The disclosure relates to games and more particularly to modular games involving spherical rolling objects. A ball racing toy and construction toy utilizing flat sheets of plastic, cardboard, or composites in designs that can support a dual marble racing experience. The disclosure further relates to building toys, and more specifically, kits for designing, building and using marble run tracks and structures.
Marble rolling toys are generally small, tabletop assemblies whereby a single marble run is completed in about 30 seconds or less. This illustrates a notable problem with these types of assemblies—short run times. Longer assemblies are needed. Longer marble runs, however, are costly and require extensive material and time to build a support structure to achieve the higher elevations needed to effectuate such gravity-driven assemblies.
Relatively tall marble runs are generally skeleton structures with few solid surfaces. The application of solid surfaces would provide an aesthetically pleasing improvement. An additional problem is the difficulty and cost to build marble runs with more than one track, especially two separate tracks to create a competition. A double marble run with continuous parallel “lanes” is an excellent racing adventure unavailable for large toys. Because of the twists and turns incorporated into marble run tracks, it is difficult to structure the tracks to be equal in length and function. If two tracks are positioned side by side, one track will inevitably be favored if it is the outside track at turns due to the favorable transfer of speed of a larger diameter turn.
A further problem has to do with the surfaces used to construct and assemble a gravity-driven marble track run. A table top is an obvious choice, but one with immediate limitations because of the dimensional limitations of a table and the fact that a table is a flat surface. Any marble track constructed on a table will require support structures to elevate and grade the track to enable gravity to propel marbles along the track. For surfaces such as staircases that have multi-level, vertically-arranged sections well suited for facilitating gravity-driven movement of marbles or other spherical bodies, marble tracks or runs are not easily integrated into such large structures with vertically-cascading support surfaces, i.e., stair treads and risers.
A yet further problem is the weight associated with large structures. For every incremental increase in the height of a track, additional vertical support structures of incrementally-increasing length will be needed. Lateral supports also will be needed to stabilize the vertical support structures to guard against lateral displacement of the vertical supports and the attached track segments. The more structural supports needed, the larger the shipping containers needed.
The weight of the tracks themselves is potentially another problem. The longer and the higher a track is constructed, the heavier the track will be. The weight of the individual components can become an issue as a track length increases. What is needed is lightweight materials to construct longer, multi-tiered tracks to improve the entertainment factor of the marble-running track without compromising the structural integrity of the track.
Yet another problem is the use of walls to support elevated portions of a marble run track. Anything used to adhere or affix track components to a wall, e.g., adhesives and nails/screws), can ultimately damage the wall. What is needed is a means to construct a multi-tiered marble run track with wall support that does not damage wall surfaces. These and other objects of the disclosure will become apparent from a reading of the following summary and detailed description of the disclosure.
In one aspect of the disclosure, to achieve the solutions provided by the disclosure, flat sheets of material are manipulated into interlocking 3-D structures to form the components of a marble run track. By use of symmetrical, light-weight sheets, the sheets essentially can be rolled to form symmetrical dual-track sections. The light-weight characteristic of the material permits the assembly of large circuitous, multi-level tracks that can be supported with simple light-weight support structures.
In another aspect of the disclosure, sheets can be modified to create specialty tracks such as twists, spirals and loops to add heightened entertainment features to the dual-track structure. Single or multiple sheet sections can be used to create the specialty track sections.
In another aspect of the disclosure, track section connectors provide a means to releasably lock adjacent sections of track together to form an open (start to finish) or closed circuit, i.e., one that permits continual play by elevating the marbles from a finish line to a start line. For an open circuit, a marble transport section permits marbles to be delivered onto the tracks for racing. The track section connectors are constructed in a variety of configurations to permit the application of illustratively turns, twists, inversions and elevational changes to add further entertainment value to the dual-track racing game.
In a further aspect of the disclosure, elevational support structures and/or suspension elevation support structures permit track sections to be elevated from a base surface, or from an elevated surface, respectively, to create elevational grading of segments of assembled tracks to harness gravitationally-driven inertia of the spherical objects placed on the tracks. This permits locomotion of the objects without the need of any accessory energy-producing elements such as transformers. The track assemblies can be assembled in multiple configurations including configurations mimicking Christmas trees. These and other aspects of the disclosure will become apparent from a review of the appended drawings and a reading of the following detailed description of the disclosure.
Referring now to
Due to the manner in which the dual-track segment is assembled, the number of slots 16 is equal to the largest number of tabs 14 on either side of sheet 12. This ensures there is a slot for every tab. For dual-track segments such as dual-track segment 10, each slot 16 is dimensioned to receive two tabs 14, one from each side 20 of sheet 12. By aligning opposing tabs 14 and slots 16 along the same lateral axes, a uniform, symmetrical dual-track segment can be assembled from sheet 12.
As shown in
To maintain tabs 14 in slots 16, a number of structural embodiments are available as more particularly described herein and shown in
In a further embodiment, tab 14 is formed with an enlarged distal end 15 that gives tab 14 a “T” shape with the top cross element of the “T” being dimensionally larger than slot 16. With this embodiment, the T-shaped tab is urged into slot 16 with the top cross element inserted at an angle with one end inserted first. Due to the flexible nature of the sheet material, the cross element can be distorted to fit through slot 16 and then reform into its original shape due to material memory. The “T” tab and slot configuration essentially creates an interference fit to releasably lock the tab to the slot. To further secure the tab/slot combination, an elastomeric member such as a rubber band 17 or clip 19 can be used to engage the vertical element of the “T” to lock in the connection as shown in
Referring specifically to
Referring now to
Sheet 12′ has substantially parallel sides 20′ and parallel ends, leading end 21′ and trailing end 23′. A plurality of tabs 14′ extend laterally from sheet 12′ and occupy substantially the same plane as sheet 12′. A plurality of corresponding slots 16′ are formed on either side of a centerline 26′ of sheet 12′. Each slot 16′ is laterally aligned with its corresponding tab 14′. Slots 16′ are dimensioned to receive tabs 14′ in a mechanical interlocking arrangement, the same as disclosed for the tab and slot combinations of dual-track segment 10. The means for assembling dual-track segment 10′ are the same as used for dual-track segment 10 with the exception that opposing tabs 14′ do not share slots 16′. Because of the spacing of the slots about centerline 26′, the inner walls of tunnels 22′ and 24′ are spaced apart as shown in
Referring now to
Referring now to
In a related embodiment, a plurality of short retaining clips 28 can be secured to a bottom surface of sheet 12″ with mechanical fasteners 33 or adhesives as shown in
Referring now to
Referring now to
Referring now to
Referring now to
In a related embodiment (not shown), a retaining clip 28 is used to secure the registered sections 13VI together by sliding the registered sections 13VI in between the tines of clip 28. This creates two uniform, substantially square (in cross-section) and substantially parallel tunnels: a left tunnel track 22VI and a right tunnel track 20VI. It should be understood that other cross-sectional shapes are possible by changing the number of creases formed in sheet 12VI without departing from the scope of the disclosure.
Referring now to
Referring now to
Referring now to
Referring now to
To assemble twist dual-track segment 50, sides 60 are rolled to centerline and tabs 54 are inserted into their laterally-aligned, corresponding slots 56. In this manner, laterally-aligned opposing tabs 54 come into registration inside slots 56. The tabs are secured in the slots with any of the methods disclosed herein. Due to the unique geometry of the starting sheet 52, the inlet of the twist dual-track segment is oriented via a 90° shift relative to the segment's outlet as shown in
Referring now to
To assemble straight dual-track segment 10IX, sides 20IX of one of the sheets 12IX are rolled until the opposing sides are aligned vertically with the tines of one set of the fixed binder clips. The opposing sides are inserted into the vertically-oriented tines to secure the sheet and form a track tunnel as shown in
Referring now to
To assemble straight triple-track segment 10X, a first sheet 12X is rolled until sides 20X are aligned with two adjacent sets of tines. Each side is inserted into a dedicated single tine set to lock sheet 12X in a tunnel formation. A second sheet 12X is rolled until sides 20X are aligned with two adjacent sets of tines, one of which will be occupied by one of the sides of the first sheet. Each side of the second sheet is inserted into a dedicated single tine set to lock second sheet 12X in a tunnel formation. A third sheet 12X is rolled until sides 20X are aligned with two adjacent sets of tines, each of which will be occupied by one of the sides of either the first sheet or the second sheet. Each side of the third sheet is inserted into a dedicated single tine set to lock third sheet 12X in a tunnel formation. Once all the sheets are properly secured in the three-part retaining clip 28X, each tine set will be occupied or will retain two sides of adjacent sheets 12X. The tunnels will be tear-shaped or circular in cross-section as shown in
Referring now to
Referring now to
Referring now to
To assemble straight double-track segment 10XIII, a first sheet 12XIII is rolled until sides 20XIII are aligned with two adjacent sets of tines where the tine set is oriented 90° apart. Each side of the first sheet is inserted into a dedicated single tine set to lock sheet 12XIII in a tunnel formation. A second sheet 12XIII is rolled until sides 20XIII are aligned with two adjacent sets of tines, one unoccupied and one occupied by one of the sides of the first sheet. Each side of the second sheet 12XIII is inserted into a dedicated single tine set to lock second sheet 12XIII in a tunnel formation. Once the two sheets are properly secured in the three-part retaining clip 28XIII each tine set 180° apart will be occupied or will retain only one side of one sheet 12XIII. The tine set oriented 90° from the other two sets will be occupied by two sheet sides, one from each sheet. The tunnels will be tear-shaped or circular in cross-section as shown in
Referring now to
Referring now to
To assemble straight dual-track segment 10XV, sides 20XV of one of the sheets 12XV are rolled until the opposing sides are aligned horizontally with the tines of one set of the fixed binder clips. The opposing sides are inserted into the left-facing, horizontally-oriented tines, each side inserted into a dedicated tine set to secure each side separately and form the sheet into a track tunnel as shown in
Referring now to
To assemble straight dual-track segment 10XVI sides 20XVI of one of the sheets 12XVI are rolled until the opposing sides are each aligned relatively horizontally with the tines of one set of the left-facing fixed binder clips. The opposing sides are inserted into the left-facing tine sets, each side inserted into a dedicated tine set to secure each side separately and form the sheet into a track tunnel as shown in
Referring now to
To assemble straight dual-track segment 10XVII, sides 20XVII of one of the sheets 12XVII are rolled until the opposing sides are each aligned and in registration. The opposing sides are inserted together in registration or separately into the same first set of tines to secure the first sheet into a track tunnel formation. Sides 20XVII of a second 12XVII are rolled until the opposing sides are each aligned and in registration. The opposing sides are inserted together in registration or separately into the same second set of tines to secure the second sheet into a track tunnel formation. The same procedure is followed for a third sheet and a fourth sheet to form track tunnels. The third sheet is secured by a third tine set and the fourth sheet is secured by a fourth tine set as shown in
Referring now to
Referring now to
Due to the manner in which the dual-track segment is assembled, the number of slots 16XIX is equal to the largest number of tabs 14XIX on either side of sheet 12XIX This ensures there is a slot for every tab. For dual-track segments such as dual-track segment 10XIX, each slot 16XIX is dimensioned to receive two tabs 14XIX one from each side 20XIX of sheet 12XIX. By aligning opposing tabs 14XIX and slots 16XIX along the same lateral axes, a uniform, symmetrical dual-track segment can be assembled from sheet 12XIX. To assemble straight, dual-track segment 10XIX is assembled in the same manner as described and shown for straight, dual-track segment 10.
