated Mar. 30, 2020”, 12 pgs.
“U.S. Appl. No. 15/965,754, Response filed Oct. 19, 2020 to Final Office Action dated Jul. 17, 2020”, 14 pgs.
“U.S. Appl. No. 15/965,754, Supplemental Notice of Allowability dated Dec. 16, 2020”, 2 pgs.
“U.S. Appl. No. 15/965,756, Final Office Action dated Aug. 19, 2021”, 17 pgs.
“U.S. Appl. No. 15/965,756, Non Final Office Action dated Jan. 13, 2021”, 16 pgs.
“U.S. Appl. No. 15/965,756, Non Final Office Action dated Mar. 31, 2022”, 17 pgs.
“U.S. Appl. No. 15/965,756, Non Final Office Action dated Jun. 24, 2020”, 16 pgs.
“U.S. Appl. No. 15/965,756, Response filed May 13, 2021 to Non Final Office Action dated Jan. 13, 2021”, 12 pgs.
“U.S. Appl. No. 15/965,756, Response filed Sep. 24, 2020 to Non Final Office Action dated Jun. 24, 2020”, 11 pgs.
“U.S. Appl. No. 15/965,756, Response filed Dec. 20, 2021 to Final Office Action dated Aug. 19, 2021”, 13 pgs.
“U.S. Appl. No. 15/965,764, Corrected Notice of Allowability dated Mar. 30, 2022”, 1 pg.
“U.S. Appl. No. 15/965,764, Corrected Notice of Allowability dated Apr. 20, 2022”, 2 pgs.
“U.S. Appl. No. 15/965,764, Examiner Interview Summary dated Aug. 6, 2020”, 3 pgs.
“U.S. Appl. No. 15/965,764, Final Office Action dated May 14, 2020”, 18 pgs.
“U.S. Appl. No. 15/965,764, Final Office Action dated Jun. 15, 2021”, 19 pgs.
“U.S. Appl. No. 15/965,764, Non Final Office Action dated Jan. 2, 2020”, 18 pgs.
“U.S. Appl. No. 15/965,764, Non Final Office Action dated Feb. 22, 2021”, 18 pgs.
“U.S. Appl. No. 15/965,764, Notice of Allowance dated Mar. 9, 2022”, 8 pgs.
“U.S. Appl. No. 15/965,764, Response filed Apr. 2, 2020 to Non Final Office Action dated Jan. 2, 2020”, 11 pgs.
“U.S. Appl. No. 15/965,764, Response filed May 24, 2021 to Non Final Office Action dated Feb. 22, 2021”, 13 pgs.
“U.S. Appl. No. 15/965,764, Response filed Oct. 14, 2020 to Final Office Action dated May 14, 2020”, 11 pgs.
“U.S. Appl. No. 15/965,764, Response filed Nov. 15, 2021 to Final Office Action dated Jun. 15, 2021”, 12 pgs.
“U.S. Appl. No. 15/965,775, Corrected Notice of Allowability dated Apr. 7, 2022”, 3 pgs.
“U.S. Appl. No. 15/965,775, Corrected Notice of Allowability dated Jun. 1, 2022”, 3 pgs.
“U.S. Appl. No. 15/965,775, Final Office Action dated Jan. 30, 2020”, 10 pgs.
“U.S. Appl. No. 15/965,775, Final Office Action dated Jul. 6, 2021”, 12 pgs.
“U.S. Appl. No. 15/965,775, Non Final Office Action dated Jun. 19, 2020”, 12 pgs.
“U.S. Appl. No. 15/965,775, Non Final Office Action dated Jul. 29, 2019”, 8 pgs.
“U.S. Appl. No. 15/965,775, Non Final Office Action dated Oct. 16, 2020”, 11 pgs.
“U.S. Appl. No. 15/965,775, Notice of Allowance dated Feb. 22, 2022”, 19 pgs.
