The present disclosure relates to marine propulsion devices, and particularly to marine drives having exhaust systems that discharge exhaust gas through a gearcase housing.
The following U.S. Patents are incorporated herein by reference in entirety.
U.S. Pat. No. 7,387,556 discloses an exhaust system for a marine propulsion device, which directs a flow of exhaust gas from an engine located within the marine vessel, and preferably within a bilge portion of the marine vessel, through a housing which is rotatable and supported below the marine vessel. The exhaust passageway extends through an interface between stationary and rotatable portions of the marine propulsion device, through a cavity formed in the housing, and outwardly through hubs of pusher propellers to conduct the exhaust gas away from the propellers without causing a deleterious condition referred to as ventilation.
U.S. Pat. No. 5,954,554 discloses an outboard drive that involves an improved exhaust system that increases the reverse thrust produced by the outboard drive. The exhaust system includes a first exhaust passage and a second exhaust passage that stems from a first exhaust passage. A flow control device operates within the exhaust system to control exhaust gas flow through second passage depending upon the drive condition (either forward or reverse) of the outboard drive. The flow control device permits exhaust gas flow through the second passage when the outboard drive operates in reverse, while inhibiting exhaust gas flow through the second passage when the outboard drive operates under a forward drive condition. In this manner, the improved exhaust system reduces exhaust gas back pressure and thrust degradation due to exhaust gas entrainment in the propeller when the outboard drive operates in reverse.
U.S. Pat. No. 5,759,073 discloses a propulsion system for a marine drive, which includes a pair of counter-rotating propellers, and provides improved acceleration from idle or low speeds. Engine exhaust from an engine which powers the marine drive is conveyed to the water about each of the propellers. The exhaust gases aerate the water about each propeller to reduce drag resistance on each propeller. Several embodiments of the propulsion system are disclosed which convey the exhaust gases to both propellers for this purpose.
U.S. Pat. No. 5,299,961 discloses a marine propulsion unit that includes a cavitation cavity defining a supplemental exhaust gas passage terminating at an exhaust outlet port which is adapted to be opened and closed by a normally closed flapper control valve member. The exhaust outlet port includes lateral sidewalls and the flapper control valve member includes a fixed portion secured to one of the lateral sidewalls and a cantilevered portion that extends across the exhaust outlet port. The cantilevered portion is adapted to flex relative to the fixed portion so as to open and close the exhaust outlet port in response to dynamic forces acting on the control valve member during operation of the watercraft. A stopper plate is provided to limit the deflection of the cantilevered portion of control valve member. The cantilevered portion of the control valve member is further provided with a fin which projects into the water during operation of the watercraft so that the dynamic pressure of the water acts against the fin the supplement the dynamic pressure exerted on the control valve member by the exhaust gas pressure from within the supplemental exhaust passage and to cause the control valve to open. When the watercraft is stopped, running at low speeds, decelerating or immediately after planning, the control valve will assume a position in which it closes the supplemental exhaust outlet port to reduce exhaust noise.
This Summary is provided to introduce a selection of concepts that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
A marine drive has an internal combustion engine that rotates a propulsor shaft that is operatively coupled to a propulsor to impart a propulsive thrust in water. The marine drive has a gearcase housing having an upper portion above a lower portion, the lower portion supporting the propulsor shaft. An exhaust passage in the gearcase housing is configured to convey exhaust gas from the internal combustion engine. An exhaust outlet on the upper portion of the gearcase housing is configured to discharge the exhaust gas from the exhaust passage to the water. The exhaust outlet faces the propulsor so that the exhaust gas is discharged into the water and towards the propulsor so as to aerate the water encountered by the propulsor.
Another aspect of the present disclosure relates to a marine drive having an internal combustion engine that rotates a propulsor shaft that is operatively coupled to a propulsor to impart a propulsive thrust in water. The marine drive has a gearcase housing having an upper portion above a lower portion, the lower portion supporting the propulsor shaft. The upper portion has a vertically extending strut with a trailing edge and an anti-cavitation plate horizontally extending from the strut. The anti-cavitation plate has a lower surface. An exhaust passage in the gearcase housing is configured to convey exhaust gas from the internal combustion engine. An exhaust outlet has a plurality of openings located on the trailing edge of the strut and on the lower surface of the anti-cavitation plate. The exhaust outlet is configured to discharge the exhaust gas from the exhaust passage to the water. A strut control valve and a plate control valve are each positionable into and between an open position and a closed position. The exhaust gas is allowed to pass through the plurality of openings located on the trailing edge only when then strut control valve is in an open position, and wherein the exhaust gas is allowed to pass through the plurality of openings located on the lower surface only when then plate control valve is in an open position. The plurality of openings face the propulsor so that the exhaust gas is discharged into the water and towards the propulsor so as to aerate the water encountered by the propulsor.
