The present invention relates to Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI), and more particularly to mapping the generated magnetic field (B0); and correcting inhomogeneity in the generated magnetic field (B0).
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) utilize strong magnets to generate a homogeneous magnetic field (B0) across objects ranging from small sample tubes to the human body (
To overcome these effects, passive iron shims or active B0 correction coils, also known as B0 shims or simply “shims” may be incorporated into the hardware used within the bore of the magnet. Active shims are designed such that each coil generates a unique spatial variation in B0 field, with its overall strength and sign determined by the amount of current applied to the individual coils. When applied to the object, these coils provide small B0 correction fields; either increasing or decreasing the local B0 field strength, so as to make the B0 field across the object more spatially homogeneous. Thus, when the correct set of currents are applied to the individual active shims, the shims generate a spatially varying B0 field distribution matching, but opposite in sign, to the distortions generated by the object and any residual imperfections in the magnet.
Placement of the shims and/or adjustment of the current applied to the active shims is optimally achieved by first accurately characterizing the spatial variation in B0 field across the object by mapping the B0 field. Once this has been accomplished, the amount of current used to drive each of the shim coils can be calculated using calibrated images of the specific B0 fields generated by the individual shim coils. However, this process is dependent upon an accurate mapping of the existing B0 field distribution. Further, for MRI Applications or high throughput NMR applications, it is important to keep the duration of these measurements as short as possible to maximize the available study time for the primary measurements. Thus methods which can enhance the accuracy of the measurement while minimizing the time required to make it are valuable tools for both NMR and MRI applications.
The system and methods of the various embodiments of the invention described below achieve rapid and highly accurate B0 mapping that may be used, for example, to determine the placement of passive shims and/or shim currents for active shims for the purpose of reducing inhomogeneity when using Magnetic Resonance Imaging (MRI) systems. While the below described embodiments refer to MRI systems, it is to be understood that the invention is applicable to other imaging systems known in the art, such as, without limitation, Nuclear Magnetic Resonance (NMR) systems.
In accordance with an embodiment of the invention, a method is presented for mapping and correcting the inhomogeneity of a magnetic field within an object using an Magnetic Resonance Imaging (MRI) system (or NMR system) where there is a single dominant resonance. The method includes acquiring at least three MRI images, each at different echo times (TE). At least two ΔTE images (ΔTEi=1 . . . N) are generated based on the at least three MRI images, wherein the subscripts I=1 . . . N refer to images with sequentially increasing ΔTE times. Aliasing in the ΔTE1 image is permitted. The ΔTE times of ΔTE1 and ΔTE2 are set such that the alias points at which wrapping occurs in ΔTE1 does not overlap with the alias points of ΔTE2. Each ΔTE images is unwrapped. A final B0 map is set to the unwrapped ΔTEN image.
In accordance with related embodiments of the invention, the method may further include determining shim currents and/or passive shims based on the final B0 map, the shim currents for reducing B0 inhomogeneity. The shim currents and/or passive shims may be applied to the sample to reduce B0 inhomogeneity in the sample. The shim currents and/or passive shims may generate a B0 field opposite in sign to the inhomogeneity of the magnetic field.
In accordance with another related embodiment of the invention, the at least two ΔTE images may differ in their echo time (TE) such that the difference in resulting phase (Δϕ) of any two ΔTE images varies according to Δϕ=ΔTE·Δv, where Δv is the difference in frequency at a voxel in the image from a central frequency, and ΔTE is the difference in echo time between any pair of images.
In accordance with yet another embodiment of the invention, unwrapping each ΔTE image to form a final B0 map include: unwrapping aliasing in the ΔTE1 image based on information in the next longest ΔTE image (the ΔTE2 image), to form an unwrapped ΔTE1 image; and using the unwrapped ΔTE1 image to unwrap the next longest ΔTE image (the ΔTE2 image). Unwrapping aliasing in the ΔTE1 and ΔTE2 images may include calculating a logistic temporal unwrapping parameter LTUP, where LTUP images the fractional difference measured between two ΔTE images into a set of values describing the extent of aliasing. Unwrapping each ΔTE image to form a final B0 map may further include, for i=3 to N, using the previously unwrapped ΔTEi-1 image to unwrap the ΔTEi image. Using the unwrapped ΔTE1 image to unwrap the next longest ΔTE image (the ΔTE2 image) may include using a numerical estimate of the difference between the unwrapped value in the ΔTE1 image with values representing different degrees of aliasing in the ΔTE2.
