The present disclosure generally relates to offshore transfer of fluid cargo, and more particularly to transfer of liquified gas from a marine vessel to an offshore location utilizing a floating marine platform positioned adjacent the marine vessel.
In the maritime industry, it may be necessary to deliver liquid cargo between ships or between a ship and an offshore platform or terminal. In such instances at least one ship is spread moored to secure the ship during the fluid transfer. Because of this spread mooring, it is difficult to moor the ship adjacent another ship or platform or terminal. Recent advances in the industry have resulted in a floating connection unit carrying tubing for the transfer of liquid cargo. The floating connection unit can be propelled to a position adjacent a spread moored liquid cargo ship where the floating connection unit can be moored directly to the liquid cargo ship, after which, tubing can be connected to manifolds of the liquid cargo ship to initiate flow of liquid cargo. Various mechanisms are provided for propulsion of the floating connection unit towards and away from the liquid cargo ship. One such propulsion mechanism is a chain-crawling drive wherein spooling winches onboard the floating connecting unit are used to pull the floating connection unit along chains disposed on the seabed. The spooling winches are arranged on the deck of the floating connection unit and the chains pass from the seabed upward through elongated vertical columns extending down from the center of the floating connection unit's hull bottom to keep the chains tracking close to the seabed. When moored to the liquid cargo vessel, fenders are provided along the side of the floating connection unit to bear against the side of the liquid cargo ship, allowing the floating connection unit to be secured to the liquid cargo ship during fluid transfer.
One drawback of the described floating connection unit of the prior art is that via the bumpers, the prior art floating connection unit is in physical contact with the liquid cargo ship to which it is moored, such that turbulence from currents, waves, wind and other weather conditions can cause the floating connection unit and the liquid cargo ship to rub against one another, potentially causing damage to both the liquid cargo ship and the floating connection unit.
For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Disclosed herein are systems and methods for offshore transfer of fluid cargo between a liquid cargo ship and another ship, marine platform or marine terminal. In one or more embodiments, the fluid cargo handling system is a floating marine platform having a buoyant hull with an upper deck and a hull bottom with at least one fluid cargo transfer hose carried on a hose reel mounted on the platform to allow fluidic connection between the floating marine platform and an adjacent ship, marine platform or marine terminal. The floating marine platform also includes a drive system that maintains the floating marine platform at an offset distance from another ship, marine platform or marine terminal while the floating marine platform is fluidically connected so that no physical contact is made directly or indirectly between floating marine platform and adjacent ship, marine platform or marine terminal. The drive system has at least two drive devices carried by the marine platform adjacent a first side of the platform and at least two drive devices carried by the marine platform adjacent a second side of the platform, with each of the drive devices along the first side engaging a separate driveline extending from adjacent the hull bottom towards the second side of the platform and each of the drive devices along the second side engaging a separate driveline extending from adjacent the hull bottom towards the first side of the platform. The floating marine platform may include a second deck spaced apart from the upper deck and positioned between the upper deck and the hull bottom, with the first and second drive devices positioned on the second deck so as to be spaced apart from the upper deck. The floating marine platform may include two first drive devices carried by the marine platform adjacent the first side and spaced apart from one another along the first side, and two second drive devices carried by the marine platform along the second side and spaced apart from one another.
In other embodiments, the fluid cargo handling system is a marine platform with a first fluid transfer hose carried on the marine platform, the first fluid transfer hose having a first end and a second end. A manifold system is in fluid communication with the first end of the first fluid transfer hose where the manifold system includes a first valve in fluid communication with first end of the first fluid transfer hose to control fluid flow within the first fluid transfer hose. A first coupler is attached the first valve with a drain tank in fluid communication with the first coupler. Finally, a pressurized fluid source is in fluid communication with the first coupler such that the pressurized fluid source may be activated to drive fluid cargo from the first coupler into the drain tank to ensure that no liquid cargo remains in first coupler during decoupling.
In other embodiments, the fluid cargo handling system includes a marine manifold tower system and a floating marine platform. At least two hose reels are carried by the floating marine platform with a cryogenic hose carried on each hose reel. A first end of each cryogenic hose is in fluid communication with a manifold system carried by the floating marine platform, and a second end of each cryogenic hose is coupled via cryogenic couplings to a cryogenic hose manifold mounted on the marine manifold tower system. The marine manifold tower system includes an elongated tower extending between a first end and a second end with a seabed engagement mechanism at the first end of the elongated tower and the cryogenic hose manifold mounted on the second end of the elongated tower. An access system extending from the second end of the elongated tower along only a portion of the length of the elongated tower to an access platform disposed between the first end and the second end.