“U.S. Appl. No. 15/965,775, Response filed Mar. 16, 2021 to Non Final Office Action dated Oct. 16, 2020”, 10 pgs.
“U.S. Appl. No. 15/965,775, Response filed Jun. 1, 2020 to Final Office Action dated Jan. 30, 2020”, 10 pgs.
“U.S. Appl. No. 15/965,775, Response filed Jul. 7, 2020 to Non Final Office Action dated Jun. 19, 2020”, 9 pgs.
“U.S. Appl. No. 15/965,775, Response filed Oct. 6, 2021 to Final Office Action dated Jul. 6, 2021”, 11 pgs.
“U.S. Appl. No. 15/965,775, Response filed Oct. 29, 2019 to Non Final Office Action dated Jul. 29, 2019”, 10 pgs.
“U.S. Appl. No. 15/965,811, Final Office Action dated Feb. 12, 2020”, 16 pgs.
“U.S. Appl. No. 15/965,811, Final Office Action dated Apr. 14, 2021”, 19 pgs.
“U.S. Appl. No. 15/965,811, Non Final Office Action dated Jun. 26, 2020”, 20 pgs.
“U.S. Appl. No. 15/965,811, Non Final Office Action dated Aug. 8, 2019”, 15 pgs.
“U.S. Appl. No. 15/965,811, Non Final Office Action dated Oct. 4, 2021”, 20 pgs.
“U.S. Appl. No. 15/965,811, Notice of Allowability dated Mar. 25, 2022”, 10 pgs.
“U.S. Appl. No. 15/965,811, Notice of Allowability dated May 11, 2022”, 2 pgs.
“U.S. Appl. No. 15/965,811, Notice of Allowability dated Jun. 17, 2022”, 2 pgs.
“U.S. Appl. No. 15/965,811, Notice of Allowance dated Mar. 9, 2022”, 9 pgs.
“U.S. Appl. No. 15/965,811, PTO Response to Rule 312 Communication dated Jul. 12, 2022”, 2 pgs.
“U.S. Appl. No. 15/965,811, Response filed Feb. 4, 2022 to Non Final Office Action dated Oct. 4, 2021”, 14 pgs.
“U.S. Appl. No. 15/965,811, Response filed Jun. 12, 2020 to Final Office Action dated Feb. 12, 2020”, 13 pgs.
“U.S. Appl. No. 15/965,811, Response filed Sep. 14, 2021 to Final Office Action dated Apr. 14, 2021”, 14 pgs.
“U.S. Appl. No. 15/965,811, Response filed Nov. 8, 2019 to Non Final Office Action dated Aug. 8, 2019”, 14 pgs.
“U.S. Appl. No. 15/965,811, Response filed Dec. 28, 2020 to Non Final Office Action dated Jun. 26, 2020”, 13 pgs.
“U.S. Appl. No. 16/232,824, Examiner Interview Summary dated Jul. 24, 2020”, 3 pgs.
“U.S. Appl. No. 16/232,824, Final Office Action dated Apr. 30, 2020”, 19 pgs.
“U.S. Appl. No. 16/232,824, Final Office Action dated Nov. 2, 2021”, 25 pgs.
“U.S. Appl. No. 16/232,824, Non Final Office Action dated Feb. 19, 2021”, 28 pgs.
“U.S. Appl. No. 16/232,824, Non Final Office Action dated Oct. 21, 2019”, 18 pgs.
“U.S. Appl. No. 16/232,824, Response filed Feb. 21, 2020 to Non Final Office Action dated Oct. 21, 2019”, 9 pgs.
“U.S. Appl. No. 16/232,824, Response filed May 2, 2022 to Final Office Action dated Nov. 2, 2021”, 13 pgs.
“U.S. Appl. No. 16/232,824, Response filed Jul. 15, 2020 to Final Office Action dated Apr. 30, 2020”, 11 pgs.