In accordance with still another embodiment of the invention, each of the MRI images may be acquired using gradient echo, asymmetric spin echo, and/or stimulated echo acquisitions. Acquiring each ΔTE image may include a single pattern matching algorithm to simultaneously unwrap each ΔTE images. Acquiring the at least three MRI images may include using simultaneous multi-slice methods, K-space undersampling in the phase encoding direction, and/or use of 2 and 3 dimensional readout trajectories, to decrease acquisition times.
In accordance with another embodiment of the invention, a system is presented for mapping and correcting the inhomogeneity of the magnetic field within an object using Magnetic Resonance Imaging (MRI) where there is a single dominant resonance. The system includes an MRI imaging device for acquiring at least three MRI images, each at different echo times (TE). The MM imaging device includes a controller. The controller is configured to generate at least two ΔTE images (ΔTE1=1 . . . N) based on the at least three MRI images, wherein the subscripts i=1 . . . N refer to images with sequentially increasing ΔTE times; wherein aliasing in the ΔTE1 image is permitted, and wherein the ΔTE times of ΔTE1 and ΔTE2 are set such that the alias points at which wrapping occurs in ΔTE1 does not overlap with the alias points of ΔTE2. The controller is further configured to unwrap each ΔTE image, and set the final B0 map to the unwrapped ΔTEN image.
In accordance with related embodiments of the system, the controller may be further configured to determine shim currents and/or passive shims based on the final B0 map, the shim currents or passive shims for reducing B0 inhomogeneity. The controller may be further configured to apply the shim currents and/or passive shims to the sample to reduce B0 inhomogeneity in the sample. The shim currents and/or passive shims may generate a B0 field opposite in sign to the inhomogeneity of the magnetic field.
In accordance with another related embodiment of the invention, the at least two ΔTE images may differ in their echo time (TE) such that the difference in resulting phase (Δϕ) of any two MRI ΔTE images varies according to Δϕ=ΔTE·Δv, where Δv is the difference in frequency at a voxel in the image from a central frequency, and ΔTE is the difference in echo time between any pair of images.
In accordance with a further related embodiment of the invention, wherein to unwrap each ΔTE image to form a final B0 map, the controller may be configured to: unwrap aliasing in the ΔTE1 image is based on information in the next longest ΔTE image (the ΔTE2 image), to form an unwrapped ΔTE1 image, and use the unwrapped ΔTE image to unwrap the next longest ΔTE image (the ΔTE2 image). To unwrap aliasing in the ΔTE1 and ΔTE2 images, the controller may be configured to include calculating a logistic temporal unwrapping parameter LTUP, where LTUP images the fractional difference measured between two ΔTE images into a set of values describing the extent of aliasing. To unwrap each ΔTE image to form a final B0 map, the controller may be configured, for i=3 to N, use the previously unwrapped ΔTEi-1 image to unwrap the ΔTEi image. To use the unwrapped ΔTE1 image to unwrap the next longest ΔTE image (the ΔTE2 image), the controller may be further configured to use a numerical estimate of the difference between the unwrapped value in the ΔTE1 image with values representing different degrees of aliasing in the ΔTE2.
In accordance with still further embodiments of the invention, the MRI device may acquire each of the MRI images using gradient echo, asymmetric spin echo, and/or stimulated echo acquisitions. To unwrap each ΔTE image, the controller may be configured to use a single pattern matching algorithm to simultaneously unwrap each ΔTE images. The MRI device may be configured to acquire the at least three MRI images using simultaneous multi-slice methods, K-space undersampling in the phase encoding direction, and/or use of 2 and 3 dimensional readout trajectories, so as to decrease acquisition times.
