The present invention relates to a marine drive unit and a marine vessel with a hybrid driveline comprising such a drive unit.
Known marine vessels comprising a propulsion unit in the form of a pod drive are usually provided with an internal combustion engine (ICE) arranged within the hull of the vessel. Torque is then transmitted from the ICE to the drive via a transmission comprising shafts and gearing in order to drive a set of propellers on a steerable drive unit mounted to the hull.
When operating a vessel of this type at low speed it is sometimes desirable to be able to drive the vessel at reduced noise levels and/or without exhaust emissions. Operating conditions when this is an advantage is for instance when manoeuvring within a marina, while trolling or during docking. A possible solution to the above problems can be to provide an individual electric motor. However, such motors are more suited for smaller vessels with an outboard motor and are usually too small for operating vessels comprising one or more inboard engines with pod drives. A further solution to the problem is to provide a hybrid driveline with the inboard engine and electric motor arranged in series. Such a solution is known from US 2011/195618. A problem with this solution is that it takes up more space within the hull, reducing accommodation space for the occupants. Further, the control system for the engine and electric motor must be combined and becomes more complex. Such a control system will at best be difficult to adapt to an existing inboard driveline comprising one or more engines. Also, combining such a hybrid driveline with a pod drive will require additional space for the transmission and steering arrangement extending through the hull to the steerable pod beneath the hull.
The invention provides an improved marine drive unit aiming to solve the above-mentioned problems.
An object of the invention is to provide a marine drive unit for a vessel, which drive unit solves the above-mentioned problems.
The object is achieved by a hybrid marine drive unit and a marine vessel with a hybrid driveline comprising such a drive unit according to the appended claims.
In the subsequent text, the term “drive unit” is defined as an assembly comprising an outdrive having two sub-units. An upper sub-unit comprises a drive housing containing at least one source of drive torque and a transmission comprising a vertical driveshaft enclosed by the drive housing. The drive housing is preferably, but not necessarily, completely submerged. A lower sub-unit forms a propulsor or propelling unit and contains an extension of the vertical driveshaft and a transmission comprising a gearbox providing power to a propeller shaft/-s for driving at least one propeller. The transmission in the lower sub-unit supplies power from the transmission in the upper sub-unit to the propellers. The component parts of the transmission in the lower sub-unit are enclosed in a gearbox housing. At least one drive unit is mounted to the transom of a marine vessel and forms part of a hybrid driveline comprising a first source of drive torque within the drive unit and an inboard, second source of drive torque. The terms “inboard” or “on-board” are used to indicate that a component is located within the hull of the vessel, i.e. not within the drive unit or its housing.
According to a first aspect of the invention, the invention relates to a hybrid marine drive unit arranged to be mounted to a transom on a marine vessel. The drive unit comprises a drive housing that is rigidly mounted on the transom, and is preferably, but not necessarily, submerged during operation. The drive unit further comprises a propelling unit rotatable about a vertical axis and mounted to a lower surface of the drive housing and a transmission with at least a vertical drive shaft located in the drive housing. The drive unit is an azimuthing pod drive removably attached to the transom. The vertical drive shaft is arranged to transmit drive torque from multiple sources of drive torque to the propelling unit for propelling the vessel. The vertical drive shaft is operably connected to at least one first source of drive torque arranged within the drive housing. In addition, the vertical drive shaft is also operably connected to a horizontal output shaft extending into the drive housing through the transom, wherein the horizontal output shaft is connectable to a second source of drive torque.
The first source of drive torque is preferably an electric motor with an independently excited rotor, wherein the rotor is arranged to be freewheeling when its excitation current is deactivated to demagnetize the rotor. A non-exhaustive list of suitable electric motors comprises polyphase synchronous motors, switched reluctance motors or synchronous reluctance motors.
The vertical drive shaft is operably connected to at least one first source of drive torque in the form of an electric motor arranged within the drive housing. According to one example, an electric motor with a vertical output shaft can be operably connected to the upper end of the vertical drive shaft. According to this example, the electric motor comprises a vertical output shaft drivingly connected to the vertical drive shaft extending directly into the propelling unit. For this electric motor, switching between a connected torque transmitting state and a disconnected freewheeling state relative to the vertical drive shaft is achieved by demagnetizing its rotor. This allows the vertical drive shaft to rotate without resistance from the electric motor, for instance, when propelling the vessel using the second source of drive torque only.