Turning to
The fluid cargo handling system 100 includes a marine platform 110 having a buoyant hull 112 with an upper deck 114 and a hull bottom 116. The marine platform 110 has an elongated first side 118 and an elongated second side 120 spaced apart from and generally opposing the elongated first side 118. In some embodiments, the buoyant hull 112 may include one or more columns 115 extending between the hull bottom 116 and the upper deck 114. In some embodiments, the buoyant hull 112 may be a barge. In any event, buoyant hull 112 may be characterized as having a centerline plane 157 generally parallel between first side 118 and second side 120 and passing through the center of gravity G of the buoyant hull 112. As such, it will be appreciated that plane 157 generally bisects marine platform 110 and buoyant hull 112.
The fluid cargo handling system 100 may also include a lifting and handling crane 124, which in some embodiments, may be mounted adjacent the upper deck 114. The fluid cargo handling system 100 includes at least one fluid transfer hose 132. In some embodiments, fluid cargo handling system 100 includes at least three fluid transfer hoses 132. In such embodiments, two of the fluid transfer hoses 132 may be cryogenic hoses and one hose may be a vapor hose. In any event, the one or more fluid transfer hoses 132 may each be mounted on a hose reel 128 carried by the marine platform 110. In some embodiments, the hose reel 128 may be mounted adjacent the second side 120 of marine platform 110 so as to be spaced apart from the first side 118 to facilitate activities between fluid cargo transport vessel 200 and the marine platform 110. As used herein, a hose may be any flexible tubular utilized for conveyance of a fluid.
A liquid manifold assembly 136 may carried by marine platform 110. In some embodiments, the liquid manifold assembly 136 is adjacent a first side 118 of marine platform 110 so as to be spaced apart from the hose reel(s) 128. The liquid manifold assembly 136 is in fluid communication with at least one of the one or more fluid transfer hoses 132. Liquid manifold assembly 136 also includes one or more fluid transfer hoses 138 which can be coupled to liquid manifold assembly 206 of fluid cargo transport vessel 200 to transfer liquid cargo between fluid cargo handling system 100 and fluid cargo transport vessel 200.
The fluid cargo handling system 100 includes a standoff system 102 to permit the marine platform 110 to be positioned adjacent a floating platform, such as a fluid cargo transport vessel 200 or a floating marine storage unit (see
As best seen in
While the drive devices 142 are preferably spaced apart from one another, such as on opposing sides 118, 120 of marine platform 110, they need not be so long as the exit point 150 for each driveline 146 is spaced apart from plane 157 but each driveline 146 extends under hull bottom 116 in a direction opposite from the exit point 150. For example, first driveline 146a exits hull bottom 116 at exit point 150a (which is generally adjacent first side 118) and then crosses back under hull bottom 116 so that first driveline 146a passes below second side 120. Likewise, second driveline 146b exits hull bottom 116 at exit point 150b (which is generally adjacent second side 120) and then crosses back under hull bottom 116 so that second driveline 146b pass below first side 118. In other embodiments, the respective drivelines 146 may not pass below a side, but still extend back under hull bottom 116 in the direction of a side that is opposite the side from where the driveline 146 exits the hull bottom 116. Thus, each driveline crosses back under hull bottom 116 to pass under the opposite side of marine platform 110. Marine platform 110 may be characterized as having a plane 157 through the center of gravity of hull bottom 116. First driveline 146a exits hull bottom 116 between plane 157 and first side 118 of marine platform 110 and then passes under hull bottom 116 through plane 157 back towards second side 120. Second driveline 146b exits hull bottom 116 between plane 157 and second side 120 of marine platform 110 and then passes under hull bottom 116 through plane 157 back towards first side 118. In any event, the drivelines 146 together allow marine platform 110, and thus fluid cargo handling system 100, to travel in at least two different directions. It should be noted that because drivelines 146 extend from buoyant hull 112 from adjacent hull bottom 116, such as at exit points 150, the overall draft of marine platform 110 can be minimized, while improving the stability of marine platform 110 over prior art marine platforms.
