Offshore wells commonly produce hydrocarbons of a wide range of compositions. Those molecules with at least five carbon atoms remain liquid at ambient temperatures and are transported by tankers to offloading facilities. Those molecules with four or less carbon atoms generally form gases at ambient temperatures.
In many cases the undersea well is too far from shore or an existing pipeline to make it economical to transport the gas through an auxiliary pipeline or to a consuming facility (e.g. power plant). Such gas is commonly referred to as marginal gas and has previously been flared (burned). More recent environmental concerns result in prohibitions against flaring of gas. It is possible to inject the gas back into the gas well, but this results in a progressively increasing percent of gas produced from the well, generally making reinjection uneconomical. It is possible to store all the gases in liquid form and at atmospheric pressure but this requires a very low temperature (about −160° C., or −260° F.) which is costly to reach and maintain. Storage at high pressure and moderate temperature to keep the gases liquid, is dangerous and costly. If the gases are transported in a gaseous state, then a very small mass of gas is transported.
There has been a suggestion to convert the gases to hydrates, wherein gas molecules are trapped in water crystals. The hydrates can be transported at moderately low temperatures (e.g. −10° C. to −40° C.) at atmospheric pressure, and they can form a slurry when mixed with crude oil or with water. One problem in converting gases into hydrates is that the economics are not favorable because there is no existing infrastructure for transporting and processing large volumes of hydrates. There are many facilities around the world for receiving LPG (liquid petroleum gas) which includes the heavier gases propane and butane, but few facilities for receiving lighter gases. Also, there are no large facilities for converting gas (and water) into hydrates, and there is presently experience with only small facilities. A system for storage and transport of marginal gas, in a safe and low cost manner based on existing gas handling infrastructure, would be of value.
In accordance with one embodiment of the present invention, a system and method are provided for the handling of marginal gas at an offshore reservoir, which enables storage and transport of the gas with minimal danger and at minimal cost. The produced hydrocarbons are separated into liquid crude oil and gas. The gas is then separated into heavy gas components comprising primarily propane and butane to constitute LPG (liquid petroleum gas), and light gases that are lighter than propane and butane. The separation is done continuously over a long period of time (usually a plurality of weeks) until tanks are largely filled.
The lighter gases are preferably hydrated, so they can be stored in a tank at higher temperatures and lower pressures (about atmospheric) than are required for light gases that are maintained in a liquid state or dense phase solely by very high pressures and very low temperatures. The heavier gases can be stored in a liquid state at moderately low temperatures. The heavy gases such as LPG and the lighter gases in the form of hydrates are preferably both transported at a pressure close to atmospheric, and at a low temperature. The low temperature is achieved by a refrigeration system in which hot refrigeration gas is cooled by cold water available in the ocean.
The novel features of the invention are set forth with particularity in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.
It is assumed that the seafloor reservoir 24 lies far from facilities that can further transport or use the gas such as a gas pipeline or a power plant and it is uneconomical to build a pipeline, so the gas is considered to be marginal gas. Such marginal gas has previously been flared (burned) but environmental considerations now prevent such flaring. One possibility is to pump gas into the oil storage tank 30 or another tank on the same or different vessel, and to carry such gas to a distant facility where it can be used or further transported for use. If the gas is stored at a low pressure such as one or two bars (one bar equals 0.987 atmosphere, or essentially atmospheric pressure which is 14.6 psi), then very little gas can be transported in a very large tank. For example, at two bars, equal quantities of methane, ethane, propane and butane constitute a gas that has a density of about 3.4 kilograms per cubic meter. The gas can be highly compressed as to fifty bars, and be liquid at 0° C. However, it requires a strong tank to hold gas at fifty bars, and the required thickness of the tank walls increases greatly as the diameter of the tank increases, so a tank the size of a typical oil tanker would have to have enormously thick and costly walls. Also, such high pressures result in a very dangerous situation, which is highly undesirable. It is possible to cool the gas to a temperature below −100° C. and maintain it in a liquid condition at a pressure such as about seven one bars. However, temperatures of much less than about −50° C. (−57° F.) are difficult to obtain and maintain in large vessels.