The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
Definitions. As used in this description and the accompanying claims, the following terms shall have the meanings indicated, unless the context otherwise requires:
The term “image” refers to a dataset in which a parameter(s) such as, without limitation, phase, B0 field variation etc. . . . , is provided as a two or three dimensional map reflecting the spatial variation of that parameter.
In illustrative embodiments of the invention, a system and method is provided for mapping and correcting the inhomogeneity of a magnetic field within an object using Magnetic Resonance Imaging (MRI) or Nuclear Magnetic Resonance (NMR) systems. The system and method includes logistical temporal unwrapping that enables the use of longer ΔTE images to unwrap aliasing in the shortest ΔTE image, and utilizes the patterns of aliasing in all images to unwrap the most accurate longer ΔTE image. Aliasing in the shortest ΔTE image is advantageously allowed, minimizing the need to accurately predict the maximum inhomogeneity present. Additionally, the ΔTE values used can lengthen by factors larger than two, enabling greater accuracy with fewer ΔTE images and thus shorter acquisition times. Details are described below.
Performance Considerations for B0 Mapping
B0 mapping is commonly achieved using gradient echo images acquired with two or more different echo times. For samples or tissues with a single dominant resonance (e.g. water) the phase of the acquired images is given by the product of the difference in frequency of the dominant resonance from the carrier frequency (Δv) and the echo time (TE) and a spatially varying constant (ϕ0(r)) dependent on a number of parameters including RF coil system, reconstruction method and other instrumental factors.
ϕ=2π·Δv·TE+ϕ0(r) Eq. 1
Thus the phase difference, Δϕ, between any two images is given by [2], such that the only unknown is the frequency offset Δv.
Δϕ=2π·Δv·ΔTE Eq. 2.
Thus, assuming a single dominant resonance such that the distribution of frequencies in the image are solely related to the distribution of B0 field present, the spatial variation in Δϕ provides a direct measure of the inhomogeneity (ΔB0) present in the sample or tissue.
For a given level of phase noise (∈phase) and constant signal level, the measured phase (Δϕmsd) and true phase (Δϕtrue) and measured (Δvmsd) and true frequencies (Δvtrue) are given by Eqs. 3 and Eq. 4.
Thus the accuracy of the measurement generally increases with increasing ΔTE.
However, since the phase Δϕmsd is periodic, with periodicity 2π, such that for long ΔTEs (i.e. more accurate measurements) if Δvtrue>1/(2·ΔTE) the phase will alias such that the true phase and frequency is given by Eq. 5 and Eq. 6 with n being an integer describing the amount of wrapping.
Thus Δvtrue may not be uniquely determined in the presence of wrapping and noise/uncertainty. Thus the most accurate (longest ΔTE) is prone to large systematic errors due to aliasing. For example,
Methods of Unwrapping
To overcome this limitation two broad methods, spatial and temporal unwrapping have been described to unalias the data. See, for example: Jenkinson, M., Fast, automated, N-dimensional phase-unwrapping algorithm. Magn Reson Med, 2003. 49(1): p. 193-7; Hetherington, H. P., et al., Robust fully automated shimming of the human brain for high-field 1H spectroscopic imaging. Magnetic resonance in medicine, 2006. 56(1): p. 26-33; Robinson, S., H. Schodl, and S. Trattnig, A method for unwrapping highly wrapped multi-echo phase images at very high field: UMPIRE. Magn Reson Med, 2014. 72(1): p. 80-92; Geiger, Y. and A. Tal, Optimal echo times for multi-gradient echo-based B0 field-mapping. NMR Biomed, 2020. 33(7): p. e4316; and Dagher, J., T. Reese, and A. Bilgin, High-resolution, large dynamic range field map estimation. Magn Reson Med, 2014. 71(1): p. 105-17, each of which is incorporated herein by reference in its entirety.
