This invention relates to removable protective layers or barriers for a vehicle, and more particularly to fenders for use with watercraft and/or vessels.
Boat fenders are a ubiquitous piece of gear employed on vessels of all types and sizes. They are used to prevent a dock or other adjacent structure from scratching, gouging, piercing or other damaging the vessel (also termed simply a “boat”) due to the constant motion experienced by the boat due to flowing, rising and falling water and when a boat is landing at or departing from a dock. The fender acts as a bumper to maintain a space between the boat hull and the dock (or other structure). It is generally constructed from durable material that flexes to absorb the force generated between the hull and the dock so that, under most conditions, the hull remains untouched by the dock edge. The most common boat fender design is a round, air-filled bladder attached to the end of a line (rope). This bladder is typically hung over the side of the hull and positioned between the boat and the dock by securing the line to a cleat or other fixed structure on the boar (e.g. a stanchion). Their cylindrical nature allows them to roll out of place if the boat moves significantly relative to the dock. They also only protect a narrow area of the overall hull, whereby objects, other boats, pilings, etc., can strike the hull between the protected areas. Also, while fender material is fairly robust (e.g. a sturdy vinyl) it may lack any reinforcement to contact surfaces, which can result in damaging abrasion (due to constant motion and contact with hard or rough surfaces) that may lead to failure of this unprotected surface. This level of continuous motion and resulting force is often associated with a storm or other surge. They also only protect a narrow area of the overall hull, whereby objects, other boats, pilings, etc., can strike the hull between the protected areas. This level of force is often associated with a storm or other surge. Moreover, these types of fenders can simply become untied, or the lines can detach due to breakage of a grommet, at which time, they fall off and float away, leaving the hull fully exposed.
It is further recognized that generally cylindrical fenders can act as a form of roller bearing with respect to the dock so that the motion between the hull and dock causes the generally cylindrical fenders to roll back and forth along the boat hull. As they roll, they can work various grit and sand into the hull, causing abrasion. More active seas can cause the fenders to eventually roll completely out of an interfering position between the hull and dock. This can lead to a phenomenon known as “dock rash.” Dock rash can include the marring of the finish on the hull, puncturing or breaching of the hull, or even separation of decks from hulls, which often leads to sinking. Various techniques have been proposed and/or produced to assist fenders in remaining in place. Some use one or two large suction cups to attempt to secure the fender in place, but the shape of the fender and force applied thereto usually overwhelm any holding force. While some commercially available fenders are flat, these also disadvantageously slide around during rough seas, and are notorious for destroying hull finishes. Existing non-inflatable foam fenders are also subject to punctures and tears.
In general, existing fender designs can fail in any number of ways including deflating, moving out of place, tearing, falling off, etc. It is desirable to provide a more robust design that avoids these disadvantages and limitations.
This invention overcomes disadvantages of the prior art by providing a boat hull fender that can be adhered to a hull to protect a boat hull, even in extreme conditions such as storms or areas of heavy wakes or when the boat is in motion, as when docking. The boat fender described herein can be adhered to the side of the boat hull, and can be secondarily attached to the boat using a rope. A multiplicity of boat fenders can be linked together to form a skirt/panoply of protective coverage surrounding the boat.
In an illustrative embodiment, a marine fender can include an outer shell, an adherence structure and/or layer adapted to secure the marine fender to a boat hull, a cushion situated between the outer shell and the adherence structure/layer, and a plurality of mooring or fixation points adapted to tie/secure the fender to a boat/vessel. The cushion can be constructed from a variety of materials and generally includes a dampening and shock-absorbing medium (e.g. gas, gel, air, etc.) within an enclosed space or spaces. The adherence structure/layer can include a plurality of suction cups. The plurality of suction cups can include main suction cups and secondary suction cups, and the main suction cups can be larger than the secondary suction cups, and the secondary suction cups can be positioned the spaces between the main suction cups. The adherence structure/layer can include a microsuction sheet. The cushion can be a closed cell foam with an array of small, air/gas-filled voids or a larger bladder with or without (free-of) inner baffles. The adherence structure/layer can include a plurality of adhering dimples that are cup shaped indentations in the cushion, or more-conventional suction cups. The outer shell or cover can be shock and abrasion-resistant material that can be pliable, and/or rigid (and a single or multiple layers thereof), having an appropriate thickness—for example between approximately 1/16 inch and ½ inch (such thickness being based in part upon the material properties of the shell/cover). In an embodiment, a polymer, such as HDPE. In an embodiment, the cushion can include approximately three inches of medium density polyethylene closed cell foam. In another embodiment, the cushion can define a single cell and/or baffled bladder filled with pressurized gas (e.g. air) or gel, and can define a cylindrical or non-cylindrical (e.g.) D-shape with a flattened bottom that defines the adherence structure/layer, with suction cups mounted thereon.
