Mapping and asset lifecycle tracking system

Information

  • Patent Grant
  • 9183222
  • Patent Number
    9,183,222
  • Date Filed
    Tuesday, January 28, 2014
    11 years ago
  • Date Issued
    Tuesday, November 10, 2015
    10 years ago
  • CPC
  • Field of Search
    • US
    • 701 003000
    • 701 050000
    • 701 450000
    • 701 519000
    • 701 534000
    • 701 532000
    • 701 431000
    • 701 444000
    • 701 445000
    • 701 001000
    • 701 002000
    • 701 301000
    • 701 438000
    • 702 154000
    • 702 019000
    • 707 001000
    • 707 756000
    • 707 608000
    • 235 375000
    • 235 379000
    • 235 380000
    • 235 440000
    • 235 462130
    • 455 566000
    • 455 088000
    • 455 404200
    • 455 556100
    • 455 414100
    • 455 404100
    • CPC
    • G06Q10/10
    • G06Q30/06
    • G06Q20/12
    • G06Q20/027
    • G06K9/00288
    • G06K9/32
    • G06K9/228
    • G06K7/10831
    • G06K5/00
    • G06K1/121
    • G06K9/78
    • G06K15/024
    • G06K9/063
    • G06F19/3437
    • G06F21/10
    • G06F3/017
    • G06F11/34
    • G06F13/14
  • International Classifications
    • G06F17/30
Abstract
A method for creating GIS features and populating a GIS feature attribute with information obtained from a bar code or similar identifier, for example but not limited to pipelines. The method of this invention includes scanning a code on a component to be installed or repaired, converting the code into attributes which describe the component, obtaining additional characteristics of the components, associating the component with a location of installation and placing the geometric feature onto the GIS map.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to a system and process for creating new features and populating attribute information for geographic information system (GIS) features.


2. Description of Related Art


When constructing and/or repairing utility infrastructure, such as natural gas pipelines, operators must collect information during construction to create maps and records of installed assets. The current process involves manual documentation on paper records that are then entered into computer systems. This process is labor intensive and prone to error. In this process, a worker installing a part, for example a pipe, collects data related to the part, for example a pipe's dimensions, along with an installation location. The worker then enters the information into a computer including a part number, location and other information related to the asset. The operator must then map the installation using a geographic information system (GIS) program or other mapping software.


The process of creating geometric features within typical GIS software requires that the worker has training for using specific tools within the GIS or mapping software. The worker must understand the technology well enough to make decisions regarding the type of feature desired. For example, the worker needs to know that a valve should be represented as a point feature or that a pipe segment should be represented as a line feature. This system is labor intensive and subject to worker error, as such there is a need for a more consistent and efficient system for mapping utility pipelines.


SUMMARY OF THE INVENTION

This invention relates to a method and system for creating GIS features and populating the features with attribute information directly within a GIS environment by reading information directly from a barcode or similar identifier. For ease of explanation, the method of this invention will be described in connection with pipelines. However, it should be understood that this method is not limited to pipelines and may be used with other infrastructure including, but not limited to, electrical, cable, water, sewer, fiber optic systems, road & highways, buildings, and/or equipment.


It is one object of this invention to remove potential errors and to simplify the process of creating GIS features. The method and system can be utilized by field personnel with training focused on using the system of this invention and not requiring the field personnel to have in-depth training or knowledge of a GIS or a mapping program.


In a preferred embodiment, the method of mapping an asset during installation or repair includes applying a code to each installed components. In another embodiment, the code may be pre-applied to the components. In the case of pipelines, the American Society for Testing and Materials (ASTM) has created ASTM Standard F2897-11 code which is printed on a majority of components for a pipeline. The ASTM Standard F2897-11 code is a sixteen digit code which identifies multiple characteristics of the component including manufacturer, lot number, material, diameter, and component type. The sixteen digit code is preferably provided as a bar code which facilitates automated data capture to improve data quality by eliminating transcription errors. Alternatively, the code may be provided as a two-dimensional bar code, a RFID tag, and/or a NFC tag. The method of this invention includes reading the code on the component into a device having a processor and a memory, such as a computer, tablet or a smart phone. The step of reading the code to the device is preferably completed with a scanner that scans the code to capture the data. Alternatively, other means may be used to input the code into the device including manual data entry.


The method of this invention includes capturing location data and inputting this location data into the device. Preferably the location data is collected using a global positioning system (GPS) device in order to provide accurate information. However, other means of collecting the location data may be used.