In one or more embodiments, the drive devices 142 are segregated from those locations adjacent the upper deck 114 where gaseous vapor from fluid cargo handling may be present. Buoyant hull 112 may include an interior 113 between the upper deck 114 and the hull bottom 116, with the first and second drive devices 142a, 142b positioned within the interior 113 of buoyant hull 112. In some embodiments, drive devices 142 may be positioned at a location below the upper deck 114. In the illustrated embodiment, marine platform 110 includes a second deck 117 spaced apart from the upper deck 114 and positioned between the upper deck 114 and the hull bottom 116. Drive devices 142a, 142b are positioned on the second deck 117 so as to be isolated from the fluid handling equipment on upper deck 114. In other embodiments, the drive devices 142 may be positioned within positive pressure enclosures 143, such as deck houses, positioned on the upper deck 114. In the latter embodiments, positive pressure enclosures 143 include an air handling system 145 to ensure an air overpressure inside the positive pressure enclosures 143 as compared to the outside environment, thereby ensuring that gaseous vapor from fluid cargo that may arise from fluid cargo transfer does not migrate to the drive devices 142. In one or more embodiments, the air handling system 145 may include indoor pressure sensor (not shown) disposed within the positive pressure enclosures 143 (or an air supply duct for the positive pressure enclosures 143) and an outdoor pressure sensor (not shown) disposed outside of the positive pressure enclosures 143. The air handling system 145 is disposed to ensure that the inside pressure within positive pressure enclosures 143 as measured by the indoor pressure sensor is higher than the outside pressure as measure by the outdoor pressure sensor. Thus, air handling system 145 may include a variable speed supply fan (not shown) to supply air to positive pressure enclosures 143. In one or more embodiments, the positive pressure enclosures 143 may be maintained at an air pressure range of 0.02 in. to 0.2 in water column (H20).
As described above, in some embodiments, buoyant hull 112 may include one or more columns 115 extending between the hull bottom 116 and the upper deck 114 within interior 113. Each column 115 may have a base attached to the hull bottom 116 with a drive device 142 mounted within column 115. Driveline 146 engaged by the drive device 142 extends down through the column 115 and extends from the base of the column 115 through the hull bottom 116 at exit point 150. Columns 115 may be vertical or angled. It will be appreciated that a column 115 as described may function as an elongated driveline guide for directing a driveline 146 through or along marine platform 110. In some embodiments, rather than being within the interior 113 of buoyant hull 112, columns 115 may extend adjacent sides 118, 120 of marine platform 110. Such an arrangement could permit existing marine platform to be retrofitted with standoff system 102.
In addition, a separate hull driveline guide 158 may be provided at exit point 150 where the driveline exits hull bottom 116. So as not to increase the overall draft of marine platform 110, as shown in
In one or more embodiments, standoff system 102 may be dynamic and include one or more proximity sensors 141 utilized to actuate drive devices 142 in order to ensure that fluid cargo handling system 100 is maintained at a desired stand-off distance D from fluid cargo transport vessel 200 during fluid transfer operations. Drive system 140 can activate each drive device 142 to pay out or take up drivelines 146 in order to maintain the desired stand-off distance D. In this regard, it will be appreciated that the drive devices 142 may function in concert in order to maintain the desired stand-off distance D. In some embodiments, drive device 140 may include a controller 139 having a microprocessor 139′ disposed to receive instructions regarding a desired offset distance and monitor proximity sensor 141 providing an actual offset distance D. Based on a comparison by the microprocessor 139′ between the actual offset distance and the desired offset distance, controller 139 can actuate one or more drive devices to pay out or take in drivelines to achieve the desired offset distance. Although not limited to a particular type of sensor, in one or more embodiments, proximity sensor 141 may be an inductive proximity sensor, an optical proximity sensor, a capacitive proximity sensor, a magnetic proximity sensor and an ultrasonic proximity sensor. In addition to one or more proximity sensors 141 positioned adjacent first side 118, one or more proximity sensors 141 may also be positioned adjacent second side 120 of marine platform 110.
As best seen in
In some embodiments, the drive system 140 may have only two drive devices 142 and two drivelines 146, while in other embodiments, the drive system 140 may have only three drive devices 142 and three drivelines 146.