“U.S. Appl. No. 16/232,824, Response filed Aug. 19, 2021 to Non Final Office Action dated Feb. 19, 2021”, 12 pgs.
“U.S. Appl. No. 16/245,660, Final Office Action dated Feb. 6, 2020”, 12 pgs.
“U.S. Appl. No. 16/245,660, Non Final Office Action dated Jun. 27, 2019”, 11 pgs.
“U.S. Appl. No. 16/245,660, Notice of Allowability dated Nov. 18, 2020”, 2 pgs.
“U.S. Appl. No. 16/245,660, Notice of Allowance dated Jul. 8, 2020”, 8 pgs.
“U.S. Appl. No. 16/245,660, Notice of Allowance dated Nov. 3, 2020”, 8 pgs.
“U.S. Appl. No. 16/245,660, Response filed Jun. 8, 2020 to Final Office Action dated Feb. 6, 2020”, 16 pgs.
“U.S. Appl. No. 16/245,660, Response filed Nov. 6, 2019 to Non Final Office Action dated Jun. 27, 2019”, 11 pgs.
“U.S. Appl. No. 17/131,598, Preliminary Amendment filed Jun. 8, 2021”, 10 pages.
“U.S. Appl. No. 17/248,841, Notice of Allowance dated Apr. 7, 2022”, 9 pgs.
“U.S. Appl. No. 17/248,841, Preliminary Amendment filed Apr. 22, 2021”, 7 pgs.
“U.S. Appl. No. 17/249,201, Non Final Office Action dated May 26, 2022”, 5 pgs.
“U.S. Appl. No. 17/249,201, Preliminary Amendment filed Oct. 6, 2021”, 9 pgs.
“U.S. Appl. No. 17/249,201, Response filed May 27, 2022 to Non Final Office Action dated May 26, 2022”, 10 pgs.
“BlogStomp”, StompSoftware, [Online] Retrieved from the Internet: <URL: http://stompsoftware.com/blogstomp>, (accessed May 24, 17), 12 pgs.
“Chinese Application Serial No. 202010079763.5, Office Action dated Apr. 12, 2022”, W/English Translation, 14 pgs.
“Chinese Application Serial No. 202010079763.5, Office Action dated Aug. 27, 2021”, w/ English Translation, 15 pgs.
“Chinese Application Serial No. 202010079763.5, Response Filed Jan. 11, 2022 to Office Action dated Aug. 27, 2021”, w/ English Claims, 13 pgs.
“Cup Magic Starbucks Holiday Red Cups come to life with AR app”, Blast Radius, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20160711202454/http://www.blastradius.com/work/cup-magic>, (2016), 7 pgs.
“Daily App: InstaPlace (iOS/Android): Give Pictures a Sense of Place”, TechPP, [Online] Retrieved from the Internet: <URL: http://techpp.com/2013/02/15/instaplace-app-review>, (2013), 13 pgs.
“European Application Serial No. 19206595.1, Extended European Search Report dated Mar. 31, 2020”, 6 pgs.
“European Application Serial No. 18789872.1, Communication Pursuant to Article 94(3) EPC dated Aug. 11, 2020”, 6 pgs.
“European Application Serial No. 18789872.1, Extended European Search Report dated Jan. 2, 2020”, 8 pgs.
“European Application Serial No. 18789872.1, Response filed Feb. 18, 2021 to Communication Pursuant to Article 94(3) EPC dated Aug. 11, 2020”, 15 pgs.
“European Application Serial No. 18789872.1, Summons to Attend Oral Proceedings mailed Jun. 23, 2021”, 9 pgs.
“European Application Serial No. 18789872.1, Summons to Attend Oral Proceedings mailed Sep. 13, 2021”, 9 pgs.
“European Application Serial No. 18790189.7, Communication Pursuant to Article 94(3) EPC dated Jul. 30, 2020”, 9 pgs.