Referring now to
Referring now to
As should be understood, this joinder method is applicable to any of the dual-track segments and specialty segments disclosed herein that have an inner double wall and which include a center tab/slot configuration or include a central binding bar configuration or include a central binding bar configuration with the absence of the binding bar. For track segments formed with binding bars, the amount of insertion of a sheet's sides into the tines of the binding bars can be varied to vary the overall diameter of the tunnels formed. For smaller diameter tunnels, the sheet sides are inserted into the binding bars until they register against the binding bar spines. For larger diameter tunnels, the sides can be backed off the spines but retained between the tines to create the larger diameter tunnels.
Referring now to
Connector 40 further includes a center support wall 44 extending vertically from the junction of base sections 42. Two connection segment side walls 46 extend vertically from opposite lateral edges of base sections 42 and are substantially parallel with center support wall 44. Side walls 46 rigidify the ends of attached dual-track segments in combination with base sections 42. As shown, center support wall 44 is higher than side walls 46. It should be understood that the heights of the walls can be equal or offset with the center wall or one or both of the side walls set at different relative heights.
Extending upwardly from support wall 44 is a track support post 70. Post 70 is shown to have a cylindrical shape. It should be understood that the shape of the post can conform to any regular or irregular geometric shape and remain within the scope of the disclosure.
To lock dual-track segments to connector 40, a series of locking tabs positioned on center support wall 44 and side walls 46 releasably secure the dual-track segments to the connector. Two pairs of center support wall locking tabs 48 extend inwardly toward each track tunnel from the support wall 44. The tabs may or may not occupy the same plane with each tab pair extending from opposite sides of support wall 44 with each pair positioned at opposite ends of the support wall.
Extending inwardly from each top end of each side wall 46 is a side wall locking tab 50. Each side wall locking tab 50 faces one of the support wall-locking tabs 48. This orientation of the locking tabs is set to correspond to the location of through-bores 18. To secure dual-track segments to connector 40, an end of a first dual-track segment is urged onto a first end of base sections 42 by placing the corresponding through-bore 18 over the track support post 70. At the same time, the sides of the dual-track segment are pinched inwardly to allow the leading edge of the track segment to pass over locking tabs 48 and 50. Once the locking tabs are aligned with the corresponding through-bores 18, the pinching pressure is released to allow the dual-track segment side walls expand. This results in the locking tabs entering into through-bores 18 to lock the dual-track segment to connector 40. By positioning locking tabs 48 and 50 opposite one another, the dual-track segment and connector 40 are locked into a three-dimensional orientation. A second dual-track segment is secured to a second end of connector 40 by using the same procedure used to secure the first dual-track segment to connector 40.
The locking of the dual-track segment to connector 40 does not require all of the five connections described above (post 70, locking tabs 48, and the two locking tabs 50). The post may be removed and/or some or all of the locking tabs may be removed. One illustrative combination is to remove the two locking tabs 48 and utilize only post 70 and two locking tabs 50, to provide a three-point stable connection to three separate through-bores. This illustrative locking configuration as well as other segment/connector locking combinations apply to all of the locking configurations for locking together track segments and other elements, e.g., curve connectors, switch connectors, etc., disclosed herein.
Referring now to
First inner base section 61 has a track-receiving tab 63 extending axially from each end and coplanar with the antapex or lowest point of the rounded base section. Second outer base section 62 has a track-receiving tab 65 extending axially from each end and coplanar with the antapex or lowest point of the rounded base section. Like tabs 43, track-receiving tabs 63 and 65 provide structural support for the bottom ends of dual-track segments secured to curved connector 60. A discontinuous, center support wall 64 extends upwardly from each end of the base, between base sections 61 and 62. Each discontinuous end of center support wall 64 is formed with laterally extending center wall locking tabs 67 dimensioned to be inserted into any variation of through-bores 18 to secure the inner walls defining each track tunnel.
Extending upwardly from each end of support wall 64 is a track support post 70. Post 70 is shown as having a cylindrical shape. It should be understood that the shape of the post can conform to any regular or irregular geometric shape and remain with the scope of the disclosure. Post 70 is dimensioned to fit within a corresponding through-bore 18 to further secure a track section to the connector. A track connection post 72 extends upwardly from center support wall 64 and is formed at the approximate center of the support wall. Connection post 72 provides a structural means to further secure track sections to curve connector 60 via elastomeric retaining members, locking bars (disclosed in more detail herein), and the like.
Extending upwardly from the lateral edges of base sections 61 and 62 are discontinuous, connection sidewalls 68 and 66, respectively. Extending laterally inwardly from the sidewalls are sidewall locking tabs 69. Locking tabs 69 perform the same function as center wall locking tabs 67. Each sidewall locking tab engages a dedicated through-bore 18 (and any variant) to secure a track tunnel to curve connector Locking tabs 69 may be positioned on a different plane than the plane occupied by center wall locking tabs 67 in order to better secure the radial orientation of a dual-track segment relative to curve connector 60.
Referring now to
First inner base section 61′ has a track-receiving tab 63′ extending axially from each end and coplanar with the antapex or lowest point of the rounded base section. Second outer base section 62′ has a track-receiving tab 65′ extending axially from each end and coplanar with the antapex or lowest point of the rounded base section. Like tabs 43, track-receiving tabs 63′ and 65′ provide structural support for the bottom ends of dual-track segments secured to suspended curved connector 60′. A center support wall 64′ extends upwardly from each end of the base, between base sections 61′ and 62′. Each end of center support wall 64′ is formed with laterally extending center wall locking tabs 67′ dimensioned to be inserted into any variation of through-bores 18 to secure the inner walls defining each track tunnel.
Extending upwardly from each end of support wall 64′ is a track support post 70′. Post 70′ is shown as having a cylindrical shape. It should be understood that the shape of the post can conform to any regular or irregular geometric shape and remain with the scope of the disclosure. Post 70′ is dimensioned to fit within a corresponding through-bore 18 to further secure a track section to the connector.
Extending upwardly from the lateral edges of base sections 61′ and 62′ are connection sidewalls 68′ and 66′, respectively. Extending laterally inwardly from the top ends of the sidewalls are sidewall locking tabs 69′. Locking tabs 69′ perform the same function as center wall locking tabs 67′. Each sidewall locking tab engages a dedicated through-bore 18 (and any variant) to secure a track tunnel to suspended curve connector 60′. Locking tabs 69′ may be positioned on a different plane than the plane occupied by center wall locking tabs 67′ in order to better secure the radial orientation of a dual-track segment relative to suspended curve connector 60′.
To enable suspended curve connector 60′ to be suspended from a higher surface, an outer curve connector ring 73 is formed extending radially outwardly from the approximate apex of the curve at or near the top edge of exterior curved sidewall of suspended curve connector 60′. An inner curve connector ring 74 is formed in the angular junction of connection sidewalls 68′ at or near the top edge of the sidewalls. Curve connector rings 73 and 74 may be slotted with vertically oriented slots, 73a and 74a, respectively, to receive a suspension elevation support 406. Suspension elevation support 406 may be a string, rope, chain or any similar product that can be used to vertically suspend track from a higher surface, such as a ceiling. Suspension elevation supports may be made from metal, natural fibers, such as hemp, or any synthetic material such as polypropylene. Returning to the description of the suspended curve connector, if the curve connectors are formed without a slot, a suspension elevation support 406 is inserted into each connector ring. A track-position setting ball 408, structured essentially as a sphere with an elevation-support-receiving through-bore, is used to set the height of the curve connector 60′. Setting ball 408 is moved along the suspension elevation support to the desired height on the elevation support and registered against curve connector rings 73 and 74 to set the height of suspended curve connector 60′.
Referring now to
First inner base section 61′″ has a track-receiving tab 63′″ formed with a radiused end and extending axially from each end and coplanar with the antapex or lowest point of the rounded base section. Second outer base section 62′″ has a track-receiving tab 65′″ also formed with a radiused end and extending axially from each end and coplanar with the antapex or lowest point of the rounded base section. Like tabs 43, track-receiving tabs 63′″ and 65′″ provide structural support for the bottom ends of dual-track segments secured to suspended curved connector 60′″. A center support wall 64′″ extends upwardly from each end of the base, between base sections 61′″ and 62′″. In this embodiment, each end of center support wall 64′″ is not formed with a laterally extending center wall locking tabs 67.
Extending upwardly or axially from each end of support wall 64′″ is a track support post 70′″. Post 70′″ is shown as having a generally curved profile with a rectangular shape in cross-section and a track-engaging flange 70a′″ extending radially from the post. Track-extending flange 70a′″ takes the place of center wall locking tabs 67′ in curve connector 60′. It should be understood that the shape of the post can conform to any regular or irregular geometric shape and remain with the scope of the disclosure. Track-engaging flange 70a′″ is dimensioned to fit within a corresponding through-bore 18 to further secure a track section to the connector.