Another aspect of the present disclosure relates to a method of operating a marine drive having an internal combustion engine that rotates a propulsor shaft operatively coupled to a propulsor to impart a propulsive thrust in water. The method includes controlling flow of exhaust gas from the internal combustion via an exhaust outlet in an upper portion of a gearcase housing. The upper portion is above a lower portion of the gearcase housing that supports the propulsor shaft. The exhaust outlet is configured to discharge the exhaust gas from the exhaust passage to the water. The exhaust outlet faces the propulsor so that the exhaust gas is discharged into the water and towards the propulsor so as to aerate the water encountered by the propulsor.
The present disclosure is described with reference to the following Figures. The same numbers are used throughout the Figures to reference like features and like components.
In the present description, certain terms have been used for brevity, clarity and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes only and are intended to be broadly construed.
The arrows shown in the Figures represent the flow of an exhaust gas from the internal combustion engine 3, which is conveyed from the internal combustion engine 3 to an exhaust passage 40. In the embodiment shown, the exhaust gas is conveyed from the exhaust passage 40 to a lower passage 44 before being discharged in the water through the hub opening 56 at the aft end of the aftward propeller 8. This is also referred to as being a “through-prop” exhaust system.
The present inventors have identified that in certain configurations of marine drives, including those having two counter-rotating propellers, there is insufficient space surrounding the propulsor shaft 60 for the entirety of the exhaust gas to be discharged through the hub opening 56. Specifically, in a typical marine drive having counter-rotating propellers, the propulsor shaft 60 comprises two propulsor shafts, which requires additional space within the gearcase housing 10. There is also a competing interest in minimizing the size of the gearcase housing 10 to thereby minimize the drag that it creates. Therefore, adding a second propulsor shaft within the already limited open area of the gearcase housing 10 further diminishes the ability to sufficiently discharge the exhaust gas through the hub opening 56.
The present inventors have also identified that marine drives known in the art having poor acceleration performance, poor cruising performance, or mediocre performance from compromising on acceleration and cruising, due to conflicting needs in propeller size. Poor acceleration can be caused by using a propeller having too large of a pitch and/or diameter, which causes lugging of the engine in the portion of the torque curve with lower torque. However, a propeller with a large pitch and/or diameter often provides the highest top speed and is desirable for cruising. Performance under these conditions is effectively opposite for a propeller having a small pitch and/or diameter. In this regard, acceleration performance can be enhanced by selectively aerating the water encountered by a propeller, effectively reducing the volume of water grabbed by the propulsors 6. This selective aeration can allow the marine drive 1 to be operated within the desired torque curve by controlling the discharge of exhaust gas into the water, which is discussed further below.
Accordingly, the present inventors have developed the disclosed marine drive 1 and methods to convey exhaust gas from the internal combustion engine 3 through exhaust outlets 50 in addition to, or instead of, through the hub opening 56. In the embodiment shown, a series of strut openings 53a-c are defined in the trailing edge 32 of the strut 30. These openings span between an upper end 34 and a lower end 36 of the trailing edge 32 (shown in
The electronic actuator 76 is operatively coupled to a control module 90 to control actuation of the strut control valve 72. In the embodiment shown, the control module 90 further comprises a processing module 92 and a non-transitory memory 94. The processing module 92 is configured to execute a program stored within the non-transitory memory 94 to operate the electronic actuator 76 (and/or electronic actuator 78, as discussed below) in accordance with the operating conditions of the marine drive 1 and/or operator commands. While the processing module 92 and the non-transitory memory 94 are shown to be substantially integrated into the control module 90, one of ordinary skill in the art would recognize that these components may be contained separately, while remaining operatively connected. Similarly, the dashed line between the control module 90 and the strut control valve 72 depicts communication therebetween and does not indicate a required wiring schematic.