In an illustrative embodiment, a marine bow fender can include a first side and a second side, each of the first side and the second side including an outer shell, an adherence structure/layer adapted to secure the marine fender to a boat hull, a cushion situated between the outer shell and the adherence structure/layer, at least one mooring point adapted to tie the fender to a boat or another fender, and wherein the first side and the second side meet at a spine, so that the first side and the second side extend in two directions out from the spine.
In various embodiments, the adherence structure can more generally comprise (a) a plurality of suction cups at predetermined locations, (b) a microsuction sheet or (c) a nanosuction sheet. The plurality of suction cups each define an elastomeric cup adhered to a portion of the adherence structure. Illustratively, the outer shell or cover can comprise a rigid or polymer that conforms to a shape of the portion of the cushion. In various embodiments, the fender can include appropriate fixation points for ropes/lines. In various embodiments, cushion comprises a foam material or an inflatable and deflatable bladder. The foam can be a medium density, closed-cell foam (e.g.) polyethylene material. The bladder can comprise a conventional, cylindrical boat fender and the adherence structure includes cradling cushions that cradle the bladder and define an approximately flattened bottom to which the suction cups are attached. The shell can be secured with respect to the adherence structure by a flexible fabric retaining structure. Illustratively, lateral retaining cords can encircle each of opposing ends of the bladder, or pass through fixation points on the opposing ends of the bladder, respectively. Additionally, the cradling cushions can either (a) extend continuously along a portion of the longitudinal length of the bladder or (b) reside adjacent opposing ends of the bladder. Illustratively, the bladder defines an approximate D-shaped cross section with an approximately flattened side and an opposing, semi-cylindrical or curved side, the shell being secured against the semi-cylindrical or curved side and the suction cups being attached to the flattened side. The flattened side can include one or more recesses between each of opposing ends, constructed and arranged to receive retaining cords or straps attached to each of opposing edges of the shell. Additionally, the shell can include formations that interengage with associated formation of the bladder to secure the shell and the bladder together. In various embodiments, the bladder can define an approximate D-shaped cross section with a semi-cylindrical or curved side, the shell being secured against the semi-cylindrical or curved side and an opposing V-shaped side with the suction cups being attached to the each of a pair of flattened sections of the V-shaped side, the suction cups being adapted to engage opposite sides of a bow of the hull.
In an embodiment, a method of protecting a boat using a fender in accordance with the embodiment herein is provided. The method includes (a) attaching a rope to a fixation point of a marine fender; (b) securing the rope to the boat, so that the fender is tied to the boat; and (c) biasing an adherence layer of the fender onto the hull of the boat.
The invention description below refers to the accompanying drawings, of which:
A marine fender can be applied, and adhere to the hull of a boat, so as to protect the hull from abrasions and impacts. It can remain attached to the side of the boat despite motion of the boat and hard impacts or friction with neighboring objects. The marine fender can be straightforwardly and rapidly applied to the side of the boat hull, and removed in an equally straightforward and rapid manner. The boat hull can be protected by a number of individual fenders, and the group of fenders can be dissembled and stored in a relatively small area.