Extending upwardly from the lateral edges of base sections 61′″ and 62′″ are connection sidewalls 68′″ and 66′″, respectively. Extending laterally inwardly from the top ends of the sidewalls are sidewall locking tabs 69′″. Each sidewall locking tab engages a dedicated through-bore 18 (and any variant) to secure a track tunnel to suspended curve connector 60′″.
To enable suspended curve connector 60′″ to be suspended from a higher surface, an outer curve connector tube 73′″ is formed extending radially outwardly from the approximate apex of the curve axially along the exterior curved sidewall of suspended curve connector 60′″. Outer curve connector tube 73′″ defines a lumen 73b′″ dimensioned to receive a suspension elevation support 1040. Lumen 73b′″ may extend the entire axial length of curve connector tube 73′″ or may include an annular, radially inwardly-extending shoulder (not shown) positioned substantially midway from the ends of the lumen that functions as a stop for any elevation support inserted from either the top or bottom of the lumen. An inner curve connector tube 74′″ is formed in the angular junction of connection sidewalls 68″ axially along the exterior surface of the sidewalls. Inner curve connector tube 74′″ defines a lumen 74b′″ dimensioned to receive a suspension elevation support 1040. Lumen 74b′″ may extend the entire axial length of inner curve connector tube 74′″ or may include an annular, radially inwardly-extending shoulder (not shown) positioned substantially midway from the ends of the lumen that functions as a stop for any elevation support inserted from either the top or bottom of the lumen.
Curve connector tubes 73′″ and 74′″ may be slotted with vertically oriented connector slots, 73a′″ and 74a′″, respectively, to receive a suspension elevation support 406, particularly one in the form of a string. Suspension elevation support 406 may be a string, rope, chain, rod or any similar product that can be used to vertically suspend track from a higher surface, such as a ceiling. Moreover, as shown in
Suspension elevation supports may be made from metal, natural fibers, such as hemp, or any synthetic material such as polypropylene. Returning to the description of the suspended curve connector, if the curve connectors are formed without a slot, a suspension elevation support 406 has to be inserted through either the top of each connector ring. A track-position setting ball 408, structured essentially as a sphere with an elevation-support-receiving through-bore, is used to set the height of the curve connector 60′″. Setting ball 408 is moved along the suspension elevation support to the desired height on the elevation support and registered against curve connector tubes 73′″ and 74′″ to set the height of suspended curve connector 60′″.
Referring now to
First top base section 81 and second bottom base section 82 have track-receiving tabs 84 and 85, respectively, extending axially from each of their ends, each coplanar with the antapex or lowest point of the rounded base sections. Like tabs 43, track-receiving tabs 84 and 85 provide structural support for the bottom ends of vertically-oriented, dual-track segments secured to curved connector 80. A vertically-oriented support beam 86 secures the base sections in vertical alignment and provides a structural frame to orient the base sections. Beam 86 has two substantially identical sections joined in an orthogonal orientation to support and set the 90° angle of the turn. The turn angle can be altered by altering the angular orientation of the beam sections. An acute angle will provide for a tighter turn while an obtuse angle will provide for a longer turn/curve.
To support the shared inner wall of a vertically-aligned dual-track segment or section (functionally a base support for the upper or first base section and a ceiling for the lower base section), discontinuous, center support wall segments 84 each extend laterally from support beam 86 and axially from each end of each base section, between base sections 81 and 82. Each center support wall segments 84 is formed with downward-extending center support wall locking tabs 92 dimensioned to be inserted into any variation of through-bores 18 to secure the inner walls defining each vertically-oriented, track tunnel. To ensure smooth transitions between the vertical track segments and curve connector 80, center support wall segments 84 are offset in thickness so as to be below the antapex or lowest point of the base sections to accommodate the thickness of the track segments so the inner surfaces of the track segments are planar with the lowest point of base sections 81 and 82. Extending outwardly from center support wall segment 84 is post 70. Post 70 is dimensioned to fit within a corresponding through-bore 18 to further secure a track section to the connector.
Extending laterally from the ends of support beam 86 and axially from each end (leading and trailing ends) of each base section are triangular-shaped sidewall extensions, lower sidewall extensions 85 and upper sidewall extensions 88. Upper sidewall extension 88 are anchored to support beam 86 at one of its vertices, truncated to increase the thickness of the connection between the sidewall extension and the support beam. Lower sidewall extensions 85 are connected to the lower end of support beam 86 in the same manner as upper extensions 88. Lower extensions 85 are each further connected to one of the leading and trailing edges of base section 82 along one of their sides. To ensure smooth transitions between the vertical track segments and base section 82, lower sidewall extensions 85 are offset in thickness so as to be below the antapex or lowest point of base section 82 to accommodate the thickness of the track segments so the inner surfaces of the track segments are planar with the lowest point of base section 82.
Extending axially downwardly from distal ends of upper sidewall extensions 88 are upper sidewall locking tabs 90. Locking tabs 90 perform the same function as center support wall locking tabs 92. Each sidewall locking tab engages a dedicated through-bore 18 (and any variant) to secure a track tunnel to vertical curve connector 80. Locking tabs 90 and 92 are shown as being in vertical alignment. The locking tabs may be positioned on different axial planes in order to better secure the radial orientation of a vertical dual-track segment relative to vertical curve connector 80.
Referring now to
Each base section, 112 and 113, has a track-receiving tab 115 extending axially from each end and coplanar with the antapex or lowest section of the rounded base sections. Track-receiving tabs 115 provide structural support for the bottom ends of dual-track segments secured to switch connector 110. Like the base section of straight connector 40, it should be understood that the cross-sectional shape of base sections 112 and 113 may be semi-circular, parabolic or any other shape having smooth-transitional surfaces.
Switch connector 110 further includes a discontinuous switch connector center support wall 116 extending vertically from the junction of the lane-change base sections at each end of the connector. Two switch connector side walls 117 extend vertically from opposite lateral edges of lane-change base sections 112 and 113 and are substantially parallel with center support wall 116. Side walls 117 rigidify the ends of attached dual-track segments in combination with the lane-change base sections. Extending upwardly from each center support wall 116 is a track support post 70. Post is shown having a cylindrical shape. It should be understood that the shape of the post can conform to any regular or irregular geometric shape and remain with the scope of the disclosure. Post 70 is dimensioned to fit within a corresponding though-bore 18, to further secure a track section to the connector.
To lock dual-track segments to switch connector 110, a series of locking tabs positioned on center support wall 116 and side walls 117 releasably secure the dual-track segments to the switch connector. Two pairs of center support wall locking tabs 118 each extends inwardly toward one of the track tunnels from the top ends of center support wall 116. The tabs may occupy the same plane with each tab pair extending from opposite sides of center support wall 116 and each pair positioned at opposite ends of the center support wall.
Extending inwardly from each top end of each side wall 117 is a side wall locking tab 119. Each side wall locking tab 119 faces one of the support wall locking tabs 118. This orientation of the locking tabs is set to correspond to the location of through-bores 18 and any variations of the through-bores. To secure dual-track segments to switch connector 110, dual track segment 12 is placed over the track support post 70, engaging with the corresponding through-bore 18, and an end of a first dual-track segment is urged onto a first end of lane-change base sections 112 and 113. At the same time, the sides of the dual-track segment are pinched inwardly to allow the leading edge of the track segment to pass over locking tabs 118 and 119. Once the locking tabs are aligned with the corresponding through-bores 18, the pinching pressure is released to allow the dual-track segment side walls expand. This results in the locking tabs entering into through-bores 18 to lock the dual-track segment to switch connector 110. By positioning locking tabs 118 and 119 opposite one another, the dual-track segment and switch connector 110 are locked into a three-dimensional orientation. A second dual-track segment is secured to a second end of switch connector 110 by using the same procedure used to secure the first dual-track segment to the switch connector.
Referring now to
Each curve base section, 121 and 122, has track-receiving tabs 123 extending axially from each end and coplanar with the antapex or lowest section of the rounded base sections. Track-receiving tabs 123 provide structural support for the bottom ends of dual-track segments secured to curve switch connector 120. Like the base section of straight connector 40, it should be understood that the cross-sectional shape of curve base sections 121 and 122 may be semi-circular, parabolic or any other shape having smooth-transitional surfaces.
Curve switch connector 120 further includes a discontinuous curve switch center support wall 124 extending vertically from the junction of the lane-change base sections at each end of the connector. Two curve switch connector sidewalls, inner curve switch sidewall 125 and outer curve switch sidewall 126 extend vertically from opposite lateral edges of lane-change curve base sections 121 and 122 and are substantially parallel with center support wall 124. Inner curve switch side wall 125 is continuous and formed with substantially identical sections that form an angle equivalent to the angle of the turn defined by curve switch connector 120. Outer curve switch sidewall 126 is discontinuous and comprises to sections, each of which is positioned at a lateral end of curve switch connector 120. The curve switch side walls rigidify the ends of attached dual-track segments in combination with the curve lane-change base sections.
Extending upwardly from center support wall 124 is a track support post 70. Post 70 is shown having a cylindrical shape. It should be understood that the shape of the post can conform to any regular or irregular geometric shape and remain with the scope of the disclosure. Post 70 is dimensioned to fit within a corresponding though-bore 18 to further secure a track section to the connector.
To lock dual-track segments to switch connector 120, a series of locking tabs positioned on curve switch center support wall 124 and curve switch side walls 125 and 126 releasably secure the dual-track segments to the curve switch connector. Two pairs of curve switch center support wall locking tabs 127 each extends inwardly toward one of the track tunnels from the top ends of center support wall 124. The tabs occupy the same plane with each tab pair extending from opposite sides of center support wall 124 and each pair positioned at opposite ends of the center support wall.
Extending inwardly from each top end of each curve switch side wall is a curve switch side wall locking tab 128. Each side wall locking tab 128 faces one of the curve switch support wall locking tabs 127. This orientation of the locking tabs is set to correspond to the location of through-bores 18 and any variations of the through-bores.