One or more additional sources of drive torque can be operably connected to the vertical drive shaft by a suitable gear unit. The gear unit can comprise a number of gears, such as bevel gears, wherein each gear is associated with a horizontal driving input shaft from a first source of drive torque or a driven output shaft from the second source of drive torque. Preferably, a single common gear unit is used for this purpose. The gears are preferably switchable between a connected, torque transmitting state and a disconnected, freewheeling state relative to their respective shaft. For additional first sources of drive torque comprising electric motors switching can be achieved by demagnetizing the rotor of the respective motor. According to a further example the at least one first source of drive torque comprises an electric motor with a vertical output shaft, as described above, and at least one electrical motor with a horizontal output shaft which can be operably connected to the gear unit. According to a further example the at least one first source of drive torque comprises at least one electrical motor with a horizontal output shaft which can be operably connected to the gear unit.
The drive unit is part of a hybrid driveline, wherein a first source of drive torque is an electric motor and a second source of drive torque can be an internal combustion engine. Consequently, the vertical drive shaft is operably connected to a second source of drive torque in the form of an internal combustion engine. The horizontal output shaft from the second source of drive torque is operably connected to the vertical drive shaft via the common gear unit. A separate clutch is provided for disconnecting the second source of drive torque from the gear unit during electrical operation of the drive unit. This clutch can be a friction clutch located adjacent the second source of drive torque within the hull of the vessel. Preferably, the second source of drive torque is operably connected to the vertical drive shaft via the gear unit comprising multiple bevel gears in driving connection. The at least one electric motor is operably connected directly to the vertical drive shaft and/or indirectly via the gear unit, as described above.
The horizontal output shafts from the internal combustion engine and/or at least one electric motor are operably connected to the vertical drive shaft via the common gear unit. The common gear unit can comprise a bevel gear mounted on each of the horizontal output shafts from the one or more electric motors and the internal combustion engine. Each driving bevel gear is operably connected with a pair of driven opposed bevel gears operatively connectable to the vertical drive shaft. When driven, the bevel gear on either one of the driving horizontal shafts will drive both the opposed bevel gears. The bevel gears on the vertical drive shaft are provided with controllable actuators allowing each gear to be placed in driving connection with the vertical drive shaft in turn. For the second source of drive torque one bevel gear is connected for forward propulsion and the opposite bevel gear is connected for reverse propulsion. Alternatively, both bevel gears can rotate freely relative to the vertical drive shaft.
Switching the bevel gears between a connected torque transmitting state and a disconnected freewheeling state relative to the vertical drive shaft is achieved by actuation or deactuation of a suitable controllable actuator in the form of a mechanical actuator or a fluid (hydraulically or pneumatically) operated clutch. An example of a suitable clutch is a wet or dry multi-plate clutch, also termed lamella clutch. Hence, torque transmission from each drive source is controllable between its connected and disconnected states by a corresponding actuator mounted adjacent the respective gear, preferably within the gear unit.
As described above, the marine drive unit comprises a propelling unit, such as a propeller, impeller or pod drive mounted to the lower surface of the drive housing. The propelling unit is arranged to be rotatable relative to the lower surface of the drive housing by a steering system in order to steer the vessel. The steering arrangement is located in the drive housing and comprises a steering system with a control unit and a steering drive unit for rotating the propelling unit about its vertical axis. The steering drive unit can comprise an electric motor. The propelling unit can comprise counter rotating forward facing propellers in the form of an azimuthing pod.
The drive housing can comprise a control unit and power electronics controller (PEC) for the at least one electric motor and for the steering arrangement. The outer enclosure for the drive housing provides a thermal mass to absorb the heat generated by the electric motor or the power electronics. In operation, the drive housing is immersed in water and the water provides effective convection cooling. The electric motor is connected to the PEC, which supplies current to the at least one electric motor from an energy storage, such as a high voltage battery pack via a propulsion voltage system comprising high voltage DC buses and a high voltage junction box. The high voltage junction box can also be used for joining and distributing high voltage buses to a number of different electrical components on-board the vessel. The battery pack can comprise a separate power electronics controller (PEC) and an electronic controller for calibrating and charging the battery pack. Power electronics controllers of this type are known in the art and will not be described in further detail here.
