Not applicable.
The present invention relates to a microfluidic system for the manipulation of liquid droplets, and, more particularly, to a digital microfluidic system for the ultra-low voltage manipulation of liquid droplets for microfluidic applications.
Digital microfluidic systems have been developed in the past decade to generate and manipulate discrete droplets of liquids for biomedical applications. By manipulating liquids at a droplet scale, these systems can handle samples and reagents with lower cost and shorter time for analysis by using smaller devices. At the microscale, droplet behavior is dominated by surface forces (e.g., surface tension or Laplace pressure) rather than body forces (e.g., gravity) due to high surface area-to-volume ratios. For example, droplet manipulation has been demonstrated on individual addressable control electrodes using the electrowetting-on-dielectric effect (“EWOD”) to generate net electromechanical force. An example of such droplet manipulation is described in the journal article by Sung Kwon Cho, Hyejin Moon, and Chang-Jim Kim, titled Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits, published in the Journal of Microelectromechanical Systems, Vol. 12, No. 1, February 2003 (hereinafter, the “Cho et al. Article”), which is incorporated herein by reference in its entirety.
Electrostatic actuation schemes such as those described in the Cho et al. Article typically require relatively high driving voltages (e.g., 15-80 V) to manipulate liquid droplets. Such high voltage requirements have been major obstacles for clinical applications that demand portability and rapid diagnosis, and where lower voltages are desirable to promote efficient EWOD applications. In addition, the high electric fields used to achieve the electrowetting effect can cause electrolysis of the working fluid in lab-on-a-chip applications. Even using high-κ dielectric materials and conductors such as indium tin oxide (“ITO”), driving voltages in the range of tens of volts are still required to effect the manipulation of fluid droplets. Therefore, it would be desirable to have lab-on-a-chip devices that are operable at, for example, the voltages which can be obtained from commercial-standard 1.5 V AA batteries.
In one aspect, the present invention provides ultra-low voltage microfluidic devices for manipulating droplets of liquid using voltages having a magnitude of about 1 V or less. The microfluidic device includes a patterned substrate having a plurality of smart-polymer electrodes, each of which has a film of smart polymer exposed at its surface. In some embodiments, the smart-polymer electrodes are proximate one another and separated by electrical insulators. In some embodiments, the smart polymer is made so that its surface will become hydrophobic or hydrophilic in response to different electromagnetic potentials applied to the smart-polymer film. In some such embodiments, the smart polymer is reversibly oxidized by applying an electrical potential such that the smart polymer acquires a positive electrical charge. In some such embodiments, the oxidized smart polymer is reduced by applying a different electrical potential such that it loses its positive electrical charge. In some such embodiments, the smart polymer is doped with an amphiphilic chemical compound having a negatively-charged end and a long-chain hydrophobic tail. In some such embodiments, the smart polymer is a polypyrrole and the dopant is a dodecylbenzene sulfonate.
In some embodiments, the microfluidic device includes a plurality of individually-addressable electrically-conductive control electrodes, each of which is in electrical communication with at least one of the smart-polymer electrodes. In such embodiments, the control electrodes are arranged such that applying an electrical potential to a control electrode causes the electrical potential to be applied to the smart-polymer film. In some such embodiments, the control electrode is substantially coextensive with the smart-film, and separated from other control electrodes by an insulator.
In some embodiments, the microfluidic device includes means for selectively and individually applying electrical potentials to the control electrodes. In some such embodiments, the means includes a voltage source, electrical connectors to the control electrodes, and switching means for selectively connecting the voltage source to the electrical connectors, and thus to the control electrodes.
In another aspect, the present invention provides methods for manipulating droplets by inducing Marangoni stress in the individual droplets using microfluidic devices of the same general type described above. In some embodiments, the method includes the steps of placing a droplet on a surface of a smart-polymer film, then applying an electrical potential to the smart-polymer film to create a surface tension gradient across the contact line between the droplet and the smart polymer film, thus inducing Marangoni stress in the droplet. By manipulating the electrical potential, and thus the Marangoni stress, the droplet can be transported along adjacent smart-polymer films. By selectively and sequentially applying electrical potentials to the smart-polymer electrodes, droplets may be transported, cut into smaller droplets, or mixed with each other. In some such embodiments of the method, applying the electrical potential oxidizes the smart polymer, such that it acquires a positive charge. In some such embodiments, a dopant in the polymer, having a negatively-charged end and a long-chain hydrocarbon tail, orients such that the hydrocarbon tail is directed to the surface of the smart-polymer film, causing the surface to become hydrophobic. In some such embodiments, a second electrical potential reduces the oxidized smart-polymer, such that it loses its positive charge. Such a change in the state of the smart polymer causes the dopant to orient itself with the negatively-charged end near the surface of the smart-polymer film, causing the surface to become hydrophilic.
For a more complete understanding of the present invention, reference is made to the following detailed description of an exemplary embodiment considered in conjunction with the accompanying drawings, in which:
The Marangoni effect is the mass transfer along an interface between two fluids (e.g., an electrolytic bath and a droplet of immiscible liquid within the bath) due to a surface tension gradient. Since a liquid with high surface tension pulls more strongly on the surrounding liquid than one with a low surface tension, the presence of a gradient in surface tension causes the liquid to move away from a region of low surface tension to a region of high surface tension. The induced force at the liquid-liquid interface is the so-called Marangoni stress.