To secure dual-track segments to curve switch connector 120, the dual track segment is placed over track support post 70 and engages a corresponding through-bore 18, and an end of a first dual-track segment is urged onto a first end of curve lane-change base sections 121 and 122. At the same time, the sides of the dual-track segment are pinched inwardly to allow the leading edge of the track segment to pass over locking tabs 127 and 128. Once the locking tabs are aligned with the corresponding through-bores 18, the pinching pressure is released to allow the dual-track segment side walls expand. This results in the locking tabs entering into through-bores 18 to lock the dual-track segment to curve switch connector 120. By positioning locking tabs 127 and 128 opposite one another, the dual-track segment and curve switch connector 120 are locked into a three-dimensional orientation. A second dual-track segment is secured to a second end of curve switch connector 120 by using the same procedure used to secure the first dual-track segment.
Referring now to
To further secure a track segment or section at a specific height on an elevation support 282, an elevation support clamp, designated generally as 320, may be used. Elevation support clamp 320 includes a substantially flat elevation support clamp base 322 with one or more vertical support posts 324 extending downwardly from opposite edges of a bottom surface of clamp base 322. The spacing of the posts accommodates the top dimensions of a track section so the track section can allow posts 324 to penetrate through-bores 18 in the top of the track section. An elevation support clamp slot 326 is formed in clamp base 322 to receive an elevation support 282 and the tabs of the track section. Slot 326 may be formed with a side slot extension on one side (shown) to enable insertion of an elevation support from the open side of the slot. This enables an elevation support to be inserted from the side in a snap-fit configuration. To use elevation support clamp 320, the clamp is secured to the top of a track segment with slot 326 aligned with the slot in the track segment designated to receive an elevation support. Once the slots are aligned, an elevation support 282 is inserted into the slots. Alternatively, an elevation support 282 can be snap-fit into support clamp 320 via the side slot and then slid into the slot in the track segment. Elevation support clamp 320 enhances the friction-fit engagement of the track/elevation support assembly and enables the system to be more rigid and handle more weight, such as larger, heavier marbles or spherical objects travelling through an attached track segment.
Still referring to
An elevation support C-clamp slot 336 is formed in C-clamp base 332 to receive an elevation support 282. Slot 336 may be formed with a side slot extension on one side (shown) to enable insertion of an elevation support from the open side of the slot. This enables an elevation support to be inserted from the side in a snap-fit configuration. To use elevation support clamp 330, the clamp is secured to the bottom of a track segment with slot 336 aligned with the slot in the track segment designated to receive an elevation support. Once the slots are aligned, an elevation support 282 is inserted into the slots until the desired height is reached. Alternatively, an elevation support 282 can be snap-fit into support C-clamp 330 via the side slot and then slid into the slot in the track segment until the bottom of the track segment registers against support C-clamp 330. Elevation support C-clamp 330 enhances the friction-fit engagement of the track/elevation support assembly and enables elevation supports to handle more weight, such as larger, heavier marbles or spherical objects travelling through an attached track segment.
Still referring to
In a related aspect of the disclosure, an elevation support stub, designated generally as 350 can be used for multiple purposes. By adjusting the diameter of elevation support stub 350, it can be used as a reinforcing splint by inserting it into two adjoining elevation supports to rigidify the elevation support junction. If dimensioned to have the same cross-sectional shape and dimensions as a standardized elevation support, elevation support stub 350 can be inserted into a designated slot in a track section to provide additional support and/or rigidification of the track segment.
Still referring to
To use wall mount 294, an elevation support 282 is inserted either from a bottom of wall mount slot 300 or inserted into the wall mount slot via the side slot. Once the elevation support has been secured to the wall mount, the wall mount is secured to a wall via double-stick tape, mechanical fasteners, suction cups and the like. The unique design of wall mount 294 enables tracks to be assembled at variable heights without compromising the playability of the race track.
Referring now to
When ballast container 534 contains sufficient weight, race starter lane 533 will rotate and have a surface angle that descends towards longitudinal wall 535. When the ballast container contains insufficient weight, race starter lane 533 will have a surface angle that descends towards the opposite direction away from longitudinal wall 535. Race starter lane 533 is sized to contain one or more spherical objects.
When a spherical object is placed in race starter lane 533, it moves in the direction of the descending angle of the surface. If the ballast container contains sufficient weight, the spherical object moves against longitudinal wall 535. It will remain in this position until additional weight or downward force is added to starter lane 533. If an additional spherical object is added to starter lane 533, the mass of the two spherical objects may trigger the tipping motion of the starter lane 533, and the spherical objects will consequently roll off the starter lane 533 at approximately the same time.
Race starter base 501 provides the supporting structure for race starter tipper 503, and provides the connection to an outgoing track segment and an incoming track segment. Race starter base 501 has two axial shaft receivers 539 shaped to contain axel shafts 555 and provide a receiving fulcrum to allow the shafts to rotate. A starter base front floor 541 registers against and supports the leading edge of tipper 503. A starter base back floor 542 registers against and supports the back edge of tipper 503. Tipper 503 only touches either front floor 541 or back floor 542 at the same time in a static position. The tipper touches neither of the floors when in dynamic rotation.
Race starter base 501 contains track receiving tabs 520 and 522. A center support wall 510 extends upwardly from front floor 541 and is formed with laterally extending center wall locking tabs 528 dimensioned to be inserted into any variation of through-bores 18 of any of the dual track segments to secure the inner walls defining each track tunnel. Extending upwardly from a distal end of the center support wall 510 is a track support post 532. Post 532 is shown having a cylindrical shape. It should be understood that the shape of the post can conform to any regular or irregular geometric shape and remain with the scope of the disclosure. Post 532 is dimensioned to fit within a corresponding through-bore 18 to further secure a track section to the connector.
Extending upwardly and axially from race starter base 501 are first and second lateral lane sidewalls 524 and 526. Extending laterally inwardly from the top ends of the sidewalls are sidewall locking tabs 530. Locking tabs 530 perform the same function as center wall locking tabs 528. Each sidewall locking tab engages a dedicated through-bore 18 (and any variant) to secure a track tunnel to race starter connector 500. Locking tabs 530 may be positioned on a different plane than center wall locking tabs 528 in order to better secure the radial orientation of a dual-track segment relative to race starter connector 500.
Race starter base 501 has another set of track-receiving tabs 521 and 523. These receiving tabs are positioned at an elevation above the highest surface of starter lane 533. A center support wall 511 extends upwardly from the junction of front floor 541 and back floor 542 and has two laterally extending locking tabs 529 and a center post 554. Extending upwardly and axially are first and second longitudinal side walls 551 and 553, with sidewall locking tabs 531 extending laterally inwardly from the sidewalls. Receiving tabs 521 and 523 receive a track segment with two tunnels. The design's intention is to deliver spherical objects through a single tunnel over receiving tab 523. The tunnel over receiving tab 523 delivers spherical objects over wall 537 and onto starter lane 533. The tunnel over receiving tab 521 leads spherical objects to hit wall 524 which stops spherical objects from entering the race starter tipper 503. If a single tunnel track is used rather than a dual-track, then sidewall 553 and receiving tab 521 are eliminated and a single tunnel is attached over receiving tab 523.
Referring now to
Suspended drop connector 100′ further includes a suspended drop connector center support wall 105′ extending vertically from the plane occupied by frame 102′ and in alignment with divider rail 103′. Two drop connector side walls 106′ extend vertically from opposite lateral edges of frame 102′ and are substantially parallel with center support wall 105′. Side walls 106′ rigidify the ends of attached dual-track segments in combination with receiving tabs 104′. Post 70 extends from the top of center support wall 105′.
To lock dual-track segments to suspended drop connector 100′, a series of locking tabs positioned on center support wall 105′ and side walls 106′ releasably secure the dual-track segments to the connection segments. A pair of center support wall locking tabs 107′ extend inwardly toward each track tunnel from the top ends of center support wall 105′. The tabs are dimensioned to receive a dedicated through-bore 18 or any of the disclosed variations of through-bore 18 disclosed herein.
Extending inwardly from each top end of each side wall 106′ is a side wall locking tab 108′. This orientation of the locking tabs 108′ is set to correspond to the location of dedicated through-bores 18 and variations thereof. To secure dual-track segments to suspended drop connector 100′, a track segment through-bore 18 is placed over center post 70, and an end of a first dual-track segment is urged onto receiving tabs 104′. At the same time, the sides of the dual-track segment are pinched inwardly to allow the leading edge of the track segment to pass over locking tabs 108′ and 107′. Once the locking tabs are aligned with the corresponding through-bores 18, the pinching pressure is released to allow the dual-track segment side walls to expand. This results in the locking tabs entering into through-bores 18 to lock the dual-track segment to suspended drop connector 100′. By positioning locking tabs 108′ and 107′ opposite one another, the dual-track segment and suspended drop connector 100′ are locked into a three-dimensional orientation. Spherical objects rolled through the attached dual-track segment simply exit the segment and fall via gravitation force through voids 101′.
To enable suspended drop connector 100′ to be suspended from a higher surface or plane, such as a ceiling, a center connector ring 109a that defines an opening, such as a bore or a slot, is formed extending outwardly from a back wall 102a. A center connector ring slot 109b may be formed on the center connector ring in an axial orientation to bisect the ring to permit a suspension elevation support 406 to be inserted into the connector ring through the wall of the ring rather than inserted through the opening defined by the ring. Alternatively, center connector ring 109a may be formed without the slot. Once suspension elevation support 406 is secured within the confines of center connector ring 109a, a track-position setting ball 408 is secured to suspension elevation support 406 and positioned at the desired height on elevation support 408. Setting ball 408 remains at the desired position on suspension elevation support 406 via friction fit or via the incorporation of a serpentine path through setting ball 408. Use of a serpentine path creates a natural restriction of movement of the elevation support through the setting ball. Suspended drop connector 100′ registers against position setting ball 408 via center connector ring 109a to set the elevation of height of the drop connector. The weight or force of the connector against setting ball 408 via center connector ring 109a may increase the restriction of movement of setting ball 408 relative to suspension elevation support 406 if a serpentine path is used.
