Mapping Long?range Allosteric Pathways in CRISPR?Cas9

Information

  • Research Project
  • 10350163
  • ApplicationId
    10350163
  • Core Project Number
    P20GM109035
  • Full Project Number
    5P20GM109035-05
  • Serial Number
    109035
  • FOA Number
    PAR-14-035
  • Sub Project Id
    9784
  • Project Start Date
    3/1/2020 - 4 years ago
  • Project End Date
    8/3/2021 - 2 years ago
  • Program Officer Name
    MATUKUMALLI, LAKSHMI KUMAR
  • Budget Start Date
    3/1/2020 - 4 years ago
  • Budget End Date
    2/28/2022 - 2 years ago
  • Fiscal Year
    2020
  • Support Year
    05
  • Suffix
  • Award Notice Date
    9/17/2021 - 2 years ago
Organizations

Mapping Long?range Allosteric Pathways in CRISPR?Cas9

Gene regulatory mechanisms are critical for proper cellular and protein function, and modern molecular biology has linked numerous pathologies to dysregulation of these processes. Although modification of the genome to correct pathogenic mutations is a promising therapeutic approach, these efforts cannot be successful without knowledge of the underlying biochemistry of protein machinery such as CRISPR-Cas9 (Cas9). Cas9 can be a customizable tool to edit and correct disease-linked (genomic) mutations, however, to fully realize these applications, novel strategies to overcome its off-target effects and poor temporal control must be investigated. Cas9 utilizes a guide RNA molecule to recruit, stabilize, and facilitate cleavage of double-stranded DNA after recognition of a well-known protospacer adjacent motif (PAM) sequence. Prior X-ray crystal structures indicate that conformational changes within the Cas9 nucleases, HNH and RuvC, are required for effective catalytic function. However, these structures offer little mechanistic information, as the target DNA and catalytic nucleases are never observed in an activated state. The conformational shift of HNH, in particular, is correlated to motions of neighboring subdomains, all of which are activated from >20 Å away by the PAM-binding domain, suggesting an allosteric mechanism. Understanding this allosteric coupling would have exciting potential for precision medicine by establishing novel paradigms to control and enhance the spatial and temporal function of Cas9. We recently identified a pathway of millisecond timescale motions spanning the HNH nuclease and reaching multiple Cas9 domains that computational results suggest is a portion of a larger allosteric network that controls Cas9 function. To investigate the reach of this allosteric network and the role of molecular motions in its mechanism, my laboratory will undertake a synergistic solution NMR and computational study to map the longrange allosteric pathway of Cas9. We will (1) characterize the molecular determinants of protein motions in the HNH nuclease, (2) establish the biophysical roles of the neighboring REC2 and REC3 domains in Cas9 signal transduction and (3) characterize the interaction of the PAM sequence with its binding domain to evaluate its role as an allosteric activator. Specifically, this multidisciplinary approach of NMR spin relaxation experiments and molecular dynamics, network theory, and Eigenvector Centrality simulations will probe differential protein motions in Cas9, revealing specific amino acids responsible for transmitting structural or dynamic information to affect biological response. These studies will use both full-length Cas9 and novel engineered constructs to interrogate specific domains within the 160 kDa enzyme. The structural and dynamic findings of this work will be correlated to function with biochemical and cellular assays to provide a detailed understanding of the Cas9 allosteric mechanism.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    P20
  • Administering IC
    GM
  • Application Type
    5
  • Direct Cost Amount
    164290
  • Indirect Cost Amount
    101575
  • Total Cost
  • Sub Project Total Cost
    265865
  • ARRA Funded
    False
  • CFDA Code
  • Ed Inst. Type
  • Funding ICs
    NIGMS:265865\
  • Funding Mechanism
    RESEARCH CENTERS
  • Study Section
    ZGM1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    BROWN UNIVERSITY
  • Organization Department
  • Organization DUNS
    001785542
  • Organization City
    PROVIDENCE
  • Organization State
    RI
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    029129002
  • Organization District
    UNITED STATES