According to a further example, the drive housing can comprise a closed coolant and lubrication circuit for the transmission, including the gear unit and propeller unit, and the at least one electric motor. The drive housing can comprise a reservoir for a liquid lubricant and coolant. The closed coolant and lubrication circuit comprises a pump, a supply conduit connected to conduits for the electric motors and the transmission, and a return conduit connected to the reservoir. The pump is preferably, but not necessarily, located in the reservoir. The provision of a closed coolant and lubrication circuit allows the drive unit to be cooled without the use of water from the surrounding body of water. This is a particular advantage if the vessel is operated in saline or polluted waters. A further advantage is that the same system can be used for lubrication, wherein separate pumps and circuits for cooling and lubrication can be dispensed with, which provides a reduction of both cost and space requirement.
According to a second aspect of the invention, the invention relates to a marine vessel with a hybrid driveline comprising multiple sources of drive torque to propel the vessel, wherein the vessel is provided with at least one marine drive unit as described above. The at least one drive unit comprises at least one electric motor arranged within a drive housing and that the drive unit is operatively connected to an internal combustion engine arranged within the hull of the vessel. Exhaust from the internal combustion engine can be discharged through a suitable port through the hull or below the waterline through the propelling unit.
The drive unit according to the invention provides a way to mount a pod drive with a hybrid driveline without requiring significant modifications of a marine vessel intended for stern drive applications. In most cases the outer drive unit can be advantageously provided with a drive housing having the same or approximately the same shape and size as conventional stern drive housings. Further, the interface for mounting a pod drive and its steering gear connections to the transom can be maintained. For marine vessel intended for pod drive applications the invention eliminates the need for a sizable opening through the lower surface of the hull which is required for most types of pod drives, such as an IPS © pod drive manufactured by Volvo Penta. Further, by mounting the electric motors in the outer drive housing, it is possible to provide a hybrid drive unit without taking up space for electric motors or the pod drive itself within the hull. The provision of one or more on-board battery packs can be achieved without taking up accommodation space. The electric motor/-s and the inboard engine can drive the propellers together, independently or in variable combinations in response to different torque and power demands whereby the efficiency of the drive unit is improved. By allowing independent operation of at least a single motor the arrangement provides a redundancy for the drive unit and ensures that the vessel can be operated even if the engine or one or more electric motors are inoperable.
Further advantages and advantageous features of the invention are disclosed in the following description and in the dependent claims.
With reference to the appended drawings, below follows a more detailed description of embodiments of the invention cited as examples. In the drawings:
The marine drive units in
The gear unit 213 comprises a set of bevel gears 214, 215, 216 which are in constant driving contact with each other. Each bevel gear is associated with a respective driving or driven shaft 212, 210, 220 and is switchable between a connected state and a disconnected state for transferring torque to the vertical drive shaft 210. The bevel gear 216 is fixed to the horizontal output shaft 220 and is switchable between a driven state and a freewheeling state by a main clutch 224 adjacent the ICE 221. Each bevel gear 214, 215 on the vertical drive shaft 210 is controllable between its connected and disconnected states by a corresponding actuatable clutch 214′, 215′ mounted adjacent the respective bevel gear (see
In
In operation, the driveline can be operated in electric mode using the electric motor 211 rotating the vertical output shaft 212 and the vertical drive shaft 210 directly as shown in
Alternatively, the driveline can be operated in ICE mode, wherein the rotor (not shown) of the electric motor 211 is demagnetized making the vertical output shaft 212 freely rotatable relative to the motor. In the gear unit 213, the first bevel gear 214 is maintained disconnected while the second bevel gear 215 is connected to the vertical drive shaft 210 by actuation of the clutch 215′. At the same time, the third bevel gear 216 is driven by the horizontal output shaft 220 by actuation of the main clutch 224. The ICE 221 can then be operated to transmit torque to the horizontal shaft 220 and the vertical drive shaft 210 via the third bevel gear 216 and the second bevel gear 215, in order to propel the vessel in a forward direction. In order to propel the vessel in a reverse direction the main clutch 224 is deactuated. The second bevel gear 215 is then disconnected by deactuation of the clutch 215′, while the first bevel gear 214 is connected to the vertical output shaft 212 by actuation of the clutch 214′. Subsequently, the third bevel gear 216 continues to be driven by the horizontal output shaft 220 by actuation of the main clutch 224. The ICE 221 can then be operated to transmit torque to the horizontal shaft 220 and the vertical drive shaft 210 via the third bevel gear 216 and the first bevel gear 214.