Notably, the outer shell 110 can be highly (substantially) resistant to abrasion, and can be “slippery,” and/or have a low surface friction that allows neighboring objects to slide on the fender 100 in a manner that is generally free of gouging or marring or either contacting surface. By way of non-limiting example, HDPE has a low surface friction, and can be the outermost layer of the outer shell 110. While HDPE has a low surface friction, in various embodiments, a coating of low surface friction material, such as Teflon outer coating 140, can be used as an outer coating over an HDPE shell, or can be used as an outer coating over another shell material that would be less resistant to abrasion without the coating. The addition of a PTFE (e.g. Teflon®) outer coating 140 in various embodiments can increase the resistance of the shell of the fender to abrasion. A boat hull with a fender 100 can effectively slide against various objects without (free of) causing damage to the boat hull, and the ability of external objects to slide easily against the fender can reduce the effective impact force onto the hull by such external objects of all but (approximately) 90° impacts. The outer shell 110 can also distribute the force of an impact over a wide area of the hull to further protect the hull from impacts. The outer shell 110 can protect the boat from puncture, and can itself be puncture resistant to protect the other layers of the fender 100.
To enhance impact resistance of the illustrative fender 100, a resilient layer, or cushion layer 120 can be provided beneath (and permanently adhered to) the outer shell 110. The cushion layer 120 can be made from a wide variety of different cushioning materials (or combinations of such materials), including a flexible/pliable, closed or open-cell polymer foam padding. In various embodiments, the foam padding can include various sizes of cells, or air bladders. In various embodiments, the cushion 120 can be made from a medium density polyethylene closed-cell foam, and the cushion 120 can have a cushion thickness CT of approximately 2-6 inches, or more (3 inches in an example). The cushion layer 120 can effectively absorb force from impacts against the outer shell 110, and can significantly decrease the impact force that is transferred from an impact by an external object to the boat hull by absorbing and dissipating the impact energy. In various embodiments, different cushion thicknesses can be used with different sizes of vessels. Larger, heavier vessels can benefit from the increased protection afforded by a thicker cushion, such as a cushion with a thickness of 6 inch or more, while smaller vessels may benefit from a fender with a thinner cushion, such as 2 inches or less, that can allow greater flexibility to more easily conform to the shape of the smaller hull.
The illustrative fender 100 also includes an adherence structure/layer 130 that is adapted to adhere to the side of the boat hull. It is recognized that most boat hulls are relatively smooth, formed from fiberglass, steel, aluminum, or other materials, having a gelcoat and/or painted outer surface that is substantially non-porous. Well-maintained wood, steel or aluminum boats are, likewise, typically coated with a smooth, non-porous paint or varnish layer. Such surfaces allow for the use of the depicted adherence layer 130 of the fender 100, which includes a multiplicity of spaced-apart (often densely packed), small-diameter suction cups 132 that can interoperate to affix and maintain the fender 100 in the desired location on the boat hull. That is, the multiplicity of small-diameter suction cups in the adherence layer ensures that some number thereof will maintain in contact with the hull at all times, thereby resisting the undesirable sliding or rolling motions that are typical in conventional round and flat fenders. As the fender rubs against a surface, the non-adhered suction cups are urged to re-adhere to the hull surface, thereby ensuring that contact is maintained.
In various embodiments, the adherence layer 130 with suction cups 132 can be made from a thermoplastic elastomer (TPE) or another resilient material (e.g. soft polyurethane, synthetic or natural rubber, silicone, etc.). The suction cups 132 can be formed in a wide range of sizes, and in various embodiments, differing sizes/diameters of suction cups can be used in a single embodiment (as described further below). Notably, the size and placement of suction cups 132 in the adherence layer 130 can allow for the fender 100 to be held securely in place, but also allow the fender 100 to be readily removed from the hull when the user desires. To remove, the user can simply separate (e.g. by levering or peeling away) the adherence layer 130 from the boat hull. As no adhesive or other secondary material is used to apply the fender to the hull, the fender 100 typically deposits no substantial residue on the hull after the fender is removed.
The discrete layers of the fender 100 can be joined together using adhesive, welded together, or otherwise secured together so that the fender defines an integral unit. Alternatively, co-molding techniques can be employed to define a unitary structure in a manner clear to those of skill (described further below).
In various embodiments, the fender 100 can be free of a separate adherence layer, and the function of the adherence layer 130 can be provided by, or defined as part of, the exposed face of the cushion layer 120. For the purposes of this description, thus, the “adherence layer” should be defined to include the exposed surface of another fender layer (e.g. the cushion layer 120). Thus,
Notably, the layers of the fender are sufficiently pliable that the entire fender can bend to conform to the surface shape of the hull, thereby bringing all, or substantially all, of the adherence surface into contact with the hull. As noted above, should a part of the surface become detached, application of pressure, when the fender is biased by an external object (e.g. a dock) can re-adhere the surface to the hull. Likewise, in the event that the entire adherence surface becomes detached from the hull, an applied pressure from an external object, or the user, should be sufficient to reattach it to the hull.