The present invention provides a microfluidic system that enables the operation of microfluidic devices at low voltages, such as those which can be provided by commercial-standard 1.5 V batteries, using the Marangoni effect to induce Marangoni stress between adjacent electrodes comprising a smart polymer. Certain embodiments of the present invention can be substituted for those employing the existing electrowetting-on-dielectric (EDOW) technique, as well as for other conventional microfluidic systems. Such embodiments of the present invention provide controlled manipulation of liquid droplets by inducing Marangoni stress through local reduction of the smart polymer. In contrast, prior art devices, such those described in the Cho et al. Article (see Background of the Invention, above) use polymers, such as Teflon®, that are difficult to reduce locally, or may not be reduced at all at the low voltages employed in embodiments of the present invention.
For the purpose of the present disclosure, a “smart polymer” is a high-performance polymer that reversibly changes its properties according to its environment. For example, polypyrrole (PPy), which is the exemplary smart polymer discussed herein, is sensitive to an electrical field and can respond in various ways, such as by reversibly oxidizing or by altering its color, volume and/or surface wettability.
The exemplary PPy electrodes discussed herein are doped with dodecylbenzenesulfonate (DBS) to form a PPy(DBS) complex, which may be locally-reduced at low voltages to change the surface energy of the electrodes. In an embodiment of the present invention, PPy can be formed by oxidation of a pyrrole monomer at a suitable anode within an electrolyte environment, where DBS is the electrolyte. Upon application of a positive potential, an insoluble, electrically-conducting polymer material (i.e., PPy(DBS)) is deposited at the anode. Since the PPy is oxidized, the DBS anions in the electrolyte are incorporated into the film to maintain charge neutrality. Thus, the PPy is “doped” with DBS. In other embodiments of the present invention, other amphiphilic compounds having hydrocarbon tails may be used in place of DBS. In embodiments where the smart polymer acquires a negative charge, a dopant having a positively-charged end may be used in place of a dopant having a negatively-charged end.
The tunable wetting of PPy(DBS) in embodiments of the present invention permits liquid droplet manipulation at very low voltages (e.g., in a range of about −0.9V to 0.6V). The surface energy of PPy(DBS) is changed via re-orientation of DBS in PPy(DBS) through the application of reductive electrical potentials. When a reductive potential is applied to a first electrode made of a smart polymer that is adjacent to a second electrode of the smart polymer upon which a liquid droplet resides, a dissimilar surface state is created between the first and second electrodes to induce a surface tension gradient (i.e., Marangoni stress). The electrically-triggered surface tension gradient is utilized to manipulate liquid droplets. The actuation mechanism utilized to manipulate liquid droplets is described in detail hereinbelow:
Hereinafter, the exemplary electrodes comprising smart polymer will be referred to as PPy(DBS) electrodes to distinguish them from other types of electrodes that may be included in the device. For example, in microfluidic devices made and operated according to embodiments of the present invention, the PPy(DBS) electrodes are in electrical communication with other electrodes that transmit electrical force from the voltage source to the PPy(DBS) electrodes. Such other electrodes are referred to hereinafter as addressable control electrodes.
Referring to
Referring to
Referring to
Referring to
In contrast to the separate measurement of the intrinsic wetting states of DCM droplets for each of the above redox states 58, 74, “continuous” electrochemical tuning is performed by applying a square pulse potential to the PPy(DBS) substrate to instigate DCM droplet behavior. Without being bound by theory, droplet actuation according to embodiments of the present invention is believed to proceed as described hereinbelow.
Referring to
Continuing to refer to
It should be noted that PPy(DBS) changes color upon reduction and oxidation, providing further evidence of the above theory. A thin PPy(DBS) film (<1 μm) on a gold substrate has a brown color in the reduced state while it is dim/dark in the oxidized state. During reduction of a PPy(DBS) film (not shown) having a DCM droplet thereupon, the PPy(DBS) film was observed to change color across the contact line. This indicated that the circular area of PPy(DBS) underneath the DCM droplet was in the oxidized state while the PPy(DBS) outside of the contact line was in the reduced state. Since reduced PPy(DBS) possesses higher surface energy, this observation of color change clearly illustrated the surface tension gradient across the contact line.
Referring to
It should be noted that the present invention can have numerous modifications and variations. For instance, smart polymer-based droplet manipulation can benefit any device designed to utilize digital microfluidics techniques at ultra-low voltages. Besides the exemplary applications described hereinbelow, smart polymer-based droplet manipulation provides the potential for many novel device applications involving tunable wetting properties.
Referring to
Continuing to refer to
Referring to
It will be understood that the embodiment described herein is merely exemplary and that a person skilled in the art may make many variations and modifications without departing from the spirit and scope of the invention. For instance, all such variations and modifications are intended to be included within the scope of the invention, as described in the claims presented below.
The present application claims benefit of U.S. Provisional Patent Application No. 61/470,157, filed on Mar. 31, 2011, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61470157 | Mar 2011 | US |