Applicant takes advantage of the different properties of different components of natural gas that accompany crude oil, to facilitate transport of the gas. Gaseous natural hydrocarbons includes four major components referred to by the number of carbon atoms in a molecule. These are methane (CH4 often referred to as C1), ethane (C2H6, referred to as C2), propane (C3H8, referred to as C3) and butane (C4H10, referred to as C4). Larger hydrocarbon molecules found in liquid crude oil are referred to as C5 through C40. The heavier gas molecules such as propane and butane, remain in a liquid or solid state at higher temperatures and lower pressures than do the lighter gases C1 and C2. Applicant notes that the normal boiling point temperatures for the above major components of gaseous hydrocarbons are as follows: C1-162° C.; C2-89° C.; C3-42° C.; and C4-12° C. Applicant takes advantage of this by separating the heavier components (C3 and C4) from the lighter ones (C1 and C2) and handling them separately. A mole of a given volume of the heavy gas such as butane will have almost four time the mass of a mole of the same volume of the light gas methane.
On the vessel 12 of
The heavy gases C3 and C4 delivered to the heavy gas tank 44 are the main constituents in LPG (liquid petroleum gas) which is widely used and therefore the more valuable of the gas components. Other hydrocarbon components may find their way to the heavy gas tank 44, but the components C3 and C4 constitute the majority, by weight, of the gases stored in the tank 44. The heavy gases 44 can be stored and transported as a liquid, at a high pressure of six to fifteen bars and a temperature such 0° C., or at an atmospheric pressure of one bar and a low temperature below −40° C., such as −50° C. As mentioned above, applicant prefers to maintain all gas at substantially atmospheric pressure (less than 2 bars) for safety reasons, so the heavy gas in tank 44 is maintained at −43° C. and a pressure of about one bar.
The light gases (C1 and C2) are stored in the light gas tank 52 in a form that minimizes the required pressure and temperature. Applicant uses the facility 50 to convert the light gases to a natural gas hydrate. In a natural gas hydrate, molecules of hydrocarbon gases are trapped in ice crystals. Such natural gas hydrates can be generated by refrigerating the light gases to −20° C. to −10° C. under a pressure of 60 to 100 bars after the gas has been mixed with water, so a heavy duty facility is required. Basically, the water molecules enclose the light gas molecules, and the water molecules crystalize (freeze) into a solid phase with the light gases trapped therein. Natural gas hydrates contain about 15% weight gas and 85% weight water. Natural gas hydrates maintained at one bar are safe not only because of the low pressure, but because the natural gas is trapped and will be released only slowly as the ice melts, in the event of a catastrophe. Applicant prefers to mix water with the hydrates to form a slurry for rapid offloading from the transport vessel.
As mentioned above, the facility 50 shown in
As shown in
The hydrates in the light gas tank 52 can be removed in a number of ways. As mentioned above, water is preferably added to the ice crystals to form a slurry into a hydrate tank of a shuttle tanker.
Thus, applicant transports gaseous hydrocarbons components from the vicinity of a reservoir, primarily C1 through C4, by placing them in tanks for transport to a distant facility. Applicant prefers to separate heavy gas components C3 and C4 and store them in a separate tank, because gas consisting primarily of these two components is considered to be LPG (liquid petroleum gas) which has a high value, and because such “heavy gases” liquify at a higher temperature and lower pressure than lighter gases. Applicant prefers to store light gases, primarily C1 and C2, in a separate tank. It is possible to store the light gases as compressed natural gas at one bar and very low temperatures (often well below −100° C.), but it is very difficult to maintain such a low temperature for a long period in a vessel. Applicant can instead maintain light gases at a moderately low temperature and high pressure (e.g. at −40° C. and six bars), but such high pressure of compressed gas is dangerous and very strong tank walls are required to hold a high pressure in a large tank. Applicant prefers to hydrate the light gases to form hydrates that can be stored at one bar and about −40° C. to −10° C. Since LPG can be maintained at one bar and −50° C. and hydrates can be maintained at one bar and −40° C., applicant can more easily maintain the LPG and hydrates tanks on the same vessel and cooled by the same refrigeration system. The hydrates are maintained in substantially a nongaseous state (liquid or solid), because the gas molecules are trapped in ice (which may flow as a slurry if water is added, which is preferred). The fact that only light gases are hydrated reduces the required size of a facility to convert the light gases to hydrates, and enables rapid offloading of heavy gases, such as LPG.
Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art, and consequently, it is intended that the claims be interpreted to cover such modifications and equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5199266 | Johansen | Apr 1993 | A |
5477924 | Pollack | Dec 1995 | A |
6019174 | Korsgaard | Feb 2000 | A |
6082118 | Endrizzi et al. | Jul 2000 | A |
Number | Date | Country |
---|---|---|
2229519 | Sep 1990 | GB |
55-99325 | Jul 1980 | JP |
2001-279279 | Oct 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040140100 A1 | Jul 2004 | US |