The method of this invention includes a step of decoding the component code into the component's attributes. For example, the ASTM Standard F2897-11 code can be converted from the sixteen digit code into identifiers including a manufacturer, a lot number, a type of material, a diameter, and a component type. In a preferred embodiment, the system of this invention includes decision support tables which allow the program to find, compute or choose additional feature attributes which may not be provided by simply decompiling the code. Additional attributes of the components may be downloaded from a manufacturer's web site based on the identifiers to further assist the installation and mapping. The additional attributes may include other dimensions, warranties, warnings, installation guides and other related information. Once the necessary attributes are identified, the system uses the attributes to determine the type of asset in relation to GIS features. The system then automatically creates the appropriate GIS feature and uses the data encoded in the barcode to populate the GIS feature's attribute information directly in a GIS program. In a preferred embodiment, the GIS program creates a geometric feature such as a point, line or polygon to represent the installed component of the asset. The geometric feature is then associated with the location data and placed in the GIS map.


The method of this invention vastly improves the usefulness, accuracy and speed of data collection and the creation of geometric features in the GIS or any mapping system.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects and features of this invention will be better understood from the following detailed description taken in conjunction with the drawings.



FIG. 1 is a flow chart for mapping an asset according to one embodiment of this invention.



FIG. 2 shows a component to be installed with a code according to one embodiment of this invention.



FIG. 3 shows a GIS map with a line representing a pipe and an association between a code on the pipe and identifiers in a table, according to one embodiment of this invention.



FIG. 4 shows a GPS receiver and a tablet device with GIS based data collection software, according to one embodiment of this invention.



FIG. 5 shows another GIS map with geometric features representing components of the asset, according to one embodiment of this invention.





DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

The invention is directed to a method and a system for mapping assets during installation and/or repairs. For ease of explanation, the method of this invention will be described in connection with the installation of a pipeline. However, it should be understood that the invention is not limited to pipelines and may be used with any type of asset including, but not limited to, water, sewer, electrical, cable, roads & highways, equipment, and internet service.



FIG. 1 shows a flow chart 10 of the method of this invention according to a preferred embodiment. The flow chart 10 shows one order of the steps of the method of this invention, however, it should be understood that the method of this invention is not limited to this order and/or may include additional intermediary steps not shown and/or multiple steps may be combined into a single step.


As shown in FIG. 1, the method of this invention begins by obtaining a component 30 of the asset to be installed or repaired 12. As shown in FIG. 2, the component 30 is a section of pipe 32. It should be understood that the section of pipe 32 is representative of the component 30 and that the component 30 is not limited to a pipe and may comprise any type of component or components including tubing, fittings, valves, appurtenance, equipment, and any other type of part needed used for constructing the infrastructure asset. In a preferred embodiment, the component 30 includes a code 34 which embodies detailed information about the component 30. In the embodiment of FIG. 2, the code 34 comprises a bar code with an alpha-numeric identifier. However, the code 34 is not limited to the bar code and/or the alpha-numeric identifier and may comprise any type of code including, but not limited to, a two-dimensional bar code, a radio-frequency identification (RFID) tag, and a near-field communication (NFC) tag.


The method of this invention further includes the steps of scanning the code 14 and storing the code to a memory 16. According to one preferred embodiment of this invention, the code 34 is American Society for Testing and Materials (ASTM) Standard F2897-11 code for parts for a pipeline. The ASTM Standard F2897-11 code is a sixteen digit code based on characteristics of the component including a component manufacturer, a manufacture lot number, a production date, a component material, a component dimension or size, and other information.


The step 14 of scanning the code 34 may be accomplished with a reader 36, such as a bar code scanner as shown in FIG. 2. However, the step 14 may be accomplished with any reader 36 capable of scanning the code 34, such as, but not limited to, a RFID reader, an NFC reader, a smart phone, a tablet computer, and a QR reader. Alternatively, the code 14 may be entered to memory through manual entry of the numerical code.


In a preferred embodiment, the step 16 of storing the code to memory comprises uploading the code 34 to a device such as a computer, a tablet, or a smart phone or any other device having a memory and/or a processor.