Spatial unwrapping relies on the spatial continuity of the data to identify discontinuities in the B0 data as indicators of aliasing. See Jenksinson et al. These methods perform acceptably under conditions of moderate wrapping (i.e. moderate values of ΔTE), such that the accuracy of the measurements is limited by the LITE used. For temporal unwrapping, multiple ΔTE values are used, with the shortest ΔTE chosen to eliminate aliasing (see Hetherington et al.), i.e. ΔTEmin<1/BWmax=1/(2·|Δvmax|). Under this condition, the values in the shortest ΔTE are used to “correct” aliased values in longer ΔTE images. Unfortunately, if the maximum uncertainty in the shortest ΔTE image ∈max,
where k is a scaling value such that all “outliers” are included, exceeds the bandwidth of the longer ΔTE image (1/ΔTE) the extent of aliasing will be ambiguous. Thus the “longer” ΔTE image cannot use an arbitrarily long ΔTE. For a normal distribution of noise/uncertainty, with
being me standard deviation of the noise/uncertainty in the frequency domain, k would reflect number of standard deviations to account for the maximum noise value present in the sample
To overcome this limitation previously, a multi-ΔTE acquisition used a “boot strap” approach where: 1) the initial ΔTE value is chosen to be sufficiently short to eliminate aliasing; 2) each subsequent ΔTE image uses a factor of 2 in increasing duration and 3) each subsequent ΔTE image is used as the reference image to unwrap the next longest ΔTE image. Thus as the accuracy increases and bandwidth decreases in each subsequent image, the uncertainty in the “reference” ΔTE image decreases preserving the ability to unwrap the data unambiguously. However this method is limited by 1) the requirement to capture all inhomogeneity present (i.e. preclude aliasing) in the shortest ΔTE image and 2) the number of images required to get to arbitrarily long ΔTE values for a desired level of accuracy. These limitations manifest as longer acquisition times (more ΔTE images) for both increasing initial inhomogeneity and final accuracy.
Logistical Temporal Unwrapping
In illustrative embodiments of the invention, logistical temporal unwrapping provides the following unique advantages: 1) aliasing in the shortest ΔTE image is allowed, minimizing the need to accurately predict the maximum inhomogeneity present; and 2) the ΔTE values used can lengthen by factors larger than 2, enabling greater accuracy with fewer ΔTE images and thus shorter acquisition times. This methodology achieves these advantages by 1) using the longer ΔTE images to unwrap aliasing in the shortest ΔTE image and 2) utilizing the patterns of aliasing in all images to unwrap the most accurate image, i.e. the longest ΔTE image.
Unwrapping Aliasing in the Shortest TE Image
Aliasing results in discontinuities in the measured phase at well-defined frequency values in the bandwidth of the measurement. By comparing the measured values in the shortest ΔTE image with that measured in the longer ΔTE images, aliasing can be detected. Specifically a logistic temporal unwrapping parameter (LTUP) can be calculated, which enables the detection of wrapping in the shortest ΔTE image.
LTUP=(Δvshort−Δvlong)/(BWlong/2)
The effects of noise/uncertainty in the measurements is most pronounced at the aliasing points, where a few Hz of “noise” can dramatically change the measured values. For example, for a true value of 250 Hz, if ∈max=10 Hz in the ΔTE=2 ms image, the “true” value will map into a set of values between +240 Hz and +260 Hz. However, due to aliasing this set of true values {240, 244, . . . 260} maps into the values {240, 241, . . . 250, −249, −248, . . . −240}. This is graphically represented in
The non-integral values of LTUP can be addressed by calculating LTUP*, where LTUP*=round(LTUP). After correction for non-integral values, however LTUP*=−5 or +4. Similarly for frequencies within ±∈max of −250 Hz, the LTUP* can take on values of −4 or +5. However, the set of LTUP* values over these two regions are distinct, such that the LTUP* can still be used to determine if the value has aliased or not. For example if the true frequency is 245 Hz, the ±10 Hz limits will place the measured value between 235 and 255 Hz, yielding value of 235 to 250 and −250 to −245 Hz in ΔTE=2 ms image with two possible LTUP* values, +4 and −5. This range of values in the ΔTE=2 ms image could also have been generated by a true frequency of −255 Hz, with LTUP* values of −4 and +5. Outside of the potential aliasing regions, the calculated LTUP* values for the extremes of uncertainty in the ΔTE=2 ms image are coincident (
Unwrapping the ΔTElong Image
Once the ΔTE=2 ms image has been unwrapped and Δvshortunwrap is outside of ±∈2 (the uncertainty/noise), of the alias point of the image±1/(2ΔTElong), Δvlongmsd can also be unwrapped.