With reference to
As can be seen, positioned along the upper deck 114 of marine platform 110 are one or more hose reels 128. In the illustrated embodiment, three hose reels 128a, 128b, 128c are shown. In some embodiments, as shown, hose reel(s) 128 may be positioned on marine platform 110 adjacent second side 120. Each hose reel 128 may have a fluid transfer hose 132 mounted thereon, such as fluid transfer hoses 132a, 132b and 132c, respectively. One or more fluid transfer hoses 132 may be cryogenic hoses for transfer of cryogenic fluid cargo. In one or more embodiments, fluid transfer hoses 132 may be floating hoses (see
Also shown positioned adjacent upper deck 114 is a liquid manifold assembly 136 fluidically coupled to one or more fluid transfer hoses 138. In some embodiments, as shown, liquid manifold assembly 136 may be positioned on marine platform 110 adjacent first side 118, spaced apart from hose reels 128. Liquid manifold assembly 136 may also be supported above upper deck 114. In this regard, in some embodiments, liquid manifold assembly 136 is elevated at least 16 meters above sea level. In any event, fluid transfer hose hoses 132 are fluidically coupled to liquid manifold assembly 136 so as to be in fluid communication with one or more of fluid transfer hoses 138.
A handling crane 124 may be mounted adjacent upper deck 114 and utilized to manipulate fluid transfer hoses 138. Pumping equipment 123 may also be provided on marine platform 110 in order to pump fluid through one or more of fluid transfer hoses 132 and 138. In one or more embodiments, hose reels 128 may be located adjacent the second side 120 of marine platform 110 and the liquid manifold assembly 136 may be located adjacent the first side 118 of marine platform 110.
Shown in
Similarly, the second drive device 142b and the fourth drive device 142d are each positioned adjacent the second side 120 of marine platform 110 and spaced apart from one another, with the second drive device 142b adjacent to or closer to the first end 121 of marine platform 110 and the fourth drive device 142d adjacent to or closer to the second end 122 of marine platform 110. The second and fourth drive devices 142b, 142d each engage their respective drivelines 146b, 146d which extend under marine platform 110 away from second side 120 so as to pass across buoyancy plane 157. In other words, drivelines 146b, 146d do not pass under second side 120.
In one or more embodiments, drivelines 146 may be spread moored such as is shown in
With reference to
Turning to
The second end 132″ of each cryogenic hose 132 is connected to the marine manifold tower system 400 via cryogenic couplers 133. The marine manifold tower system 400 includes a submerged seabed conveyance system 440 to enable cryogenic liquid cargo transfer activities such as are described herein to be located offshore, in some cases 5 kilometers or more from shore, but above the seabed and waterline, thereby prolonging the integrity of the cryogenic couplers 133 utilized between cryogenic hose(s) 132 and submerged seabed conveyance system 440 and avoiding the need for a seabed pipe line end manifold (PLEM) and risers as is common in the industry.
Generally, the marine manifold tower system 400 includes an elongated tower 404 having a first end 408 and a second end 410 with a waterline 411 defined therebetween. The first end 408 of the tower 404 includes a seabed engagement mechanism 414 for engaging ocean floor 413. The second end 410 of the tower 404 includes one or more cryogenic hose manifold assemblies 418 for coupling to cryogenic hoses 132, and in particular, the second end 132″ of hoses 132 utilizing cryogenic couplers 133. In one or more embodiments, a connection platform 432 is disposed at the second end 410 of the elongated tower 404 and on which the one or more cryogenic hose manifold assemblies 418 are mounted. In one or more embodiments, a handling device 409, such as a crane, davit or winch, for handling of fluid transfer hoses 132 is also mounted on connection platform 432. Importantly, all cryogenic couplers 133 between the second end 132″ of hoses 132 and a cryogenic hose manifold assembly 418 are spaced apart from waterline 411 above waterline 411 so that no essential components of the cryogenic couplers 133 are submerged, it being appreciated that the extreme temperature differences between the cryogenic fluid cargo carried by fluid transfer hoses 132 and the ocean water, as well as the corrosive nature of the ocean water, could significantly impact the cryogenic couplings more so than couplings for standard temperature and pressure liquids. As such, the marine manifold tower system 400 is particularly desirable for cryogenic liquid transfer, such as green ammonia transfer, LNG transfer or liquified propane gas (LPG) transfer, while allowing the fluid cargo transport vessel 200 to remain safely offshore.