In the configuration depicted in
As shown in
The plate control valve 74 is actuated to either allow or prevent the discharge of exhaust gas into the water through the plate openings 55a-c. In the configuration shown, the plate openings 55a-c discharge the exhaust gas towards the propulsors 6, but in contrast to the strut openings 53a-c shown in
In the embodiment shown in
Due to the elongation of the plate control valve 74, in contrast to the configuration shown in
While the previously disclosed embodiments have principally incorporated actively controlled control valves, namely, the strut control valve 72 and/or the plate control valve 74, passive valves and/or static openings may also be used in conjunction with, or in place of, the actively controlled valves. The embodiment shown in
In the configuration shown, exhaust gas is allowed to discharge from the upper passage 42 into the water through the reed valve 80 and the poppet valve 82 when the pressure in the upper passage 42 meet or exceed the pressure differential between the exhaust passage and the water. In contrast, when the pressure in the upper passage 42 does not meet or exceeds the pressure differential between the exhaust passage and the water, the reed valve 80 and the poppet valve 82 are closed to prevent exhaust gas from discharging into the water through the plate openings 55a-b. In either case, the opening 84 remains open and allows the exhaust gas to discharge through the plate opening 55c. As previously discussed, the reed valve 80, poppet valve 82, and opening 84 may operate independently of the strut control valve. However, the actuation of strut control valve 72 may create a difference in the pressure differential seen at the reed valve 80 and the poppet valve 82 to thereby influence the opening, closing, or partial-opening of the reed valve 80 and the poppet valve 82. It should be recognized different numbers and configurations of these passive valves and openings may be used, which may be used with the lower surface 22 of the anti-cavitation plate and/or the trailing edge 32 of the strut 30.
The present inventors have identified through experimentation and development that selectively allowing or preventing exhaust gas to discharge through the strut openings 53a-c, the plate openings 55a-f, and the hub opening 56 provides beneficial improvements to the operation of the marine drive 1 in various states of operation. Referring back to
Accordingly, the presently disclosed marine drive 1 and methods provide advantages to the compromises required of marine drives known in the art. Generally, a large propeller is desirable for performance at cruising speeds, such as a 12-inch diameter propeller for a 350-horsepower engine at 60 miles per hour. In other configurations, the optimal propeller for cruising may have a diameter of 15 inches of more. However, this diameter is too large to permit high acceleration performance, whereby too much water is grabbed by the propeller blades to allow the propeller to rotate at an optimal RPM. Likewise, while a small diameter propeller performs better during acceleration, a small diameter propeller cannot hold the thrust required for optimum cruise performance. The present inventors have also identified that having a propeller with too small of a diameter generally provides poor reverse thrust.
The presently disclosed marine drive 1 is configurable such that the control module 90 discharges exhaust gas to aerate the water encountered by the propulsors 6 to attain optimal cruising and accelerating performance. In one embodiment, exhaust gas is discharged towards the propulsors 6 only during acceleration, causing the desired higher RPM. In contrast, exhaust gas is prevented from being discharging towards the propulsors 6 when the marine drive 1 is cruising.
As previously discussed, additional benefits are provided by targeted aeration of the forward propeller 7 and/or the aftward propeller 8 corresponding to specific operating conditions. For example, the present inventors have identified that discharging the exhaust gas between the forward propeller 7 and the aftward propeller 8 provides a beneficial compromise of aeration in that one of the propulsors 6 may be aerated without necessarily aerating both. Furthermore, by discharging the exhaust gas between the forward propeller 7 and the aftward propeller 8 provides the same aeration whether the marine drive 1 is operated in a forward gear or a reverse gear.
The inventors have further identified that by discharging the exhaust gas through the lower surface 22 of the anti-cavitation plate 20 aft of the aftward propeller 8, neither the forward propeller 7 nor the aftward propeller 8 is aerated, which is desirable when the marine drive 1 is operated in a forward gear and cruising. In one embodiment, the control module 90 causes exhaust gas to be discharged to aerate both the forward propeller 7 and the aftward propeller 8 during acceleration in forward gear, but causes the exhaust gas to discharge aft of the aftward propeller 8 (causing no aeration) upon reaching a cruising speed. The control module 90 may also cause the exhaust gas to discharge in intermediate positions, such as discharging between the forward propeller 7 and the aftward propeller 8 during some portion of the acceleration before cruising.