Δvshortpotential(n)=Δvlongmsd+n(1/ΔTElong) where n=0,±1,±2,±3,±4 Eq. 8
forming the pairs
{(Δvshortpotential(−4),Δvlongmsd) . . . (Δvshortpotential(0),Δvlongmsd) . . . (Δvshortpotential(+4),Δvlongmsd)}
Thus the unwrapped value ΔTE=9 ms image, Δvlongunwrap, is achieved by selecting the nth pair of values, minimizing εshort(n) where
εshort(n)=|Δvshortpotential(n)−Δvshortunwrap|. Eq. 9
However, if the value of Δvlongmsd is within ±∈long (the uncertainty/noise) of the alias point of the image±1/(2ΔTElong), “false” aliasing due to noise may have occurred. If “false” aliasing due to noise does occur, εshort(n) will be larger than ∈short, the uncertainty in the ΔTEshort image. In this case the value Δvshortunwrap is used for Δvlongunwrap at this location to unwrap the ΔTElong image.
Alternatively, the process of unwrapping can be more generally viewed from the perspective of pattern matching, i.e. the finding the best numerical agreement between pairs of measured values (i.e. {(Δvshortmsd, Δvlongmsd)} and then sets of theoretical potential pairs i.e. {(Δvshortpotential(n), Δvlongpotential(n)), . . . } of values, where the number of pairs is dependent upon the extent of aliasing and maximum bandwidth.
Thus, in general, in the presence of noise or uncertainty in the ΔTElong image, unambiguous unwrapping can be achieved if uncertainties in the frequency region about the alias points in the image are spanned by continuous sets of differing values from the ΔTEshort image. Continuity of these values in the ΔTEshort image is achieved when the specific ΔTE values for both the ΔTEshort and ΔTElong images are chosen such that the alias points±∈max do not overlap. Once the ΔTEshort image is unwrapped, the ΔTElong image can be unwrapped.
As described, we have allowed for noise and uncertainty in the ΔTEshort image but not the ΔTElong image(s). The presence of noise or uncertainty in the ΔTElong image pixels with true values near the alias points of the ΔTElong image can result in multiple LTUP* values. To unalias the ΔTEshort image the regions of uncertainty about the alias points in the short ΔTE image are extended by the noise in the ΔTElong image, i.e. ∈max=∈shortmax+∈longmax. As long as these bands, alias points±∈max, are within the continuous region of the ΔTElong image, the ΔTEshort image can be unaliased as described previously (see
Creating Very High Accuracy Maps with Additional ΔTE Images.
As described, we have utilized 2 ΔTE images (ΔTE1=ΔTEshort, ΔTE2=ΔTElong) to generate a B0 map. However, the ΔTE times chosen are limited by the maximum bandwidth of the sample, the aliasing patterns and the uncertainty in the individual ΔTE maps. Thus in general arbitrarily long ΔTE times for very high accuracy may not be possible under conditions of significant uncertainty and large sample bandwidth. To overcome this limitation additional ΔTE times (ΔTE3, ΔTE4, . . . ) can be acquired with increasing length. Each additional ΔTE image then forms a new “pair” of images, with the long ΔTE image from the previous pair (e.g. ΔTE2) now serving as the short ΔTE image and the new image (e.g. ΔTE3) serving as ΔTElong. Since the new ΔTEshort image has already been unwrapped the requirement for non-overlapping alias point regions, can be relaxed, and the new ΔTE chosen must only satisfy the criteria that the maximal uncertainty in the new pair of images (e.g for (ΔTE2, ΔTE3), ∈max=∈2max+∈3max, be less than the bandwidth of the new ΔTE image, (e.g. 1/ΔTE3). Thus the process becomes recursive for each ΔTE image. Notably, as described previously, the multiplicative factor used in increasing the length of subsequent ΔTE times is not constrained by a factor of 2, but rather the actual noise/uncertainty in the images. This allows for very efficient increases in accuracy per additional ΔTE image acquired. At some point, the noise/uncertainty in the longer ΔTE image may not decrease inversely with increasing duration.