In one or more embodiments, marine manifold tower system 400 further includes an access system 424 mounted along elongated tower 404 and extending from the second end 410 of the elongated tower 404 along only a portion of the length of the elongated tower 404 to an access platform 428 disposed between the first end 408 and the second end 410. Access system 424 may include a ladder 429 or stairs extending from access platform 428 to connection platform 432. In one or more embodiments, the access platform 428 is positioned to be at or above the waterline 411 to permit personnel access from a marine vessel (not shown) moored adjacent the access platform 428. In one or more embodiments, the access system 424 may be within elongated tower 404 allowing access to connection platform 432 through an interior passage 433 of elongated tower 404, thereby protecting personnel from the environment.
Elongated tower 404 is formed of a hollow tubular 431 having an interior passage 433 through which one or more internal cryogenic tubulars 435 extend from adjacent the first end 408 to the second end 410 of elongated tower 404, fluidically coupling cryogenic hose manifold assembly 418 to a seabed conveyance system 440. In one or more embodiments, cryogenic tubulars 435 may form part of seabed conveyance system 440. As shown in
While marine manifold tower system 400 has been described as being fluidically coupled to a fluid cargo handling system 100 as described herein via one or more cryogenic hose 132, in other embodiments, a cryogenic hose 132 coupled to marine manifold tower system 400 may be an aerial hose extending directly between elongated tower 404 and a floating storage unit 300 or fluid cargo transport vessel 200 moored adjacent to elongated tower 404.
In one or more embodiments, tower 404 is a mono pole or single mast tower with a single leg, namely the first end 408 of the tower 404, disposed to engage the ocean floor 413, while in other embodiments, tower 404 may be another type of tower, including but not limited to lattice tower with two or more legs (not shown), tripod and jacket towers. In any case, as best seen in
As best seen in
With reference to
Quick release manifold system 536 is shown in more detail in
A first valve 538 forming part of a liquid manifold assembly 136 on marine platform 110 is in fluid communication with first end 132′ of fluid transfer hose 132. A second valve 539 forming part of a liquid manifold assembly 206 on liquid cargo marine vessel 500 is in fluid communication with first end 138′ of fluid transfer hose 138. A first coupler 540 is attached to the first valve 538 and disposed to fluidically communicate with first valve 538 and second valve 539 when first and second valves 538, 539 are open. In one or more embodiments, the first coupler 540 is a quick release mechanism. Valves 538, 539 may be cryogenic valves and first coupler 540 may be a cryogenic coupler disposed to convey cryogenic fluids.
Quick release manifold system 536 is particularly desirable as an emergency release for fluid cargo transfer systems where toxic or harmful fluid or gas may be present, such as during transfer of liquified ammonia or other liquids, including but not limited to the cryogenic liquids described herein. Emergency release events may include but are not limited to weather events such as hurricanes, waves or wind, as well as operational events such as equipment failure, fire, leaks and the like. It will be appreciated that upon the occurrence of an emergency release event, or in anticipation of an imminent emergency release event, it may be necessary to quickly disengage connections between fluid cargo handling system 600 and another vessel, such as liquid cargo marine vessel 500. In prior art systems, as valves are closed and hoses are disengaged from one another, a small amount of fluid cargo, such as ammonia or LNG, may remain in the cavity of the standard quick release mechanism and may be spilled during release of the quick release mechanism, i.e., the few liters trapped between two valves, specifically the fluid that may be present in the quick release mechanism between valves.
The quick release manifold system 536 of the disclosure utilizes an inert fluid to purge the quick release manifold system 536 before release activation. As illustrated, generally a first fluid transfer hose 132 is in fluid communication with a second fluid transfer hose 138 via the quick release manifold system 536. Quick release manifold system 536 includes a first valve 538 in fluid communication with first end 132′ of the fluid transfer hose 132 to control fluid flow within the fluid transfer hose 132. Likewise, quick release manifold system 536 includes a second valve 539 in fluid communication with first end 138′ of the fluid transfer hose 138 to control fluid flow within the fluid transfer hose 138.