According to a further example, the driveline can be operated in a hybrid mode using the electric motor 211 and the ICE 221 together. In the hybrid mode, the gear unit 213 is operated in the same way as in the ICE mode described above, wherein the rotor of the electric motor 211 is magnetized so that the motor can be operated to drive the vertical output shaft 212 to assist the ICE 221. The direction of rotation of the electric motor 211 is selected to correspond with the direction of rotation of the currently connected first or second bevel gear 214, 215.
The propelling unit 205 contains a gearbox 208 operably connected to a lower end of the vertical drive shaft 210, which can be rotated as shown by the arrow Ai to drive the counter rotating propellers 207. Gearboxes for driving counter-rotating shafts of this type are well known and will not be described in further detail.
The drive housing 204 further comprises a control unit and power electronics controller (PEC) 230 for the electric motor 211. The combined control unit and power electronics controller (PEC) 230 is also used for controlling a steering arrangement 240 described below. The outer enclosure for the drive housing 204 provides a thermal mass to absorb the heat generated by the electric motor 211 and the PEC 230. In operation, the drive housing 204 is immersed in water and the water provides effective convection cooling. The electric motor 211 is connected to the PEC 230, which supplies current to the electric motor 211 from an inboard energy storage (not shown). Control means such as a throttle and a steering means (not shown) are provided at an operator station on-board the vessel.
The propelling unit 205 is arranged to be rotatable relative to the lower surface 206 of the drive housing by a steering arrangement 240 in order to steer the vessel. The steering arrangement 240 is located in the drive housing comprises a steering system with a control unit and a steering drive unit for rotating the propelling unit about its vertical axis. The steering drive unit can comprise an electric motor. The steering drive unit drives a steering transmission comprising a pinon gear that drives a gear fixed to the propelling unit 205 about the central axis X of the vertical drive shaft 210 as indicated by the arrow A2.
The drive housing 204 in
The gear unit 313 comprises a set of bevel gears 315, 316, 317, 319 which are in constant driving contact with each other. Each bevel gear is associated with a respective driving or driven shaft 310, 320, 312, 318 and is switchable between a connected state and a disconnected state for transferring torque to the vertical drive shaft 210. The bevel gear 316 fixed to the horizontal output shaft 320 from the ICE 321 is switchable between a driven state and a freewheeling state by a main clutch 324 adjacent the ICE 321. The bevel gear 317 fixed to the horizontal output shaft 312 from the electric motor 311 is switchable between a driven state and a freewheeling state by magnetizing and demagnetizing the rotor of the electric motor 311. Each bevel gear 319, 315 on the vertical drive shaft 310 is controllable between its connected and disconnected states by a corresponding actuatable clutch 319′, 315′ mounted adjacent the respective bevel gear. Switching the bevel gears 319, 315 can be achieved by actuation or deactuation of a suitable controllable clutch or mechanical actuator. In the subsequent text switching is performed using wet multi-plate clutches, or lamella clutches, hereafter referred to as “clutches”. Hence, each bevel gear 319, 315 on the vertical drive shaft 310 is controllable between its connected and disconnected states by a corresponding actuatable clutch 319′, 315′ mounted adjacent the respective bevel gear.
With reference to
In operation, the driveline can be operated in electric mode using the electric motor 311 for rotating the horizontal second output shaft 312 and the vertical drive shaft 310 to drive the vessel in a forward direction. In this mode, the third bevel gear 316 is allowed to rotate freely by disconnection of the main clutch 324. In the gear unit 313, the first bevel gear 319 is maintained disconnected while the second bevel gear 315 is connected to the vertical drive shaft 310 by actuation of the lower clutch 315′. At the same time, the rotor of the electric motor 311 is magnetized allowing it to be operated to transmit torque to the second horizontal output shaft 312 and the vertical drive shaft 310 via the fourth bevel gear 317 and the second bevel gear 315, in order to propel the vessel in a forward direction. Propelling the vessel in reverse direction is achieved by switching the direction of rotation of the electric motor 311.