The fenders can be constructed/provided in various sizes, and the size can depend on, for example, the size of the boat, the type of dock, the degree of protection a user desires from storms, and/or other factors. A user can mount a plurality of differing, discrete sizes of fenders in different locations on the hull of a boat depending upon the above-factors. In various exemplary embodiments, a fender can have a fender length FL of up to approximately 24 inches, and a fender width FW of up to approximately 16 inches. Hence, the exemplary fender is rectangular. An individual fender can have multiple mooring points 502 that can allow it to be turned in different orientations (fender length FL being horizontal or vertical, as depicted by fenders 520 and 530, respectively in
Advantageously, given the length and relatively narrow height of rub rail fenders 900, such can be generally smaller, and more easily stored in the boat while still providing significant protection to the upper portion of the hull. That is, a series of narrow rails can be stowed on deck or below in a manner that is less obtrusive than full sized fenders.
In the above-described examples, the cushion layer is constructed from a soft, pliable material, such as closed cell foam. Recognizing that such foam is generally a series of small/microscopic bladders, each filled with gas (e.g. air), it is further contemplated that the gas-filled cells of the cushion layer can be larger—potentially defining an inflatable structure that otherwise provided the geometry and functionality described above.
In the depicted, exemplary embodiment, the fender 1000 can have a core chamber layer 1020 that is designed to sealingly contain the pressurized air (or other gas). The core chamber layer 1020 be made from a tarpaulin-PVC, or other durable, substantially non-porous material that can be impervious to air, or airtight, while also having the strength to hold air under force, such as the force of a shifting boat hull pressing the fender against a dock. The fender 1000 construction can also define one or more secondary chamber layers (not shown) that can be composed of similarly performing materials to that of the core chamber layer 1020, and can provide additional strength and/or air containment for the cushion 1000. Likewise, the core chamber can include (e.g.) fiber reinforcement as part of its moulded-in composition. The exemplary air chamber 1010 can be a drop-stitch inflatable chamber that is constructed using (e.g.) stitching 1012 within the air chamber 1010. The drop stitching 1012 can connect one side of the chamber to the other, and can provide additional strength and/or rigidity to the air chamber 1010.
The inflatable and deflatable fender 1000 can include exoskeleton or shell-like outer layer 1030 that protects the fender and its associated cushion layer from puncture under normal, expected use conditions. The shell-like outer layer 1030 can be constructed from (e.g.) PVC, HDPE, or other rigid material. In various embodiments, the shell-like outer layer 1030 can include multiple outer shell components, which can overlap with, and move/slide relative to one another, so that the outer shell can define a protective layer around the overall fender when the fender is inflated, while also allowing the fender to be deflated to a reduced thickness. In various embodiments, the outer shell layer 1030 can include one or more outer shell layer rails 1032 that can define a perimeter around the fender and protect its edges—including the top and bottom edges. The outer shell layer 1030 can further include an inner shell layer 1034. Moreover, an adherence layer 1040 can be disposed on the outside of, integrated with and/or unitary with, the inner shell layer 1034. A further outer layer 1036 can also be provided on the fender opposite the adherence layer where it faces obstacles. In various embodiments, outer layer 1036 can protect the chamber layer 1020 and can also form the outer shell of the fender. In various embodiments, an additional shell layer can cover the outer layer 1036 and can form the outer shell of the fender. This layer can be a durable material that resists puncture and abrasion. Note that the above-described inflatable fender structure can define a variety of layered constructions. In a generalized form, the illustrative fender 1000 (like the foam-based versions described above) includes, at least, an inflatable cushion layer (that can include drop stitching, cell dividers or other components for maintaining internal shape), a hull-engaging adherence layer and an exposed object-engaging durable/resilient shell layer—all of which are bendable and formable to the general contour of the hull. Also, it should again be noted that the specific arrangement, materials and functions of layers in the exemplary fender construction herein is highly variable and the structure depicted in
According to various embodiments, the fender can be constructed as a two piece construction with (a) an inflated and/or resilient bladder (constructed from vinyl, synthetic or natural rubber, and similar-performing materials), which adapted to absorb large impacts, and generally provide a spacing between the hull and another surface (e.g. dock); and (b) an overlying shell/cover of resilient material, such as fabric, or similar flexible material, including certain varieties of plastic (e.g. HDPE), plastic elastomers, neoprene, etc., or combinations of materials. The shell is removably (or permanently) secured as an integral component to the bladder using a variety of attachment mechanisms (described below). The bladder can be shaped so as to accommodate suction cups, as described above, for adherence to the hull surface in a manner that resists slippage. For example, the bladder can define a longitudinal; cross-section/profile with a flattened or concave bottom from which extends a curved perimeter (e.g.) a D-shape (also termed “semi-round”). Alternatively, a cylindrical (circular cross-section/profile) bladder can be used with a separate, integral suction cup base of appropriate size and shape.