In one or more embodiments, the cryogenic coupler 133 described above may be first coupler 540 as described in relation to quick release manifold system 536. However, first coupler 540 need not be a cryogenic coupler, i.e., a coupler disposed for use with cryogenic liquids, but may be used for other liquids or gases as well. In any event, a pressurized fluid source 550 is in fluid communication with the first coupler 540 via an inlet port 551. In one or more embodiments, pressurized fluid source 550 functions as a source of pressurized inert gas, while in other embodiments, pressurized fluid source 550 may supply another type of pressurized fluid. Likewise, a drain tank 544 is in fluid communication with the first coupler 540 via a waste fluid outlet 552. The quick release manifold system 536 utilizes a pressurized inert gas, including but not limited to nitrogen, from the pressurized fluid source 550 to quickly purge first coupler 540 of ammonia, other toxic or harmful liquid or gas, or any other fluid cargo that may be present after the valves 538, 539 have been closed but before release of the coupler 540.
Purging fluid inlet 551 is fluidically coupled to the pressurized fluid source 550, and waste fluid outlet 552 is fluidically coupled to the drain tank 544. In one or more embodiments, the waste fluid outlet 552 is positioned in a lower portion of coupler body 541 to facilitate drainage of first coupler 540. In some embodiments, purging fluid inlet 551 may be positioned above waste fluid outlet 552 in coupler body 541. In this regard, the waste fluid outlet 552 may be spaced apart from the purging fluid inlet 551. When first and second valves 538, 539 are closed, coupler 540 is sealed for purging. Specifically, when first valve 538 and second valve 539 are closed, pressurized fluid source 550 is disposed to inject a pressurized fluid, such as an inert gas, into internal cavity 543 to purge internal cavity 543 of any residual liquid cargo therein, driving any such residual liquid cargo into drain tank 544 as waste fluid that includes the purging fluid and any other liquid or gas remaining in internal cavity 543 after the first and second valves 538, 539 are closed. In one or more embodiments, the inert gas is nitrogen.
Although first coupler 540 and first valve 538 are described herein as separate structures, the first coupler 540 and first valve 538 may be integrally formed with one another so long as an internal cavity 543 of the integral structure is in fluid communication with each of the pressurized fluid source 550 and drain tank 544 when the first valve 538 is closed, thereby isolating internal cavity 543. More specifically, internal cavity 543 is defined downstream of first valve 538 between first valve 538 and second port 558.
The fluid cargo handling system may also include an engagement mechanism 549 to secure first coupler 540 to an adjacent fitting, such as second valve 539 as shown in
As shown in
In one or more embodiments, engagement mechanism 549 may be hydraulically actuated to release an adjacent fitting (such as second valve 539 or second coupler 546) from first coupler 540. In some embodiments, engagement mechanism 549 may be in pressure communication with internal cavity 543 so that once a threshold pressure is achieved within internal cavity 543 to ensure any residual liquid cargo is purged therefrom, the threshold pressure will actuate engagement mechanism 549 automatically to release an adjacent fitting. In other embodiments, a sensor 553 disposed to measure a condition of internal cavity 543 may be used to actuate engagement mechanism 549. For example, in some embodiments, sensor 553 may be a pressure sensor disposed to measure the internal pressure within internal cavity 543. In this regard, the internal pressure within internal cavity 543 resulting from the inert gas charged within internal cavity 543 may be utilized to rapidly push fluid transfer hose 138 and second valve 539 away from liquid manifold assembly 136 during a quick release procedure.
In some embodiments, one or both of drain tank 544 and pressurized fluid source 550 are carried on the marine platform 110, while in other embodiments, pressurized fluid source 550 may be a pressurized tank or cavity integrally formed as part of first coupler 540.
While the quick release manifold system has been described in relation to marine platforms, it will be appreciated that the quick release manifold system may also be utilized for any manifold system, including dockside manifold systems and other land-based manifold systems for transfer of fluids, whether liquid or gas.
In an operation for transferring fluid cargo between two marine platforms, such as a marine platform 110 and a liquid cargo marine vessel 500, a first coupler 540 is used to fluidically couple a first valve 538 to a second valve 539. The first valve 538 and second valve 539 may be opened, actuated or operated to allow liquid cargo, such as a cryogenic fluid, to flow between the marine platform 110 and the liquid cargo marine vessel 500. In this regard, the liquid cargo may be pumped between the marine platform 110 and the liquid cargo marine vessel 500. Upon identification of an event, such as an emergency release event, that would require a quick cessation of flow and release of the coupling so as to permit liquid cargo marine vessel 500 to quickly be moved away from marine platform 110, the first and second valves 538, 539 are closed to isolate the first coupler 540, and a pressurized flushing fluid, such as an inert pressurized gas, is injected into first coupler 540. The pressurized fluid is used to flush the internal cavity 543 of first coupler 540 of any residual liquid cargo that may remain in first coupler 540 after first and second valves 538 were closed. In particular, the pressurized fluid is utilized to drive any such residual liquid cargo that may be present in internal cavity 543 into a drain tank 544. Thereafter, an engagement mechanism 549 may be actuated to separate second valve 539 from first coupler 540 and first valve 538. In some embodiments, the inert pressurized gas is nitrogen. In some embodiments, the cryogenic fluid is green ammonia, and as such, it will be appreciated that it is desirable to ensure that no residual ammonia is present when second valve 539 is released. In other embodiments, the cryogenic fluid is selected from one of liquified natural gas, liquified petroleum gas, green ammonia, liquified carbon dioxide, and liquified hydrogen.