Referring now to
Drop catch element 130 further includes a drop catch element sloped center support wall 135 that has an upwardly-extending distal end and a post 70 to receive a top surface of a dual-track segment. In contrast, the sidewalls do not have upwardly-extending distal ends but are continuums of the sidewall slopes beyond the distal ends of the capture slopes 131 and 132. Thus, the trailing or distal ends of the sidewalls have top surfaces that occupy a plane below the plane occupied by the distal end of sloped center support wall 135. It should be under stood that the relative heights of the center and side walls can be adjusted (equal or unequal) to meet the connection requirements of specific track segments or sections.
To lock a dual-track segment to drop catch element 130, the dual-track segment is placed over the track support post 70 so that the post penetrates a corresponding through-bore 18. A series of locking tabs positioned on sloped center support wall 135 and drop catch element sidewalls 136 and 137 releasably secure the dual-track segment to the drop catch element. A pair of sloped center support wall locking tabs 138 each extends inwardly toward one of the track tunnels from the top end of sloped center support wall 135.
Extending inwardly from each top distal end of each drop catch element sidewall is a drop catch element sidewall locking tab 139. Each sidewall locking tab 139 faces one of the sloped center support wall locking tabs 138. This orientation of the locking tabs is set to correspond to the location of through-bores 18 and any variations of the through-bores on dual-track segments. To secure a dual-track segment to drop catch element 130, an end of a dual-track segment is urged onto and registered against the drop catch element receiving tabs 133. At the same time, the sides of the dual-track segment are pinched inwardly to allow the leading edge of the track segment to pass over locking tabs 138 and 139. Once the locking tabs are aligned with the corresponding through-bores 18, the pinching pressure is released to allow the dual-track segment side walls expand. This results in the locking tabs entering into through-bores 18 to lock the dual-track segment to drop catch element 130. By positioning locking tabs 138 and 139 opposite one another, the dual-track segment and drop catch element 120 are locked into a three-dimensional orientation.
Referring now to
Also projecting upwardly from lateral edges of the base sections are jump element sidewalls 154. By design, sidewalls 154 have a top edge set below the height of jump element center wall 153 to better secure dual-track sections to jump element 150. It should be understood that the height of the center wall and sidewalls is variable and can be adjusted to accommodate dual-track sections with different diameters. Jump element center wall 153 also has an upwardly extending post 70.
To lock a dual-track segment to jump element 150, the dual-track element is placed over the post 70 so that post 70 penetrates a corresponding through-bore 18. A series of locking tabs positioned on jump element center support wall 153 and jump element sidewalls 154 releasably secure the dual-track segment to the jump element. A pair of jump element center support wall locking tabs 156 each extends inwardly toward one of the track tunnels from the top proximal end of jump element center support wall 153.
Extending inwardly from each top proximal end of each jump element sidewall is a jump element sidewall locking tab 157. Each sidewall locking tab 157 faces one of the jump element center support wall locking tabs 156. This orientation of the locking tabs is set to correspond to the location of through-bores 18 and any variations of the through-bores on dual-track segments. To secure a dual-track segment to jump element 150, an end of a dual-track segment is urged onto and registered against the jump element receiving tabs 155. The remainder of the procedure is the same as described for other connection elements with pressure applied to and released from the sides of a dual-track segment as the segment is urged onto the connecting features of jump element 150. By positioning locking tabs 156 and 157 opposite one another, the dual-track segment and jump element 150 are locked into a three-dimensional orientation.
Referring now to
As shown in
A proximal end of sloped center wall 193 extends upwardly and has two sloped center wall locking tabs 198 extending laterally toward the track slopes. A post 70 extends upwardly from the top of wall 193. Each sloped sidewall 195 has a distal end that extends upwardly to a height below the height of the sloped center wall distal end. Each sloped sidewall 195 has at least one sloped sidewall locking tab 199 extending laterally toward the track slopes opposite one of the sloped center wall-locking tabs 198 at the same or a different height. Dual-track segments are secured to musical ramp 190 in the same manner used for any of the connectors having the same locking tabs.
Referring now to
As shown in
A proximal end of sloped center wall 193′ extends upwardly and has two sloped center wall locking tabs 198′ extending laterally toward the track slopes. A post 70 extends upwardly from center wall 193′. Each sloped sidewall 195′ has a distal end that extends upwardly to a height below the height of the sloped center wall distal end. Each sloped sidewall 195′ has at least one sloped sidewall locking tab 199′ extending laterally toward the track slopes opposite one of the sloped center wall-locking tabs 198′. Dual-track segments are secured to musical ramp 190′ in the same manner used for any of the connectors having the same locking tabs.
Referring now to
A proximal end of sloped center wall 193″ extends upwardly and has two sloped center wall locking tabs 198″ extending laterally toward the track slopes. A post 70 extends upwardly from center wall 193″. Each sloped sidewall 195″ has a distal end that extends upwardly to a height below or equal to the height of the sloped center wall distal end. Each sloped sidewall 195″ has at least one sloped sidewall locking tab 199″ extending laterally toward the track slopes opposite one of the sloped center wall-locking tabs 198″ but at the same or a different height. Dual-track segments are secured to musical ramp 190″ in the same manner used for any of the connectors having the same locking tabs.
Referring now to
A music bar support platform 194″ is formed with two or more slots to accommodate a music bar suspension wire or string 197a″. The ends of suspension wire 197a′″ may be secured to musical bar 197″ via musical bar bore holes 197b″. Support platform 194″ is secured to a distal end of musical ramp 190″. Bar suspension wire 197a″ is secured in two slots to permit musical bar 197″ to swing freely from support platform 194″ and resonate. Musical bar 197′″ resonates when struck by spherical objects that fly into them.
A proximal end of sloped center wall 193′″ extends upwardly and has two sloped center wall locking tabs 198′″ extending laterally toward the track slopes. A post protrudes from the top of center wall 193′″. Each sloped sidewall 195′″ has a distal end that extends upwardly to a height below or equal to the height of the sloped center wall distal end. Each sloped sidewall 195′″ has at least one sloped sidewall locking tab 199′″ extending laterally toward the track slopes opposite one of the sloped center wall-locking tabs 198″ but at the same or a different height. Dual-track segments are secured to musical ramp 190′″ in the same manner used for any of the connectors having the same locking tabs.
To receive a rotating ornament/ornament axle combination, musical ramp 190″ is formed with axle supports 451″ extending upwardly from musical ramp sidewalls 195′″. Axle supports 451″ are formed with slots 451a″ to receive an ornament axle 450a″. Ornament axle 450a″ is secured to a back side of a rotating ornament 450″. Suspended downwardly from ornament axle 450a″ are two strike posts 450b″. Each strike post 450b″ is suspended over a dedicated ramp 192′. To maintain the strike posts in the ready/down position, the attachment of ornament axle 450a″ to rotating ornament 450″ is offset or biased toward a top end of the ornament. In this orientation, the majority of the weight of the ornament is positioned below the axle attachment. This results in the ornament and strike posts to be in the ready/down position. When a spherical object rolls down ramp 192″, the spherical object will strike the strike post and cause the rotating ornament/ornament axle assembly to rotate within the axle supports 451′″.
Referring now to
Musical connector 200 further includes a discontinuous musical connector center support wall 205 that extends vertically from the junction of base sections 202 and partially defines the base sections. Two discontinuous musical connector side walls 206 extend vertically from opposite lateral edges of base sections 202 and are substantially parallel with center support wall 205. Sidewalls 206 rigidify the ends of attached dual-track segments in combination with base sections 202. As shown, center support wall 205 is higher than side walls 206 A support base 201 is secured under the base sections, sidewalls and center support wall. Gaps formed in center support wall 205 and sidewalls 206 are aligned and accommodate a musical pipe 207 that resonates when struck. Musical pipe 207 is loose within two support rings 207a. Support rings 207a may be formed from soft materials such as fabric and felt so that the pipe can musically resonate while in contact with the rings.
To lock dual-track segments to musical connector 200, a series of locking tabs positioned on center support wall 205 and side walls 206 releasably secure the dual-track segments to the musical connector. Two pairs of center support wall locking tabs 208 extend inwardly toward each track tunnel from the top ends of center support wall 205. The tabs occupy the same plane with each tab pair extending from opposite sides of center support wall 205 with each pair positioned at opposite ends of the support wall. A post 70 extends upwardly from center wall 205.
Extending inwardly from each top end of each side wall 206 is a side wall locking tab 209. Each side wall locking tab 209 faces, and is aligned with, one of the support wall-locking tabs 208. This orientation of the locking tabs is set to correspond to the location of through-bores 18. Dual-track segments are secured to both ends of musical connector 200 in the same manner used for any of the connectors having the same locking tabs.
Referring now to
Musical drop connector 210 further includes a musical drop connector center support wall 214 that extends vertically from the junction of base sections 212 and partially defines the base sections. A post 70 extends upwardly from center wall 214. Two musical drop connector side walls 215 extend vertically from opposite lateral edges of base sections 212 and are substantially parallel with center support wall 214. Sidewalls 215 rigidify the ends of attached dual-track segments in combination with base sections 212. As shown, center support wall 214 is higher than side walls 215. A support base 211 is secured under the base sections, sidewalls and center support wall. Gaps formed in center support wall 214 and sidewalls 215 are aligned and accommodate a musical pipe 217 that resonates when struck. Musical pipe 217 is loose within two support rings 219. Support rings 219 may be formed from soft materials such as fabric and felt so that the pipe can musically resonate while in contact with the rings.
Extending axially from an end of each base section are track receiving tabs 216 that provide structural support for a dual-track section secured to musical drop connector 210. Receiving tabs 216 are offset from the plane occupied by base sections 212 to accommodate the thickness of the bottom surfaces of a dual-track segment secured to the musical connector. As stated previously herein, this ensures a smooth transition from the track segment to the drop connector.