Thus, the exemplary embodiment of a fender 1100 of
The external/bottom surface 1146 of the base wedges 1140 are each flattened to conform to the shape of the hull. Note, that the flattened bottom surface 1146 can be slightly concave where appropriate to accommodate the curvature of the hull. In various embodiments, the materials used for the bottom can allow for flexure to conform to a curved hull shape within appropriate geometric surface parameters. The base wedges afford cushioning properties against the hull side and also provide for the dispersion of load over a larger surface area of the hull to reduce the potential for impact damage. The base wedges can be mounted on the opposing side (adjacent the shell 1120) to provide further impact resistance if desired and can be held in place with straps, elastomeric fabric, etc.
The retaining structure 1130 include, or allow for the pass-through from the base wedges 1140 of, suction cups 1150 of appropriate size and shape—for example any sufficiently flexible, gas-impermeable and rugged material, including TPE, rubber or vinyl. The number and spacing of such cups 1150 is highly variable, depending upon the size of the fender and desired holding force. In various embodiments, the suction cups can be affixed to the cushioned base bottom 1146 mechanically, adhered or co-molded to the fabric body and or foam padding. More particularly, the number and size of which to be optimized to the size of a particular fender. Furthermore, the number and size of suction cups, in conjunction with the bladder material, define the holding force of the fender which can be optimized to allow sufficient holding force without (free of) rendering the fender unnecessarily difficult to remove from the hull.
The shell 1120 is maintained laterally on the bladder 1100, against sliding off, by straps or bands 1160 that pass around and provide tension against the ends 1162 of the bladder. The bands or other structures can engage fixation points, such as eyelets or (e.g.) metal D-rings 1170 with bases and/or structures unitarily molded in the bladder vinyl.
More generally, the shell/cover according to various embodiments can be sufficiently flexible to accommodate some variation in fender size via the use of elastic/elastomeric materials and/or adjustable fasteners, such as buckles, hook-and-loop fasteners, or similar arrangements. Alternatively a fabric-like flexible material can be used for the body of the shell/cover in combination with strapping that attaches the hull side suction cup section to the bladder.
The shell/cover can be constructed from ¼ to ½ inch-thick material, and can be sized and arranged to cover approximately one-quarter to one-half of the surface area of the fender, and more particularly along the area likely to be contacted by the adjacent surface under maximum compression. More particularly, the shell/cover extends longitudinally substantially along the length of the bladder/fender.
It should be clear that the shell/cover 1120 and associated retaining structure, base wedges, etc., can be part of a retrofit kit purchased by a user for attachment to an otherwise conventional fender, such as those available from TaylorMade®, and/or other manufacturers/suppliers.
With reference to the embodiment of a fender 1300 shown in
Reference is now made to the illustrative fender 1500 shown in
In another exemplary embodiment of the fender 1800, shown in
In the depicted fender embodiment 2200, the shell/cover 2220 is retained against both radial and lateral motion relative to the bladder 2210 using a pair of encircling straps (webbings) or cords 2230 that can be elastic or non-elastic, and reside in grooves 2240 formed in the bottom of the bladder 2210. These straps or cords can be further attached and/or adjusted using buckles, hook-and-loop fasteners, and the like. In this example, the flattened bottom 2214 at each fender end includes (for example) four suction cups 2260. More or fewer can be provided as appropriate. The central region 2216 of the fender bottom is optionally recessed to render it spaced-apart from the hull when attached. The fixation points 2280 at opposing ends of the fender 2200 are arranged as a rope fender design. An eyelet design can be employed in alternate embodiments.