Thus, a fluid cargo handling system has been described. In one or more embodiments, the fluid cargo handling system includes a marine platform having a buoyant hull with an upper deck and a hull bottom, the marine platform having a first side and a second side spaced apart from the first side; at least one hose reel carried by the marine platform; a first fluid transfer hose carried on the hose reel; a liquid manifold assembly carried by the platform and in fluid communication with the first fluid transfer hose; and a drive system comprising a first drive device carried by the marine platform and a second drive device carried by the marine platform; a first driveline engaged by the first drive device and extending from the hull bottom adjacent the first side towards the second side; and a second driveline engaged by the second drive device and extending from the hull bottom adjacent the second side towards the first side. In one or more embodiments, the fluid cargo handling system includes a marine platform having a buoyant hull with an upper deck and a hull bottom, the marine platform having an elongated first side and an elongated second side spaced apart from and opposing the elongated first side, a first end and a second end; a liquid manifold assembly carried by the platform; a first fluid transfer hose in fluid communication with the liquid manifold assembly, the first fluid transfer hose extending from the marine platform adjacent the second side; a second fluid transfer hose adjacent the first side of the marine platform and in fluid communication with the liquid manifold assembly; and a drive system comprising a first drive device carried by the marine platform adjacent the elongated first side and a second drive device carried by the marine platform adjacent the elongated second side, a third drive device carried by the marine platform adjacent the elongated first side and spaced apart from the first drive device, a fourth drive device carried by the marine platform adjacent the elongated second side and spaced apart from the second drive device, a first driveline engaged by the first drive device and extending from the hull bottom adjacent the first side towards the second side, a second driveline engaged by the second drive device and extending from the hull bottom adjacent the second side towards the first side, a third driveline engaged by the third drive device and extending from the hull bottom adjacent the first side towards the second side; and a fourth driveline engaged by the fourth drive device and extending from the hull bottom adjacent the second side towards the first side. In one or more embodiments, the fluid cargo handling system includes a marine platform having a buoyant hull with an upper deck and a hull bottom, the marine platform having an elongated first side and an elongated second side spaced apart from and opposing the elongated first side, a first end and a second end with a centerline plane generally parallel between the first side and second side and passing through the first end and second end to bisects buoyant hull; at least one hose reel carried by the marine platform adjacent the second side; a first fluid transfer hose carried on the hose reel; a liquid manifold assembly carried by the platform adjacent the first side and in fluid communication with the first fluid transfer hose; and a drive system comprising a first drive device carried by the marine platform adjacent the first side and a second drive device carried by the marine platform adjacent the second side; a first driveline engaged by the first drive device and extending from adjacent the first side away from the first side and through the centerline plane, and a second driveline engaged by the second drive device and extending from adjacent the second side away from the second side and through the centerline plane. In one or more embodiments, the fluid cargo handling system includes a marine platform having a buoyant hull with an upper deck and a hull bottom, the marine platform having an elongated first side and an elongated second side spaced apart from and opposing the elongated first side, a first end and a second end with a centerline plane generally parallel between the first side and second side and passing through the first end and second end to bisects buoyant hull; a lifting and handling crane mounted adjacent the upper deck; at least two hose reels carried by the marine platform adjacent the second side; a first fluid transfer hose carried on each hose reel; a liquid manifold assembly carried by the platform adjacent the first side and in fluid communication with each first fluid transfer hose; at least one second fluid transfer hose adjacent the first side of the marine platform and in fluid communication with the liquid manifold assembly; a standoff system comprising a drive system and a proximity sensor, wherein the proximity sensor is disposed adjacent the first side of the marine platform; and a drive system comprising a first drive device carried by the marine platform, a second drive device carried by the marine platform, a third drive device carried by the marine platform, a fourth drive device carried by the marine platform, a first driveline engaged by the first drive device and extending from adjacent the first side away from the first side and through the centerline plane, a second driveline engaged by the second drive device and extending from adjacent the second side away from the second side and through the centerline plane, a third driveline engaged by the third drive device and extending from adjacent the first side away from the first side and through the centerline plane, wherein the first driveline is spaced apart from the third driveline along the first side, a fourth driveline engaged by the fourth drive device and extending from adjacent the second side away from the second side and through the centerline plane, wherein the second driveline is spaced apart from the fourth driveline along the second side.