“European Application Serial No. 18790189.7, Extended European Search Report dated Jan. 2, 2020”, 7 pgs.
“European Application Serial No. 18790189.7, Response filed Feb. 9, 2021 to Communication Pursuant to Article 94(3) EPC dated Jul. 30, 2020”, 11 pgs.
“European Application Serial No. 18790189.7, Response Filed Jul. 14, 2020 to Extended European Search Report dated Jan. 2, 2020”, 21 pgs.
“European Application Serial No. 18790189.7, Summons to attend oral proceedings mailed Jul. 8, 2021”, 13 pgs.
“European Application Serial No. 18790319.0, Communication Pursuant to Article 94(3) EPC dated Jul. 21, 2021”, 7 pgs.
“European Application Serial No. 18790319.0, Extended European Search Report dated Feb. 12, 2020”, 6 pgs.
“European Application Serial No. 18790319.0, Response Filed Jan. 28, 2022 to Communication Pursuant to Article 94(3) EPC dated Jul. 21, 2021”, 16 pgs.
“European Application Serial No. 18790319.0, Response filed Aug. 27, 2020 to Extended European Search Report dated Feb. 12, 2020”, 19 pgs.
“European Application Serial No. 18791363.7, Communication Pursuant to Article 94(3) EPC dated Aug. 11, 2020”, 9 pgs.
“European Application Serial No. 18791363.7, Extended European Search Report dated Jan. 2, 2020”, 8 pgs.
“European Application Serial No. 18791363.7, Response filed Jul. 14, 2020 to Extended European Search Report dated Jan. 2, 2020”, 31 pgs.
“European Application Serial No. 18791363.7, Summons to attend oral proceedings mailed Apr. 4, 2022”, 11 pgs.
“European Application Serial No. 18791363.7,Response Filed Feb. 22, 2021 to Communication Pursuant to Article 94(3) EPC dated Aug. 11, 2020”, 35 pgs.
“European Application Serial No. 19206595.1, Communication Pursuant to Article 94(3) EPC dated Jul. 22, 2021”, 7 pgs.
“European Application Serial No. 19206595.1, Response filed Jan. 28, 2022 to Communication Pursuant to Article 94(3) EPC dated Jul. 22, 2021”, 18 pgs.
“European Application Serial No. 19206595.1, Response filed Dec. 16, 2020 to Extended European Search Report dated Mar. 31, 2020”, 43 pgs.
“European Application Serial No. 19206610.8, Communication Pursuant to Article 94(3) EPC dated Jul. 21, 2021”, 8 pgs.
“European Application Serial No. 19206610.8, Extended European Search Report dated Feb. 12, 2020”, 6 pgs.
“European Application Serial No. 19206610.8, Response filed Jan. 26, 2022 to Communication Pursuant to Article 94(3) EPC dated Jul. 21, 2021”, 23 pgs.
“European Application Serial No. 19206610.8, Response filed Sep. 23, 2020 to Extended European Search Report dated Feb. 12, 2020”, 109 pgs.
“InstaPlace Photo App Tell The Whole Story”, [Online] Retrieved from the Internet: <URL: youtu.be/uF_gFkg1hBM>, (Nov. 8, 2013), 113 pgs., 1:02 min.
“International Application Serial No. PCT/US2015/037251, International Search Report dated Sep. 29, 2015”, 2 pgs.
“International Application Serial No. PCT/US2018/000113, International Preliminary Report on Patentability dated Nov. 7, 2019”, 6 pgs.
“International Application Serial No. PCT/US2018/000113, International Search Report dated Jul. 13, 2018”, 2 pgs.
“International Application Serial No. PCT/US2018/000113, Written Opinion dated Jul. 13, 2018”, 4 pgs.
“International Application Serial No. PCT/US2018/030039, International Preliminary Report on Patentability dated Nov. 7, 2019”, 6 pgs.