The present inventors have also identified that discharging the exhaust gas through the strut 30 and the lower surface 22 of the anti-cavitation plate 20 forward of the forward propeller 7 is advantageous for reverse thrust. The typical exhaust configurations known in the art principally discharge the exhaust through the hub opening 56. While generating reverse thrust, this discharged exhaust gas is sucked into the flow field that passes over the blades of the propulsors 6, effectively limiting the amount of water that the propulsors 6 have access to grab. This problem is commonly referred to as “prop venting”. By discharging at least a portion of the exhaust gas forward of the forward propeller 7 while operating the marine drive 1 in reverse gear, this portion of exhaust gas does not enter the flow field to create the unintended prop venting.
In accordance with the previous discussion, the disclosure further relates to a method of operating a marine drive 1 having an internal combustion engine 3 that rotates a propulsor shaft 60 that is operatively coupled to a propulsor (such as the forward propeller 7 and/or the aftward propeller 8) to impart a propulsive force in water. The method includes controlling the flow of exhaust gas from the internal combustion engine 3 via an exhaust outlet in the upper portion 12 of the gearcase housing 10, whereby the upper portion 12 is positioned above a lower portion 14 of the gearcase housing 10 and the lower portion 14 supports the propulsor shaft 60. The exhaust outlets are configured to discharge the exhaust gas from the exhaust passage 40, which may be in communication with an upper passage 42 and/or a lower passage 44 to discharge the exhaust gas into the water. The exhaust outlets, which in the embodiments previously discussed include strut openings 53a-c and plate openings 55a-f face the propulsors 6 so that the exhaust gas is discharged towards the propulsors 6 so as to aerate the water encountered by the propulsors 6.
The method further comprises controlling a control valve, such as the strut control valve 72 and/or the plate control valve 74 in positions into and between an open position wherein the exhaust is allowed to pass through at least one of the plurality of openings (such as the strut openings 53a-c and/or the plate openings 55a-f) and a closed position wherein the exhaust gas is prevented from passing through the at least one of the plurality of openings (strut openings 53a-c and/or plate openings 55a-f). It is further anticipated by the presently disclosed method that in addition to being in an open position and a closed position, the plurality of openings may be in a partially-open position.
As previously discussed, the control valves may either be active or passive. As a passive valve, the plurality of openings may be statically open, or may be actuated by a pressure differential between the exhaust passage and the water. Furthermore, the method further comprises controlling the flow of exhaust gas through the plurality of openings (including the strut openings 53a-c and/or plate openings 55a-f) based upon an operating position of the marine drive 1. Operating conditions may include operating in a forward gear, a reverse gear, or a neutral position. Likewise, the operating condition of the marine drive includes an acceleration state, whereby the marine drive 1 may be accelerating, decelerating, or maintaining a consistent cruising speed. In practicing the disclosed method, the upper portion 12 of the gearcase housing 10 will in some embodiments further comprise a vertically extending strut 30 with a trailing edge 32, and an anti-cavitation plate 20 horizontally extending from the strut 30. The anti-cavitation plate 20 has a lower surface 22 that defines the plate openings 55a-f. Likewise, the trailing edge 32 of the strut 30 defines the strut openings 53a-c. It should be recognized that greater or fewer openings may be defined by the strut 30 or the anti-cavitation plate 20 in accordance with the present disclosure.
Through experimentation and development, the present inventors have identified that the presently disclosed marine drive 1 and methods provide optimal performance of both acceleration and top speed for a given internal combustion engine 3 and boat application. Consequently, the disclosed marine drive 1 and methods allow the boat to get on plane faster and also provide improved fuel economy through optimized performance.
This present application is a continuation application of U.S. patent application Ser. No. 15/414,854, filed Jan. 25, 2017, which is hereby incorporated by reference in entirety.
Number | Name | Date | Kind |
---|---|---|---|
2082059 | Irgens | Jun 1937 | A |
3434447 | Christensen | Mar 1969 | A |
3745964 | Henrich | Jul 1973 | A |
4897061 | Koepsel | Jan 1990 | A |
5299961 | Okamoto | Apr 1994 | A |
5759073 | Sumino | Jun 1998 | A |
5807151 | Sumino | Sep 1998 | A |
5954554 | Bates | Sep 1999 | A |
6010380 | Wollard | Jan 2000 | A |
7387556 | Davis | Jun 2008 | B1 |
7762772 | Alby | Jul 2010 | B1 |
Number | Date | Country | |
---|---|---|---|
Parent | 15414854 | Jan 2017 | US |
Child | 15901269 | US |