To lock a dual-track segment to musical drop connector 210, a series of locking tabs positioned on center support wall 214 and side walls 215 releasably secure the dual-track segments to the musical connector. A pair of center support wall locking tabs 217 extend inwardly toward each track tunnel from a top end of center support wall 214. The tabs occupy the same plane with each tab extending from opposite sides of center support wall 214.
Extending inwardly from a top end of each side wall 215 is a side wall locking tab 218. Each side wall locking tab 218 faces, and is aligned with, one of the support wall-locking tabs 217. This orientation of the locking tabs is set to correspond to the location of through-bores 18. A dual-track segment is secured to the end of musical drop connector 210 in the same manner used for any of the connectors having the same locking tabs.
Referring now to
An ornament through-bore 454 is formed in oscillating shield 450 to receive outer ring post 74b. The diameter of through-bore 454 is dimensioned to provide a loose fit over ring post 73b. to permit oscillating shield 450 to oscillate about the post. A rounded strike band 456 extends from back surface 452 and extends into the open space above second outer base section 62′. Strike band 456 can be formed by separating a strip from oscillating shield ornament 450 to form a slot 458. The combination of the slot and the strike band create a weight asymmetry in oscillating shield 450 with the shield's weight biased toward the end to which the strike band is attached. When a spherical object impacts against strike band 456, the asymmetrical weight distribution coupled with the loose fit on outer ring post 73b causes oscillating shield 450 to oscillate and deflect light rays with its shiny front surface to provide a pleasurable light effect. It should be understood that an oscillating shield ornament 450 also can be placed on inner ring post 74b to provide a similar effect for the inner track.
Referring now to
An ornament through-bore 474 is formed in lighted oscillating shield 470 to receive outer ring post 73b. The diameter of through-bore 474 is dimensioned to provide a loose fit over ring post 73b to permit lighted oscillating shield 470 to oscillate about the post 474. A rounded strike band 476 extends from back surface 472 and extends into the open space above second outer base section 62′. Strike band 476 can be formed by separating a strip from oscillating shield ornament 470 to form a slot 478. The combination of the slot and the strike band create a weight asymmetry in lighted oscillating shield 470 with the shield's weight biased toward the end to which the strike band is attached. When a spherical object impacts against strike band 476, the asymmetrical weight distribution coupled with the loose fit on outer ring post 73b causes lighted oscillating shield 470 to oscillate. At the end of the rounded strike band 476 are two electrical contacts 484. When the spherical object strikes the contacts, the electrical switch is turned on and the light emitting diode 482 is activated. It should be understood that a lighted oscillating shield ornament 470 also can be placed on inner ring post 74b to provide a similar effect for the inner track. In an alternative embodiment, light activation includes an inertial switch in the light emitting diode 482. This embodiment does not require electrical contacts 484. All electrical elements—batteries, motion activated sensor and light emitter—are included in the light emitting diode 482.
Referring now to
First inner base section 61″ has a track-receiving tab 63″ extending axially from each end and coplanar with the antapex or lowest point of the rounded base section. Second outer base section 62″ has a track-receiving tab 65″ extending axially from each end and coplanar with the antapex or lowest point of the rounded base section. Like tabs 43, track-receiving tabs 63″ and 65″ provide structural support for the bottom ends of dual-track segments secured to ornament curved connector 60″. A center support wall 64″ extends upwardly from each end of the base, between base sections 61″ and 62″. Each end of center support wall 64″ is formed with laterally extending center wall locking tabs 67″ dimensioned to be inserted into any variation of through-bores 18 to secure the inner walls defining each track tunnel.
Extending upwardly from each end of support wall 64″ is a track support post 70″. Post 70″ is shown as having a cylindrical shape. It should be understood that the shape of the post can conform to any regular or irregular geometric shape and remain with the scope of the disclosure. Post 70″ is dimensioned to fit within a corresponding through-bore 18 to further secure a track section to the connector. Ornament curve connector 60″ may be formed with a track connection post (not shown) that extends upwardly from center support wall 64″ and is formed at the approximate center of the support wall like track connection post 72 of curve connector 60′. Such a connection post, if included, provides a structural means to further secure track sections to ornament curve connector 60″ via elastomeric retaining members, locking bars (disclosed in more detail herein) and the like.
Extending upwardly from the lateral edges of base sections 61″ and 62″ are connection sidewalls 68″ and 66″, respectively. Extending laterally inwardly from the top ends of the sidewalls are sidewall locking tabs 69″. Locking tabs 69′ perform the same function as center wall locking tabs 67″. Each sidewall locking tab engages a dedicated through-bore 18 (and any variant) to secure a track tunnel to ornament curve connector 60″. Locking tabs 69″ may be positioned on a different plane than the plane occupied by center wall locking tabs 67″ in order to better secure the radial orientation of a dual-track segment relative to ornament curve connector 60″.
To enable ornament curve connector 60″ to be suspended from a higher surface, an outer curve connector ring (not shown, but similar to outer curve connector ring 73 of suspended curve connector 60′) is formed extending radially outwardly from the approximate apex of the curve at or near the top edge of exterior curved sidewall of ornament curve connector 60″. An inner curve connector ring 74″ is formed in the angular junction of connection sidewalls 68″ at or near the top edge of the sidewalls. Curve connector rings 73 and 74″ may be slotted with vertically oriented slots, 73a″ and 74b″, respectively, to receive a suspension elevation support 406 (not shown). If the curve connectors are formed without a slot, a suspension elevation support 406 is inserted into each connector ring.
To receive a rotating ornament/ornament axle combination, ornament curve connector 60″ is formed with axle supports 451 extending upwardly from connection sidewalls 68″ and 66″. Axle supports 451 are formed with slots 451a to receive an ornament axle 450a. Ornament axle 450a is secured to a back side of a rotating ornament 450″. Suspended downwardly from ornament axle 450a are two strike posts 450b. Each strike post 450b is suspended over a base section, either 61″ or 62″. To maintain the strike posts in the ready/down position, the attachment of ornament axle 450a to rotating ornament 450″ is offset or biased toward a top end of the ornament. In this orientation, the majority of the weight of the ornament is positioned below the axle attachment. This results in the ornament and strike posts to be in the ready/down position. When a spherical object rolls around ornament curve connector 60″, the spherical object will strike the strike post and cause the rotating ornament/ornament axle assembly to rotate within the axle supports 451. An axle stop 450c may be secured to ornament axle 450a to register against axle support 451 to set the spatial orientation of rotating ornament 450″ to the overall ornament curve connector 60″. A second axle stop (not shown) may be secured to an end of rotating axle 450a proximal the axle support 451 extending from the inner side walls 68″ to lock the radial orientation of the rotating ornament/ornament axle to ornamental curve connector 60″.
Referring now to
To create a division of S-curve base section 222 to form two lanes or tracks, an S-curve center wall is formed from S-curve center wall sections 223. The center wall section has a width approximately one-half the width of sidewall sections 224 and is formed with a plurality of tabs 229 extending from one longitudinal edge and dimensioned to fit within slots 225. The wall section 223 is positioned on a top surface of base section 222 with tabs 229 each aligned with a corresponding slot 225. Tabs 229 are inserted into slots 225 until a bottom edge of the wall section registers against the top surface of base section 222. Once the tabs and slots are engaged, center wall section 223 will conform to the “S” shape of base section 222. This wall section will function as a partition to create and define two tracks or lanes.
A second center wall section can be added next to the first center wall section, in order to provide an improved attachment method for the track connectors. Both the sidewalls and the center wall section are formed with through-bores 228 to permit dual track S-curve 220 to be secured to connectors and other track sections. The through-bores are positioned to match the location of the locking tabs from the track connectors, as described herein. The S-curve shown in
Referring now to
To create an outer wall for the ramp, an outer spiral wall 235 is formed from a sheet strip with a plurality of outer wall slots 233 formed in the sheet strip and biased toward one side of the sheet. To secure outer spiral wall 235 to dual-track ramp 234, wall slots 233 are each aligned with ramp tabs 239 positioned on an outer edge of ramp 234. The wall slots are urged over the ramp tabs until an inner surface of spiral wall 235 registers against the outer edge of ramp 234. Once fully engaged, outer spiral wall 235 will conform to the descending spiral shape of ramp 234.
To form two lanes or two tracks on ramp 234, a center wall 237 is formed from a sheet strip with a plurality of center wall tabs 237a extending from a lower edge of center wall 237. A series of ramp slots 234a are formed along a centerline of ramp 234 to receive center wall tabs 237a. To secure center wall 237 to ramp 234, center wall tabs 237a are each aligned with a ramp slot 234a and urged into the slots until the bottom edge of center wall 237 registers against a top surface of ramp 234 to form two lanes or tracks. The ends of the center wall 237 and outer spiral wall 235 may be formed with through-bores (not shown) to connect to track connectors and other track sections.
Referring now to
A plurality of cylinder slots 238′ are formed in two parallel sets in a descending spiral pattern about support cylinder 232′ to each receive a single-track ramp 234′. Each single-track ramp 234′ is formed with a plurality of ramp tabs 239′ on both sides of the ramp. An inner set of ramp tabs 239′ are each aligned with a corresponding cylinder slot 238′ from one set of the parallel cylinder slots and urged into the slots until an inner edge of ramp 234′ registers against an outer surface of support cylinder 232′. With the ramp tabs fully engaged with the cylinder slots, each ramp will conform to the spiral profile of the cylinder slots and form a spiraling ramp as shown. The outer surface of support cylinder 232′ will function as an inner wall for each of the ramps 234′.