Alternatively, the driveline can be operated in ICE mode, wherein the rotor (not shown) of the electric motor 311 is demagnetized making the second horizontal output shaft 312 freely rotatable. In the gear unit 313, the first bevel gear 319 is maintained disconnected while the second bevel gear 315 is connected to the vertical drive shaft 310 by actuation of the clutch 315′. At the same time, the third bevel gear 316 and the first horizontal output shaft 320 are operatively connected to the ICE 321 by actuation of the main clutch 324. The ICE 321 can then be operated to transmit torque to the horizontal shaft 320 and the vertical drive shaft 310 via the third bevel gear 316 and the second bevel gear 315, in order to propel the vessel in a forward direction. In order to propel the vessel in a reverse direction the main clutch 324 is deactuated. The second bevel gear 315 is then disconnected by deactuation of the clutch 315′, while the first bevel gear 319 is connected to the vertical support shaft 318 by actuation of the clutch 319′. Subsequently, the third bevel gear 316 continues to be driven the horizontal output shaft 320 by actuation of the main clutch 324. The ICE 321 can then be operated to transmit torque to the horizontal shaft 320 and the vertical drive shaft 310 via the third bevel gear 316 and the first bevel gear 319.
According to a further example, the driveline can be operated in a hybrid mode using the electric motor 311 and the ICE 321 together. In the hybrid mode, the gear unit 313 is operated in the same way as in the ICE mode described above, wherein the rotor of the electric motor 311 is magnetized so that the motor can be operated to drive the vertical output shaft 312 to assist the ICE 321. The direction of rotation of the electric motor 311 is selected to correspond with the direction of rotation of the currently connected first or second bevel gears 314, 315 selected for forward or reverse operation of the vessel using the ICE 321.
The propelling unit 305 contains a gearbox 308 operably connected to a lower end of the vertical drive shaft 310, which can be rotated as shown by the arrow Ai to drive the counter rotating propellers 307. Gearboxes for driving counter-rotating shafts of this type are well known and will not be described in further detail.
The drive housing 304 further comprises a control unit and power electronics controller (PEC) 330 for the electric motor 311. The combined control unit and power electronics controller (PEC) 330 is also used for controlling a steering arrangement 340 described below. The outer enclosure for the drive housing 304 provides a thermal mass to absorb the heat generated by the electric motor 311 and the PEC 330. In operation, the drive housing 304 is immersed in water and the water provides effective convection cooling. The electric motor 311 is connected to the PEC 330, which supplies current to the electric motor 311 from an inboard energy storage (not shown). Control means such as a throttle and a steering means (not shown) are provided at an operator station on-board the vessel.
The propelling unit 305 is arranged to be rotatable relative to the lower surface 306 of the drive housing by a steering arrangement 340 in order to steer the vessel. The steering arrangement 340 is located in the drive housing comprises a steering system with a control unit and a steering drive unit for rotating the propelling unit about its vertical axis. The steering drive unit can comprise an electric motor. The steering drive unit drives a steering transmission comprising a pinon gear that drives a gear fixed to the propelling unit 305 about the central axis X of the vertical drive shaft 310 as indicated by the arrow A2.
The drive housing 304 in
The gear unit 413 comprises a set of bevel gears 414, 415, 416, 419 which are in constant driving contact with each other. Each bevel gear is associated with a respective driving or driven shaft 412, 410, 420, 418 and is switchable between a connected state and a disconnected state for transferring torque to the vertical drive shaft 410. The bevel gear 416 fixed to the horizontal output shaft 420 from the ICE 421 is switchable between a driven state and a freewheeling state by a main clutch 424 adjacent the ICE 421. The bevel gear 419 fixed to the horizontal output shaft 418 from the electric motor 417 is switchable between a driven state and a freewheeling state by magnetizing and demagnetizing the rotor of the electric motor 417. Each bevel gear 414, 415 on the vertical drive shaft 410 is controllable between its connected and disconnected states by a corresponding actuatable clutch 414′, 415′ mounted adjacent the respective bevel gear. Switching the bevel gears 414, 415 can be achieved by actuation or deactuation of a suitable controllable clutch or mechanical actuator. In the subsequent text switching is performed using wet multi-plate clutches, or lamella clutches, hereafter referred to as “clutches”. Hence, each bevel gear 414, 415 is controllable between its connected and disconnected states by a corresponding actuatable clutch 414′, 415′ mounted adjacent the respective bevel gear.