“International Application Serial No. PCT/US2018/030039, International Search Report dated Jul. 11, 2018”, 2 pgs.
“International Application Serial No. PCT/US2018/030039, Written Opinion dated Jul. 11, 2018”, 4 pgs.
“International Application Serial No. PCT/US2018/030041, International Preliminary Report on Patentability dated Nov. 7, 2019”, 5 pgs.
“International Application Serial No. PCT/US2018/030041, International Search Report dated Jul. 11, 2018”, 2 pgs.
“International Application Serial No. PCT/US2018/030041, Written Opinion dated Jul. 11, 2018”, 3 pgs.
“International Application Serial No. PCT/US2018/030043, International Preliminary Report on Patentability dated Nov. 7, 2019”, 7 pgs.
“International Application Serial No. PCT/US2018/030043, International Search Report dated Jul. 23, 2018”, 2 pgs.
“International Application Serial No. PCT/US2018/030043, Written Opinion dated Jul. 23, 2018”, 5 pgs.
“International Application Serial No. PCT/US2018/030045, International Preliminary Report on Patentability dated Nov. 7, 2019”, 8 pgs.
“International Application Serial No. PCT/US2018/030045, International Search Report dated Jul. 3, 2018”, 2 pgs.
“International Application Serial No. PCT/US2018/030045, Written Opinion dated Jul. 3, 2018”, 6 pgs.
“International Application Serial No. PCT/US2018/030046, International Preliminary Report on Patentability dated Nov. 7, 2019”, 8 pgs.
“International Application Serial No. PCT/US2018/030046, International Search Report dated Jul. 6, 2018”, 2 pgs.
“International Application Serial No. PCT/US2018/030046, Written Opinion dated Jul. 6, 2018”, 6 pgs.
“Introducing Snapchat Stories”, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20131026084921/https://www.youtube.com/watch?v=88Cu3yN-LIM>, (Oct. 3, 2013), 92 pgs.; 00:47 min.
“Korean Application Serial No. 10-2019-7034512, Notice of Preliminary Rejection dated May 17, 2021”, With English translation, 15 pgs.
“Korean Application Serial No. 10-2019-7034512, Notice of Preliminary Rejection dated Nov. 2, 2021”, w/ English translation, 8 pgs.
“Korean Application Serial No. 10-2019-7034512, Response Filed Jan. 3, 2022 to Notice of Preliminary Rejection dated Nov. 2, 2021”, w/ English Claims, 18 pgs.
“Korean Application Serial No. 10-2019-7034596, Notice of Preliminary Rejection dated Mar. 7, 2022”, w/ English translation, 21 pgs.
“Korean Application Serial No. 10-2019-7034596, Notice of Preliminary Rejection dated May 18, 2021”, With English translation, 20 pgs.
“Korean Application Serial No. 10-2019-7034598, Notice of Preliminary Rejection dated Jan. 10, 2022”, w/ English translation, 13 pgs.
“Korean Application Serial No. 10-2019-7034598, Notice of Preliminary Rejection dated Jun. 3, 2021”, With English translation, 10 pgs.
“Korean Application Serial No. 10-2019-7034598, Response filed Sep. 3, 2021 to Notice of Preliminary Rejection dated Jun. 3, 2021”, w/ English Claims, 27 pgs.
“Korean Application Serial No. 10-2019-7034598, Response Filed Mar. 10, 2022 to Notice of Preliminary Rejection dated Jan. 10, 2022”, W/ English Claims, 24 pgs.
“Korean Application Serial No. 10-2019-7034715, Final Office Action dated Mar. 7, 2022”, w/ English translation, 9 pgs.
“Korean Application Serial No. 10-2019-7034715, Notice of Preliminary Rejection dated May 21, 2021”, With English translation, 15 pgs.
“Korean Application Serial No. 10-2019-7034751, Final Office Action dated Mar. 7, 2022”, w/English translation, 11 pgs.