According to another exemplary embodiment, shown in
Note that where tabs and grooves engage, the connection can be further enhanced by welding, adhesives, fasteners and/or protrusions/detents that create a snap fit.
More generally, a variety of techniques and/or mechanisms can be employed to fasten the shell/cover to the bladder. For example, metal or plastic rivets (e.g. similar to automotive/marine trim fasteners) can be secured through holes in the shell/cover and into female recesses or detents molded into the bladder surface. Alternatively, protrusions can be formed or fused onto the bladder surface that pass through holes on the shell/cover. These protrusions are then secured with snap caps, threaded nuts, etc. Protrusions or detents can also be formed on the shell/cover itself to interengage with mating structures on the bladder. The shell/cover ac also be co-molded with the side of the bladder during manufacture. By way of non-limiting example,
Similarly, in the example of
The molded bladder according to various embodiments herein can be adapted to particular circumstances and uses. The configuration of
In another embodiment of a fender 3000, shown in
The longitudinal length LF3 (
Note that the fender(s) according to the embodiments herein can be constructed using a variety of techniques that should be clear to those of skill. Several layers can be formed separately and then bound together using heat, adhesives and/or other affirming techniques. The entire structure can be co-molded using appropriate techniques. Fenders can be formed (e.g. molded) as discrete units, or from a continuous feed that is cut to appropriate widths using mechanical or energy-based (e.g. laser, ultrasonic, etc.) cutting techniques.
It should be clear that the above described marine fender provides a system for protecting a boat from neighboring objects, such as docks and other boats, which involves no moving parts, and can be used in individual units or groups of fenders together to provide maximum protection to boats during dangerous conditions such as storms and rough water. These fenders can take advantage of custom molding techniques that allow them to be adapted to particular tasks—such as bow protection and/or can be used to enhance the performance of conventional cylindrical fenders.
The foregoing has been a detailed description of illustrative embodiments of the invention. Various modifications and additions can be made without departing from the spirit and scope of this invention. Features of each of the various embodiments described above may be combined with features of other described embodiments as appropriate in order to provide a multiplicity of feature combinations in associated new embodiments. Furthermore, while the foregoing describes a number of separate embodiments of the apparatus and method of the present invention, what has been described herein is merely illustrative of the application of the principles of the present invention. For example, the fenders can be used on other vehicles such as personal watercraft, automobiles, or other items that can benefit from an added layer of impact/abrasion protection. Also, while suction cups, grippers, etc., as depicted as circular in perimeter, they can define any appropriate shape, including ovular, polygonal, irregular shapes, and/or combinations of such shapes. Likewise, where the adherence structure defines discrete suction cups, such can be substituted with small scale suction surfaces or similar adhesion mechanisms (grippers) according to any embodiment herein. Furthermore, as used herein various directional and dispositional terms such as “vertical”, “horizontal”, “up”, “down”, “bottom”, “top”, “side”, “front”, “rear”, “left”, “right”, and the like, are used only as relative conventions and not as absolute directions/dispositions with respect to a fixed coordinate space, such as the acting direction of gravity. Additionally, where the term “substantially” or “approximately” is employed with respect to a given measurement, value or characteristic, it refers to a quantity that is within a normal operating range to achieve desired results, but that includes some variability due to inherent inaccuracy and error within the allowed tolerances of the system (e.g. 1-5 percent). Accordingly, this description is meant to be taken only by way of example, and not to otherwise limit the scope of this invention.
This application is a continuation of co-pending U.S. patent application Ser. No. 17/239,492, entitled MARINE FENDER, filed Apr. 23, 2021, which claims the benefit of co-pending U.S. Provisional Application No. 63/015,357, entitled MARINE FENDER, filed Apr. 24, 2020, the teachings of each of which applications are expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63015357 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17239492 | Apr 2021 | US |
Child | 18239073 | US |