In the embodiment of this invention shown in FIG. 1, the method 10 further includes a program to convert the code 34 into attributes 46 that further describe characteristics of the part 30, step 18. For example, the ASTM Standard F2897-11 code described above is a sixteen digit code that is used in conjunction with natural gas assets such as, pipes, tubing, fittings, valves, appurtenances, etc. The ASTM Standard F2897-11 code comprises numbers which have been converted into fewer characters by switching from base 10 to base 62. The following table explains the code:















Digits
Identifier
Description
Conversion







1-2
Component
A two character code assigned
None



Manufacturer
to each manufacturer by




Plastic Pipe Institute


3-6
Manufacturer's
7 digits assigned by the
Convert to 4



Lot Code
manufacturer to identify the
characters




product
with base 62


7-9
Production
5 digits representing the day
Convert to 3



Date
of the year (3 digits) and the
characters




year (2 digits)
with base 62


10
Component
1 letter representing the
None



Material
material


11-12
Component
2 character code representing
None



Type
the type of part, set by ASTM


13-15
Component
5 digits code that is set using
Convert to 3



Size
an equation and tables
characters




established by ASTM
using base 62


16
Unused
0
None










As shown in FIG. 3, the method of this invention uses the program to decode the code 34 back to the attributes, listed in columns 2 and 3 above. After the program converts the code, the program preferably populates a database 50 with attribute information 46. In a preferred embodiment, the program uses the attribute information 46 to locate additional characteristics 48 of the part 34 and stores the additional characteristics 48 to the database 50. In one embodiment, the program uses tables, preferably stored locally on the device, to gather additional characteristics of the component. In another embodiment, the program may access a manufacturer's web site to gather information such as warranty details, maintenance/replacement schedules, installation details, part dimensions, and any other information which may be useful.


Preferably, after the component 30 is installed or repaired and will no longer be moved, the method of this invention further includes a step 20 of collecting location data and storing the location data to memory. Collecting location data is preferably accomplished with a Global Positioning System (GPS) device 38. For example, FIG. 4 shows a worker with a GPS receiver 38. In this embodiment, the GPS receiver is connected to a tablet 52 which can run the program of this invention and/or allows a user to upload the data. Alternatively, the device 38 may be any type of GPS or Global Navigation Satellite System (GNSS) receiver including, but not limited to, those included in a smart phone and a tablet computer. In an alternative embodiment, the step 18 of collecting location data may be accomplished through use of manual positioning on a map.


In a preferred embodiment of this invention, the method 10 next includes a step 22 of associating the location data with the code 34 representing the component 30. In a preferred embodiment, this step comprises saving the location data to the database 50 which includes at least one of the attributes 46 and the characteristics 48.


In a preferred embodiment of this invention, the method 10 next includes a step 24 of creating a geometric feature 40 within the geographic information system (GIS) to represent the component 30 and placing the geometric feature 40 on a map 42 to represent the installed component. The geometric feature 40 may comprise one of a point, line, circle, polygon, arrow or any other symbol to represent the installed component. For example, in FIG. 3, the GIS shows a map 42 with a line 44 representing the installed pipeline. In FIG. 5, another map is shown with lines and arrows representing various installed components. In a preferred embodiment, each of the geometric features 40 may be selectable to access additional information of the installed components including, but not limited to, a descriptor, a date of installation, a material type, and manufacturer.


Thus the invention provides a method and system for mapping and asset lifecycle tracking of assets. More specifically, the invention provides a method of creating GIS features and populating GIS features with attribute information based on information contained in a barcode or similar identifier.


While in the foregoing specification this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purpose of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein can be varied considerably without departing from the basic principles of the invention.