“Korean Application Serial No. 10-2019-7034751, Notice of Preliminary Rejection dated May 21, 2021”, With English translation, 18 pgs.
“Korean Application Serial No. 10-2019-7035443, Notice of Preliminary Rejection dated Apr. 11, 2022”, w/ English translation, 8 pgs.
“Korean Application Serial No. 10-2019-7035443, Notice of Preliminary Rejection dated May 26, 2021”, w/ English translation, 14 pgs.
“Macy's Believe-o-Magic”, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20190422101854/https://www.youtube.com/watch?v=xvzRXy3J0Z0&feature=youtu.be>, (Nov. 7, 2011), 102 pgs.; 00:51 min.
“Macy's Introduces Augmented Reality Experience in Stores across Country as Part of Its 2011 Believe Campaign”, Business Wire, [Online] Retrieved from the Internet: <URL: https://www.businesswire.com/news/home/20111102006759/en/Macys-Introduces-Augmented-Reality-Experience-Stores-Country>, (Nov. 2, 2011), 6 pgs.
“Starbucks Cup Magic”, [Online] Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=RWwQXi9RG0w>, (Nov. 8, 2011), 87 pgs.; 00:47 min.
“Starbucks Cup Magic for Valentine's Day”, [Online] Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=8nvqOzjq10w>, (Feb. 6, 2012), 88 pgs.; 00:45 min.
“Starbucks Holiday Red Cups Come to Life, Signaling the Return of the Merriest Season”, Business Wire, [Online] Retrieved from the Internet: <URL: http://www.businesswire.com/news/home/20111115005744/en/2479513/Starbucks-Holiday-Red-Cups-Life-Signaling-Return>, (Nov. 15, 2011), 5 pgs.
“The One Million Tweet Map: Using Maptimize to Visualize Tweets in a World Map | PowerPoint Presentation”, Fppt.com, [Online] Retrieved form the Internet: <URL: https://web.archive.org/web/20121103231906/http://www.freepower-point-templates.com/articles/the-one-million-tweet-mapusing-maptimize-to-visualize-tweets-in-a-world-map/>, (Nov. 3, 2012), 6 pgs.
Birchall, Andrew Alexander, “The delivery of notifications that user perceives,”, IP.com English Translation of CN 107210948 A Filed Dec. 16, 2014, (2014), 28 pgs.
Carthy, Roi, “Dear All Photo Apps: Mobli Just Won Filters”, TechCrunch, [Online] Retrieved from the Internet: <URL: https://techcrunch.com/2011/09/08/mobli-filters>, (Sep. 8, 2011), 10 pgs.
Dillet, Romain, “Zenly proves that location sharing isn't dead”, [Online] Retrieved from the Internet: <URL: https://techcrunch.com/2016/05/19/zenly-solomoyolo/>, (accessed Jun. 27, 2018), 6 pgs.
Janthong, Isaranu, “Instaplace ready on Android Google Play store”, Android App Review Thailand, [Online] Retrieved from the Internet: <URL: http://www.android-free-app-review.com/2013/01/instaplace-android-google-play-store.html>, (Jan. 23, 2013), 9 pgs.
Macleod, Duncan, “Macys Believe-o-Magic App”, [Online] Retrieved from the Internet: <URL: http://theinspirationroom.com/daily/2011/macys-believe-o-magic-app>, (Nov. 14, 2011), 10 pgs.
Macleod, Duncan, “Starbucks Cup Magic Lets Merry”, [Online] Retrieved from the Internet: <URL: http://theinspirationroom.com/daily/2011/starbucks-cup-magic>, (Nov. 12, 2011), 8 pgs.
Notopoulos, Katie, “A Guide To The New Snapchat Filters And Big Fonts”, [Online] Retrieved from the Internet: <URL: https://www.buzzfeed.com/katienotopoulos/a-guide-to-the-new-snapchat-filters-and-big-fonts?utm term-.bkQ9qVZWe#.nv58YXpkV>, (Dec. 22, 2013), 13 pgs.