Illustratively, the following is a more specific algorithm for unwrapping and setting of the final B0 map, in accordance with an embodiment of the invention.
Embodiments of the invention may be located implemented in part in any conventional computer programming language. For example, preferred embodiments may be implemented in a procedural programming language (e.g., “C”) or an object oriented programming language (e.g., “C++”, Python). Alternative embodiments of the invention may be implemented as pre-programmed hardware elements, other related components, or as a combination of hardware and software components.
Embodiments also can be implemented in part as a computer program product for use with a computer system—for example, the controller of the MRI system described above. Such implementation may include a series of computer instructions fixed either on a tangible medium, such as a computer readable medium (e.g., a diskette, CD-ROM, ROM, or fixed disk) or transmittable to a computer system, via a modem or other interface device, such as a communications adapter connected to a network over a medium. The medium may be either a tangible medium (e.g., optical or analog communications lines) or a medium implemented with wireless techniques (e.g., microwave, infrared or other transmission techniques). The series of computer instructions embodies all or part of the functionality previously described herein with respect to the system. Those skilled in the art should appreciate that such computer instructions can be written in a number of programming languages for use with many computer architectures or operating systems. Furthermore, such instructions may be stored in any memory device, such as semiconductor, magnetic, optical or other memory devices, and may be transmitted using any communications technology, such as optical, infrared, microwave, or other transmission technologies. It is expected that such a computer program product may be distributed as a removable medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the network (e.g., the Internet or World Wide Web). Of course, some embodiments of the invention may be implemented as a combination of both software (e.g., a computer program product) and hardware. Still other embodiments of the invention are implemented as entirely hardware, or entirely software (e.g., a computer program product).
Although various exemplary embodiments of the invention have been disclosed, it should be apparent to those skilled in the art that various changes and modifications can be made which will achieve some of the advantages of the invention without departing from the true scope of the invention.
This application claims priority from U.S. Provisional Patent Application 63/116,551, filed Nov. 20, 2020, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/060118 | 11/19/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2022/109287 | 5/27/2022 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20080258725 | Hetherington et al. | Oct 2008 | A1 |
20140375318 | Dagher et al. | Dec 2014 | A1 |
20150355306 | Stemmer | Dec 2015 | A1 |
20190128991 | Shirai et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
WO-02082994 | Oct 2002 | WO |
Entry |
---|
English translation of WO U.S. Appl. No. 02/082,994. 2023 (Year: 2023). |
Robinson, Simon, Horst Schödl, and Siegfried Trattnig. “A method for unwrapping highly wrapped multi-echo phase images at very high field: UMPIRE.” Magnetic resonance in medicine 72.1 (2014): 80-92. (Year: 2014). |
Juchem, Christoph, et al. “B0 shimming for in vivo magnetic resonance spectroscopy: experts' consensus recommendations.” NMR in Biomedicine 34.5 (Jun. 28, 2020): e4350. (Year: 2020). |
International Searching Authority—International Search Report, pertaining to International Application No. PCT/US2021/060118 dated Feb. 8, 2022, together with the Written Opinion of the International Searching Authority, 12 pages. |
Dagher et al., “High-resolution, large dynamic range field map estimation,” Magn Reson Med. 71(1):105-117, DOI: 10.1002/mrm.24636 (2014), 24 pages. |
Geiger et al., “Optimal echo times for multi-gradient echo-based B0 field-mapping,” NMR in Biomed, 33(7):e4316, DOI: 10.1002/nbm.4316 (2020), 17 pages. |
Hetherington et al., “Robust fully automated shimming of the human brain for high-field 1H spectroscopic imaging,” Magnetic Resonance in Medicine 56:26-33, DOI: 10.1002/mrm.20941 (2006), 8 pages. |
Jenkinson, M., “Fast, automated, N-dimensional phase-unwrapping algorithm,” Magnetic Resonance in Medicine 49:193-197 (2003), 5 pages. |
Number | Date | Country | |
---|---|---|---|
20230324490 A1 | Oct 2023 | US |
Number | Date | Country | |
---|---|---|---|
63116551 | Nov 2020 | US |