Claims
  • 1. A method of mapping an asset during installation or repair, the method comprising: inputting a code from a component of the asset into a device having a processor and a memory;the processor automatically decoding the code into attributes;the processor automatically gathering characteristics of the component based on the attributes, wherein the characteristics include at least one of maintenance schedules, replacement dates, installation details, dimensions, and warranty details;the processor automatically creating a geometric feature based on the attributes and the characteristics;identifying a location of the component using one of a global positioning system device and a manual mapping process;storing the location in the memory;associating the component with the location; andthe processor automatically placing the geometric feature on a Geographic Information System (GIS) map.
  • 2. The method of claim 1, wherein the code comprises an American Society for Testing and Materials (ASTM) F2897 code.
  • 3. The method of claim 1, wherein the code comprises one or more of a bar code, a two-dimensional bar code, a radio-frequency identification (RFID) tag, and a near field communication (NFC) tag.
  • 4. The method of claim 1, wherein the step of inputting the code from the component comprises scanning the code with a bar code scanner.
  • 5. The method of claim 1, wherein the GIS map comprises a part of a Geographic Information System (GIS) program.
  • 6. The method of claim 1, wherein the device comprises one of a lap top, a smart phone, a tablet, and a desktop computer.
  • 7. The method of claim 1, wherein the step of collecting additional characteristics of the component utilizes decision support tables to obtain the additional characteristics.
  • 8. A method of mapping a natural gas pipeline comprising: scanning an American Society for Testing and Materials (ASTM) F2897 code from a natural gas component into a device having a processor and a memory;the processor automatically decompiling the American Society for Testing and Materials (ASTM) F2897 code into attributes and populating a database with the attributes;the processor automatically creating a geometric feature from the attributes;identifying a location of the natural gas component using a global positioning system device and associating the location with the attributes; andthe processor automatically placing the geometric feature on a Geographic Information System (GIS) map.
  • 9. The method of claim 8, further comprising: uploading the American Society for Testing and Materials (ASTM) F2897 code to a cloud to provide access to the code from remote devices.
  • 10. The method of claim 8, wherein the code comprises one or more of a bar code, a two-dimensional bar code, a radio-frequency identification (RFID) tag, and a near field communication (NFC) tag.
  • 11. The method of claim 8, wherein the map comprises a part of a Geographic Information System (GIS) program.
  • 12. The method of claim 11, further including a step of: managing a lifecycle of the natural gas component with the Geographic Information System (GIS) program for maintenance and repairs.
  • 13. The method of claim 8, further comprising a step of: populating the database with additional characteristics of the natural gas component based on the attributes.
  • 14. The method of claim 13, wherein the additional characteristics of the component are located using decision support tables.
  • 15. The method of claim 8, wherein the geometric feature comprises one of a line, an arrow, a point, a circle and a polygon to represent the natural gas component.
  • 16. The method of claim 8, wherein the device comprises one of a lap top, a smart phone, a tablet, and desk top computer.
  • 17. A method of mapping an asset during installation or repair, the method comprising: scanning a barcode from a component of the asset into a device having a processor and a memory;the processor automatically decoding the barcode into attributes;the processor automatically gathering characteristics of the component based on the attributes, wherein the characteristics include maintenance schedules, replacement dates, installation details, dimensions, and warranty details;the processor automatically creating a geometric feature based on the attributes and the characteristics;identifying a location of the component using one of a global positioning system device;storing the location in the memory;associating the component with the location; andthe processor automatically placing the geometric feature on a Geographic Information System (GIS) map.
US Referenced Citations (46)
Number Name Date Kind
3817411 Brown Jun 1974 A
3871536 Brown Mar 1975 A
3950955 Meeres Apr 1976 A
6243483 Petrou et al. Jun 2001 B1
6592245 Tribelsky et al. Jul 2003 B1
6683614 Walls et al. Jan 2004 B2
6920618 Walls et al. Jul 2005 B2
6987877 Paz-Pujalt et al. Jan 2006 B2
7058657 Berno Jun 2006 B1
7150116 Barry Dec 2006 B2
7359931 Tarabzouni et al. Apr 2008 B2
7696879 Lange et al. Apr 2010 B2
7881890 McDonnell et al. Feb 2011 B2
8138960 Nonaka et al. Mar 2012 B2
8433457 Garceau et al. Apr 2013 B2
8503794 Omer et al. Aug 2013 B2
8525124 Atwood et al. Sep 2013 B2
9013274 Doany et al. Apr 2015 B2
20020129001 Levkoff et al. Sep 2002 A1
20020134140 Baumoel Sep 2002 A1
20030001556 Doany et al. Jan 2003 A1
20050038825 Tarabzouni et al. Feb 2005 A1
20050156776 Waite Jul 2005 A1
20070055948 Cui Mar 2007 A1
20070265809 McDonnell et al. Nov 2007 A1
20070288159 Skelton Dec 2007 A1
20070297752 Soltysik Dec 2007 A1
20080252449 Colvero et al. Oct 2008 A1
20090004410 Thomson et al. Jan 2009 A1
20100045517 Tucker et al. Feb 2010 A1
20100131185 Morris et al. May 2010 A1
20110181289 Rushing Jul 2011 A1
20110270457 Kreiss et al. Nov 2011 A1
20120066019 Hinshaw et al. Mar 2012 A1
20120303304 Kim et al. Nov 2012 A1
20120305095 Zittrer Dec 2012 A1
20130060520 Amor et al. Mar 2013 A1
20130217440 Lord et al. Aug 2013 A1
20130221091 Koo Aug 2013 A1
20130321131 Tucker et al. Dec 2013 A1
20140125651 Sharp et al. May 2014 A1
20140210947 Finn et al. Jul 2014 A1
20140312115 Hyodo et al. Oct 2014 A1
20140324821 Meiyyappan et al. Oct 2014 A1
20140326507 Spriggs Nov 2014 A1
20140374480 Pollack Dec 2014 A1
Related Publications (1)
Number Date Country
20150213054 A1 Jul 2015 US