Panzarino, Matthew, “Snapchat Adds Filters, A Replay Function And For Whatever Reason, Time, Temperature And Speed Overlays”, TechCrunch, [Online] Retrieved form the Internet: <URL: https://techcrunch.com/2013/12/20/snapchat-adds-filters-new-font-and-for-some-reason-time-temperature-and-speed-overlays/>, (Dec. 20, 2013), 12 pgs.
Tripathi, Rohit, “Watermark Images in PHP And Save File on Server”, [Online] Retrieved from the Internet: <URL: http://code.rohitink.com/2012/12/28/watermark-images-in-php-and-save-file-on-server>, (Dec. 28, 2012), 4 pgs.
“U.S. Appl. No. 15/965,744, Final Office Action dated Oct. 21, 2022”, 31 pgs.
“U.S. Appl. No. 17/818,896, Preliminary Amendment filed Oct. 24, 2022”, 6 pgs.
“U.S. Appl. No. 15/965,466, Corrected Notice of Allowability dated Oct. 26, 2022”, 3 pgs.
“U.S. Appl. No. 17/946,337, Preliminary Amendment Filed Oct. 31, 2022”, 7 pgs.
“U.S. Appl. No. 18/047,213, Preliminary Amendment filed Oct. 31, 2022”, 8 pgs.
“U.S. Appl. No. 17/805,127, Preliminary Amendment Filed Nov. 8, 2022”, 10 pgs.
“European Application Serial No. 18791363.7, Response filed Aug. 5, 2022 to Summons to attend oral proceedings dated Apr. 4, 2022”, 10 pgs.
“U.S. Appl. No. 15/965,756, Non Final Office Action dated Nov. 14, 2022”, 16 pgs.
“U.S. Appl. No. 16/232,824, Response filed Nov. 22, 2022 to Final Office Action dated Jun. 23, 2022”, 12 pgs.
“U.S. Appl. No. 15/965,466, 312 Amendment filed Dec. 2, 2022”, 11 pgs.
“U.S. Appl. No. 15/965,466, PTO Response to Rule 312 Communication dated Dec. 14, 2022”, 12 pgs.
“U.S. Appl. No. 15/965,466, Corrected Notice of Allowability dated Dec. 14, 2022”, 3 pgs.
“U.S. Appl. No. 17/804,771, Examiner Interview Summary dted Apr. 11, 2023”, 2 pgs.
“U.S. Appl. No. 17/805,127, Non Final Office Action dated Apr. 27, 2023”, 98 pgs.
“U.S. Appl. No. 17/131,598, Final Office Action dated May 11, 2023”, 26 pgs.
“U.S. Appl. No. 15/965,756, Final Office Action dated May 12, 2023”, 18 pgs.
“Chinese Application Serial No. 201880043144.1, Office Action dated Feb. 17, 2023”, w English Translation, 12 pgs.
“Chinese Application Serial No. 201880043121.0, Office Action dated Feb. 20, 2023”, W English Translation, 12 pgs.
“Chinese Application Serial No. 201880043068.4, Office Action dated Mar. 1, 2023”, W English Translation, 22 pgs.
“Korean Application Serial No. 10-2022-7028257, Notice of Preliminary Rejection dated Apr. 5, 2023”, W English Translation, 6 pgs.
“Chinese Application Serial No. 202010086283.1, Office Action dated Mar. 16, 2023”, W/English Translation, 12 pgs.
Related Publications (1)
Number Date Country
20230021727 A1 Jan 2023 US
Provisional Applications (3)
Number Date Country
62556134 Sep 2017 US
62552958 Aug 2017 US
62491115 Apr 2017 US
Continuations (1)
Number Date Country
Parent 15965811 Apr 2018 US
Child 17879607 US