To create an outer wall for the ramps, an outer spiral wall 235′ is formed from a sheet strip (double the width of the sheet strip used for spiral wall 235) with two spaced parallel sets of a plurality of outer wall slots 233′ formed in the sheet strip and biased toward one side of the sheet. By biasing the slots toward one side edge of the sheet, the top section of the sheet will function as the wall for an upper ramp and the space between the parallel slot sets will function as the wall for the lower ramp. To secure outer spiral wall 235′ to each of the single-track ramps 234′, wall slots 233′ from one of the parallel sets are each aligned with ramp tabs 239′ positioned on an outer edge of one of the ramps 234′. The wall slots are urged over the ramp tabs until an inner surface of spiral wall 235′ registers against the outer edge of the one ramp 234′. Once fully engaged, outer spiral wall 235′ will conform to the descending spiral shape of the one ramp 234′. The same procedure is used to secure outer spiral wall 235′ to the second ramp 234′ with the attachment processes being performed simultaneously. The ends of the outer spiral wall 235′ may be formed with through-bores (not shown) to connect to track connectors and other track sections. A special adapter with through-bores may be secured to the outer surface of support cylinder 232′ at the ends of ramps 234′ to provide a means to secure the inner sides of the lanes or tracks to the connectors and other track sections disclosed herein. In an alternative embodiment, outer wall 235′ is one with a single row of outer wall slots. This version attaches to one single-track ramp 234′. This embodiment is shown in
Referring now to
Dual-track ramp 234″ is formed from sheet material that conforms to a figure-8 pattern, or some portion of a figure-8 pattern. Ramp 234″ is formed with a plurality of ramp tabs 239″ extending laterally on both sides of the ramp. An inner set of ramp tabs 239″ are each aligned with a corresponding cylinder slot 238″ on one of the two support cylinders 232″ and are urged into the slots until an inner edge of ramp 234″ registers against outer surfaces of support cylinders 232″. With the ramp tabs fully engaged with the cylinder slots, the ramp will conform to the spiral figure-8 profile of the combined cylinder slots and form the spiraling, figure-8 ramp 234″ as shown. The outer surfaces of support cylinders 232″ will function as an inner wall of the innermost lane or track formed on ramp 234″.
To create an outer wall for the ramp, an outer spiral, figure-8 wall 235″ is formed from a sheet strip with a plurality of outer wall slots 233″ formed in the sheet strip and biased toward one side of the sheet. To secure outer spiral wall 235″ to dual-track ramp 234″, wall slots 233″ are each aligned with ramp tabs 239″ positioned on an outer edge of ramp 234″. The wall slots are urged over the ramp tabs until an inner surface of spiral wall 235″ registers against the outer edge of ramp 234″. Once fully engaged, outer spiral, figure-8 wall 235″ will conform to the descending, figure-8 spiral shape of ramp 234″.
To form two lanes or two tracks on ramp 234″, a figure-8 center wall 237″ is formed from a sheet strip with a plurality of center wall tabs 237a″ extending from a lower edge of center wall 237″. A series of ramp slots 234a″ are formed along a centerline of ramp 234″ to receive center wall tabs 237a″. To secure center wall 237″ to ramp 234″, center wall tabs 237a″ are each aligned with a ramp slot 234a″ and urged into the slots until the bottom edge of center wall 237″ registers against a top surface of ramp 234″ to form two lanes or tracks in a spiral descending, figure-8 pattern. The ends of figure-8 center wall 237″ and outer figure-8 spiral wall 235″ may be formed with through-bores (not shown) to connect to track connectors and other track sections.
Referring now to
Dual-track ramp 234″ is formed from sheet material that conforms to an overlapping figure-8 pattern or some portion of a
To create an outer wall for the ramp, an outer spiral, overlapping figure-8 wall 235″ is formed from a sheet strip with a plurality of outer wall slots 233″ formed in the sheet strip and biased toward one side of the sheet. To secure outer spiral wall 235″ to dual-track ramp 234″, wall slots 233″ are each aligned with ramp tabs 239″ positioned on an outer edge of ramp 234″. The wall slots are urged over the ramp tabs until an inner surface of spiral wall 235″ registers against the outer edge of ramp 234″. Once fully engaged, outer spiral, overlapping figure-8 wall 235″ will conform to the descending, overlapping figure-8 spiral shape of ramp 234″.
To form two lanes or two tracks on ramp 234″, a figure-8 center wall 237″ is formed from a sheet strip with a plurality of center wall tabs 237′″ extending from a lower edge of center wall 237′″. A series of ramp slots 234′″ are formed along a centerline of ramp 234′″ to receive center wall tabs 237 am. To secure center wall 237′″ to ramp 234″, center wall tabs 237a′″ are each aligned with a ramp slot 234a′″ and urged into the slots until the bottom edge of center wall 237′″ registers against a top surface of ramp 234′″ to form two lanes or tracks in a spiral descending, figure-8 pattern. The ends of figure-8 center wall 237′″ and outer figure-8 spiral wall 235′″ may be formed with through-bores (not shown) to connect to track connectors and other track sections.
Referring now to
Referring now to
Referring specifically to
Referring specifically to
Referring now to
To elevate dual-track segment 10, one or more suspension elevation supports 406 are used to set the elevation of the track segment. Suspension elevation supports 406 can take the form of string, rope, chain, or any rigid or pliable elongate material that permits translational positioning of track segments along the suspension elevation supports. To set the height of a track segment on a suspension elevation support, a track-position setting ball 408 is used. Setting ball 408 is essentially a sphere with a through-bore dimensioned to enable movement along a suspension elevation support and yet create frictional engagement with the suspension elevation support when setting ball 408 registers against a clamp ring bore 404. It is believed registration of setting ball 408 against clamp ring bore 404 causes a slight distortion in the suspension elevation support 406 within setting ball 408 that causes the support and ball to be releasably locked into a frictional engagement to lock in a desired height. To change the height, the track/clamp ring assembly is lifted off setting ball 408 and the setting ball is repositioned or removed as desired. Setting ball 408 can also be a friction device such as an adjustable fishing weight made from materials like tin. Or the setting ball 408 can be a friction device similar to a spring energized fishing float adjustment device.
Still referring to
In a further embodiment, a track assembly clamp 272 is modified with at least one clamp ring, designated 414 in this embodiment. The elevation track assembly clamp, designated generally as 410, has two track assembly clamp pins 412 extending inwardly from the ends of the clamp. Clamp pins 412 are dimensioned to fit within through-bores 18 to secure the clamp to track segment 10. Clamp ring 414 is part of the elevation track assembly clamp 410. The means used to secure a track segment/elevation track assembly clamp to a suspension elevation support 406 is the same as that used to secure the track segment 10/clamp ring 400 assembly. A setting ball 408 is moved along a suspension elevation support 406 until the desired height is reached and registration is achieved between the setting ball and clamp ring 414. Changes in the height of a track segment 10/elevation track assembly clamp 410 assembly are performed in the same manner as described for the track segment 10/clamp ring 400 assembly.
In a yet further embodiment of the disclosure, an outrigger support, designated generally as 420, is essentially one-half of a track assembly clamp 410. Outrigger support 420 has a clamp pin 422 extending inwardly relative to a track segment, dimensioned to fit within, and register against, a through-bore 18. A hole in an end of outrigger support 420 can receive a suspension elevation support 406. A setting ball 408 locks the elevation of a track segment 10 when the setting ball registers against clamp ring 424. The manner and means to adjust the height of the track segment relative to suspension elevation support 406 is the same as described for the track segment 10/clamp ring 400 assembly. In an alternative embodiment, a through-bore 18 can be formed in a tab 14. An end of outrigger support 420, opposite the end from which clamp ring 424 extends, is inserted through the tab through-bore until the clamp ring registers against the tab. A setting ball 408 releasably locks the position of the track segment on the suspension elevation support 406.
Referring now to
Referring now to
Referring now to
Referring now to
Connection bracket 852 provides a means to create a corner with two dual-track segments 10 that does not permit a spherical object in the segments to traverse the corner. Connection bracket 852 has two cross beams 860 that intersect and extend beyond the intersection in two directions. Each end of each cross beam 860 is formed with a bracket tine 868 extending substantially orthogonally from the axis of the cross beam. The bracket tines 868 of each cross beam extend in opposite directions but substantially on the same plane as the cross beams 860. In this configuration, each bracket tine is opposed to a bracket tine of the other cross beam. The spacing between opposed bracket tines is set to permit each bracket tine pair to be inserted into segment-connection through-bores 18 positioned on opposite sides of, and proximal an end of, a dual-track segment 10. This results in each end of connection bracket 852 being secured to the end of a dual-track segment as shown in
The point of intersection of cross beams 860 creates an asymmetry in the lengths of the cross beams on either side of the intersection. To strengthen and support the longer lengths of the cross beams of connection bracket 852, a bracket gusset 862 is secured across the open side of the intersected cross beams 860. To further add structural strength to the configuration, a bracket wedge 866 is formed between the smaller lengths of the cross beams. To facilitate digital manipulation of connection bracket 852, a finger tab 864 is formed on bracket gusset 862 that provides a free surface to grasp to secure the connection bracket to dual-track segments. A slot 865 in finger tab 864 provides a position for the suspension elevation support 406 (not shown) to engage with the connection bracket 852. It should be understood that the use of connection bracket 852 is purely to create an angular connection between dual-track segments and not to function as a turn that can be negotiated by a spherical object. As shown, the angle of the connection is approximately 90°. It should be understood that the angle of the connection can be varied by varying the angle of the cross-beam intersection.
Having described all the components of the disclosed marble racing game, referring now to
Referring now to
Curve connectors 60 connect each pair of angularly-offset straight track sections to form a continuous race track. To create a continuous grade for the straight segments, elevation supports 282 are secured to wall mounts 294 at incrementally decreasing elevations along the length of a straight track section to set the grade and allow gravity to urge the spherical objects along the race track. In this illustrative iteration of a racing track assembly, like the race track assembly shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
As shown in
To secure vertically-arranged holiday houses 902 together, the top locking tube 908 of a lower holiday house 902 is secured over the bottom locking tube 910 of another holiday house 902 positioned above the lower holiday house as shown in
Referring now to
Swivel joint 916 is a conventional joint formed from an annular channel formed in one connection tube segment and an annular perimeter shoulder formed in the adjacent connection tube segment, wherein the perimeter shoulder is dimensioned to fit within the channel but permit free relative rotation of the connection tube segments. Swivel joint 916 maintains an axial connection between the adjacent connection tube segments while permitting 360° rotation of the upper connection tube segment relative to the lower connection tube segment. This provides maximum flexibility to allow the connection tube segments to align with, and connect to, adjacent upper locking tubes 908 and lower locking tubes 910 to complete a path for spherical objects to pass from one holiday house 902 to another. Additionally, by using curved upper and/or lower connection tube segments, connection tube 914 can take on many shapes, such as helical and serpentine, to add further geometric variety to the larger holiday house assemblies. It should be understood that connection tube 914 can be formed with any cross-sectional shape and remain within the scope of the disclosure provided the ends of the connection tube are dimensioned to receive ends of the top and bottom locking tubes within the connection tube, dimensioned to fit within the ends of the top and bottom locking tubes or any combination of these two options to form the connection between the components.