With reference to
In operation, the driveline can be operated in electric mode using the electric motor 411 rotating the output shaft 412 and the vertical drive shaft 410 directly to drive the vessel in a forward direction, as described for
Alternatively, the driveline can be operated in ICE mode, wherein the rotors (not shown) of the electric motors 411, 417 are demagnetized making the vertical output shaft 412 and the second horizontal output shaft 418 freely rotatable. In the gear unit 413, the first bevel gear 414 is maintained disconnected while the second bevel gear 415 is connected to the vertical drive shaft 410 by actuation of the clutch 415′. At the same time, the third bevel gear 416 and the first horizontal output shaft 420 are operatively connected to the ICE 421 by actuation of the main clutch 424. The ICE 421 can then be operated to transmit torque to the horizontal shaft 420 and the vertical drive shaft 410 via the third bevel gear 416 and the second bevel gear 415, in order to propel the vessel in a forward direction. In order to propel the vessel in a reverse direction the main clutch 424 is deactuated. The second bevel gear 415 is then disconnected by deactuation of the clutch 415′, while the first bevel gear 414 is connected to the vertical output shaft 412 by actuation of the clutch 414′. Subsequently, the third bevel gear 416 continues to be driven by the horizontal output shaft 420 by actuation of the main clutch 424. The ICE 421 can then be operated to transmit torque to the horizontal shaft 420 and the vertical drive shaft 410 via the third bevel gear 416 and the first bevel gear 414.
According to a further example, the driveline can be operated in a hybrid mode using the electric motors 411, 417 and the ICE 421 together. In the hybrid mode, the gear unit 413 is operated in the same way as in the ICE mode described above, wherein the rotor of the electric motor 411 and/or the electric motor 417 is magnetized so that the motors can be operated to drive the vertical output shaft 412 to assist the ICE 421. The direction of rotation of the electric motors 411, 417 is selected to correspond with the direction of rotation of the currently connected first or second bevel gears 414, 415 selected for forward or reverse operation of the vessel using the ICE 421.
The propelling unit 405 contains a gearbox 408 operably connected to a lower end of the vertical drive shaft 410 , which can be rotated as shown by the arrow Al to drive the counter rotating propellers 407. Gearboxes for driving counter-rotating shafts of this type are well known and will not be described in further detail.
The drive housing 404 further comprises a control unit and power electronics controller (PEC) 430 for the electric motor 411. The combined control unit and power electronics controller (PEC) 430 is also used for controlling a steering arrangement 440 described below. The outer enclosure for the drive housing 404 provides a thermal mass to absorb the heat generated by the electric motor 411 and the PEC 430. In operation, the drive housing 404 is immersed in water and the water provides effective convection cooling. The electric motor 411 is connected to the PEC 430, which supplies current to the electric motor 411 from an inboard energy storage (not shown). Control means such as a throttle and a steering means (not shown) are provided at an operator station on-board the vessel.
The propelling unit 405 is arranged to be rotatable relative to the lower surface 406 of the drive housing by a steering arrangement 440 in order to steer the vessel. The steering arrangement 440 is located in the drive housing comprises a steering system with a control unit and a steering drive unit for rotating the propelling unit about its vertical axis. The steering drive unit can comprise an electric motor. The steering drive unit drives a steering transmission comprising a pinon gear that drives a gear fixed to the propelling unit 405 about the central axis X of the vertical drive shaft 410 as indicated by the arrow A2.
The drive housing 404 in
It is to be understood that the present invention is not limited to the embodiments described above and illustrated in the drawings; rather, the skilled person will recognize that many changes and modifications may be made within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
21153776.6 | Jan 2021 | EP | regional |