Referring again to
Referring now to
Recirculating module 1000 includes a pole-securing tab 1014 formed on inner wall 1006 and extending laterally and radially inwardly. It should be understood that pole-securing tab 1014 also can extend optionally laterally and radially outwardly from outer wall 1004. A through-bore is formed in tab 1014 to receive center pole 602 or suspension support 406. Module 1000 is secured within the through-bore via friction fit, adhesive, O-ring and the like. Alternatively, an annular shoulder stop can be formed on the pole or support to register against a bottom surface of tab 1014.
Track 1002 may be formed in a variety of shapes including a heart shape as shown. In this shape, speed bump ramps 1016 provide a means to dampen the speed of any marble or spherical object placed on the module as the marble traverses the module. By design, the leading end 1018 of the track is elevated above the trailing end 1020 of the track. This allows gravity to be the force used to move the marble or spherical object along the track.
One or more holes 1022 may be formed in track 1002 to permit the marbles/spherical objects to leave the track. The hole may be placed eccentrically on the track to provide variable options for the marble/spherical object to be released. When released, the marble/spherical object may fall onto another segment of the race track assembly to which recirculating module 1000 is attached. To arrest motion of the marbles/spherical objects on track 1002, a stop plate 1024 is positioned at the end of lever ramp 1008 opposite the track trailing end 1020.
Lever 1012 is formed with or secured to a lever axle 1026 formed or positioned substantially orthogonal to the axis of the lever and between ends of the lever. A pair of axle supports 1028 are formed on lever ramp 1008 on an end of the lever ramp opposite the track leading end. The axle supports define slots to receive axle 1026 in rotational engagement. When lever 1012 is engaged, i.e., when a force is placed on top of the distal end of the lever, the end proximal the track is rotated upwardly so as to register against a marble/spherical object positioned on lever ramp 1008. The upward rotation of the lever proximal end registers against the marble/spherical object and elevates the marble/spherical object onto leading end 1018 of the track. A proximal end of lever 1012 is formed with a lever extension 1013 to provide additional mass to engage the marble/spherical object. Lever extension 1013 has a radiused external edge to follow the rotational movement pattern of the lever through slot 1009. Lever 1012 may incorporate a sound absorbing material, e.g., foam, to reduce any noise created by the return of lever 1012 to its start or resting position, i.e., with its proximal end in a down position. The marble/spherical object then traverses track 1002 due to the force of gravity. If the marble/spherical object passes over one of the holes 1022, the marble/spherical object leaves module 1000. If the marble/spherical object bypasses the hole(s), the marble will continue until reaching lever ramp 1008 and registering against stop plate 1024. The marble/spherical object will remain on lever ramp 1008 until lever 1012 is engaged and another cycle around track 1002 is performed. It should be understood that more than one marble/spherical object may be on track 1002 at the same time.
To mechanically move lever 1012, a rotating marble elevation assembly, designated generally as 1030 may be used. Elevation assembly 1030 includes a continuous looped rope or chain 1032 having a plurality of spaced marble/spherical object support platforms 1034 secured to the rope or chain. Each platform has a through-bore or depression 1036 in a center section of the platform to cradle a marble/spherical object while lifting the marble/spherical object. Elevation assembly 1030 is aligned with lever 1012 such that the distal end of the lever is within the vertical field of the down-travelling side of the support platforms 1034. In this orientation, each platform 1034 will engage lever 1012 and impart a downward force on the lever. The downward force will cause the proximal end of lever 1012 to rotate upwardly relative to axle 1026 and urge a marble/spherical object up onto the leading end 1018 of track 1002. In this manner, the operation of recirculating module 1000 may be automated.
Referring now to
Upper elevator chain support 1102 has an upper elevator chain support beam 1118. An upper elevator chain support through-bore 1120 is formed proximal an end of upper elevator chain support beam 1118 dimensioned to receive center pole 602 or like structure. To secure upper elevator chain support 1102 to center pole 602, the center pole is inserted into upper elevator chain support through-bore 1120 with a pair of upper support O-rings 1138 positioned below and above upper elevator chain support 1102. The O-rings provide frictional engagement with the center pole. By placing one immediately below and the other immediately above the upper elevator chain support, the vertical orientation or height of the upper elevator chain support is fixed relative to center pole 602 and any other components attached to the center pole. To adjust the height, the O-rings are simply translated along center pole 602 to the desired height. This enables the top of height adjustable elevator assembly 1100 to be aligned with other components to permit spherical objects to be lifted by the elevator assembly and deposited with another component of the described track/Christmas tree/holiday house assemblies.
Upper elevator chain support 1102 further has an upper chain guard 1116 to protect against contact with elevator chain 1106. An upper attachment platform 1122 includes a series of bores (optionally threaded) and posts (optionally threaded) to permit connection to other components of the larger assemblies with mechanical fasteners and the like so as to fix the location of the elevator assembly relative to other components.
Lower elevator chain support 1104 is structured to house lower drive sprocket or drive gear 1108. Lower elevator chain support 1104 includes a motor housing 1126 that encloses a motor (not shown) having a drive shaft 1124 keyed to lower drive sprocket 1108 that rotates the drive sprocket when the motor is energized. The motor can be any battery or electrically activated motor including step motors. Formed on an end of the housing distal from the drive sprocket is a lower elevator chain support through-bore 1130 dimensioned to receive center pole 602 or like structure. A pair of lower support O-rings 1140 positioned below and above lower elevator chain support 1104. The O-rings provide frictional engagement with the center pole. By placing one immediately below and the other immediately above the lower elevator chain support, the vertical orientation or height of the lower elevator chain support is fixed relative to center pole 602 and any other components attached to the center pole. To adjust the height of the lower elevator support 1104, the O-rings are simply translated along center pole 602 to the desired height. This enables the slack in elevator chain 1106 to be controlled to ensure positive engagement between elevator chain 1106 and the gear teeth of lower drive sprocket 1108 and the gear teeth of upper drive sprocket 1110.
Elevator chain 1106 is a conventional chain having pairs of inner and outer plates 1134 and rollers 1132. The chain components can be made from a variety of materials including metals and plastics. Spaced along, and affixed to, elevator chain 1106 are one or more spherical object supports 1136. Spherical object supports 1136 are shaped to form a depressed or lower center section to form a shallow cup shape to hold a spherical object during transport up elevator assembly 1100.
Spherical objects can either be placed on spherical object supports 1136 or fed into them with a feeder bowl or like structure (not shown). When the spherical objects reach the upper elevator support 1102, the spherical objects register against chain guard 1116 that performs the additional function of urging the spherical objects off the spherical object supports and onto other components of the assemblies.
The materials used to construct the various track sections are in sheet form and may be made from Mylar®, polyester or any similar material known in the art. The key feature needed in any material used from the track sections is the ability to be rolled and secured. The material should be resistant to fluids such as water to ensure the integrity of the track sections. The connectors and specialty accessories may be formed from thermoset polymers via injection molding, vacuum forming, 3-D printing and the like. The elevation supports and the binding bars may be formed via extrusion processes as are well known in the art. As with the other track assembly embodiments disclosed herein, it should be understood that any combination of the track segments and connectors disclosed herein may be used to construct track assembly 700 and remain with the scope of the disclosure.
Referring now to
Elevator 754 includes a chain or belt 760 secured over at least two geared or tensioned pulleys. A bottom gear or pulley is secured or keyed to a shaft 757 or a motor 756, which is attached to the pole support 752. Motor 756 has an on/off switch to operate the motor. Motor operation turns shaft 757 that, in turn, rotates the bottom gear or pulley to rotate chain or belt 760. A plurality of spherical object support rings 762 are secured to, and spaced apart on, chain or belt 760. Support rings 762 define a hole having a diameter smaller than the diameter of the spherical objects using in the track assembly. An annular feeder plate 766 is positioned adjacent elevator 754 proximal a bottom end of the elevator to supply spherical objects to the elevator. Feeder plate 766 is positioned below an end of track assembly 750 to receive spherical objects exiting the assembly. An annular axially-extending shoulder 768 positioned at the periphery of feeder plate 766 prevents spherical objects on the plate from falling off. A portion of shoulder 768 is cut away to permit spherical objects to fall onto support rings 762 for elevation to the starting point of the track assembly. The spacing between feeder plate 768 and chain or belt 760 is set so that spherical objects passing through the cut-away portion of shoulder 768 will register against chain or belt 760 to freeze the spherical object in place while a support ring 762 travels upwardly and registers against the spherical object.
At a top end of elevator 754, when the support ring/spherical object combination reach the top of the elevator, the spherical object is released for delivery to a first dual-track segment 10 or a race starter connector 500 (not shown). Once loaded onto track assembly 750, the spherical ball(s) travel along a helical course with incrementally elevated coils and formed with a plurality of dual-track segments 10 and curve connectors 60. Like all the other track assemblies disclosed herein, it should be understood that any combination of the track segments and connectors disclosed herein may be used to construct track assembly 750 and remain with the scope of the disclosure.
Referring now to
While the present disclosure has been described in connection with several embodiments thereof, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the true spirit and scope of the present disclosure. Accordingly, it is intended by the appended claims to cover all such changes and modifications as come within the true spirit and scope of the disclosure. What we claim as new and desire to secure by United States Letters Patent is
This is a Continuation-In-Part application of U.S. Regular Utility application Ser. No. 17/733,950, filed Apr. 29, 2022, now allowed, and claims the benefit of U.S. Provisional Patent Application Ser. No. 63/407,920, filed Sep. 19, 2022, the contents all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63407920 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17733950 | Apr 2022 | US |
Child | 18370087 | US |