In one or more embodiments, the fluid cargo handling system includes a marine platform having a buoyant hull with an upper deck and a hull bottom, the marine platform having a first side and a second side; at least two hose reels carried by the marine platform and mounted on the upper deck adjacent the second side; a first cryogenic hose carried on each hose reel, each cryogenic hose having a first end and a second end; a liquid manifold assembly carried by the platform adjacent the first side and in fluid communication with the first end of each first cryogenic hose; and a marine manifold tower system comprising an elongated tower having a first end and a second end; wherein the first end comprises a seabed engagement mechanism and the second end comprises a liquid manifold assembly, wherein the second end of each cryogenic hose is coupled to the cryogenic hose manifold. In one or more embodiments, the fluid cargo handling system includes a marine platform having a buoyant hull with an upper deck and a hull bottom, the marine platform having a first side and a second side; a lifting and handling crane mounted adjacent the upper deck; at least two first cryogenic hoses carried on marine platform, each cryogenic hose having a first end and a second end; a liquid manifold assembly carried by the platform adjacent the first side and in fluid communication with the first end of each first cryogenic hose; and a marine manifold tower system comprising an elongated tower having a first end and a second end; wherein the first end comprises a seabed engagement mechanism and the second end comprises a cryogenic hose manifold assembly, wherein the second end of each cryogenic hose is coupled to the cryogenic hose manifold assembly.
In one or more embodiments, the fluid cargo handling system includes a first marine platform; a first fluid transfer hose carried on the first marine platform, the first fluid transfer hose having a first end and a second end; and a quick release manifold system carried on the first marine platform and in fluid communication with the first end of the first fluid transfer hose, wherein the quick release manifold system comprises a first valve in fluid communication with first end of the first fluid transfer hose to control fluid flow within the first fluid transfer hose; a first coupler attached to the first valve; a drain tank carried on the first marine platform and in fluid communication with the first coupler; and a pressurized fluid source carried on the first marine platform and in fluid communication with the first coupler. In one or more embodiments, the fluid cargo handling system includes a first marine platform; a first fluid transfer hose carried on the first marine platform, the first fluid transfer hose having a first end and a second end; and a quick release manifold system carried on the first marine platform and in fluid communication with the first end of the first fluid transfer hose, wherein the quick release manifold system comprises a first valve in fluid communication with first end of the first fluid transfer hose to control fluid flow within the first fluid transfer hose; a first coupler attached to the first valve; a drain tank carried on the first marine platform and in fluid communication with the first coupler; and a pressurized fluid source carried on the first marine platform and in fluid communication with the first coupler. In one or more embodiments, the fluid cargo handling system includes a first marine platform; a first fluid transfer hose carried on the first marine platform, the first fluid transfer hose having a first end and a second end; a second marine platform; a second fluid transfer hose carried on the second marine platform, the second fluid transfer hose having a first end and a second end; a quick release manifold system carried on the first marine platform and in fluid communication with the first end of the first fluid transfer hose, wherein the quick release manifold system comprises a first valve in fluid communication with first end of the first fluid transfer hose to control fluid flow within the first fluid transfer hose; a first coupler attached to the first valve; a drain tank carried on the first marine platform and in fluid communication with the first coupler; and a pressurized fluid source carried on the first marine platform and in fluid communication with the first coupler; and a second valve in fluid communication with first end of the second fluid transfer hose to control fluid flow within the second fluid transfer hose, wherein the second marine platform is adjacent the first marine platform; and wherein the second valve is in fluid communication with the first coupler. In one or more embodiments, the fluid cargo handling system includes a first marine platform; a first fluid transfer hose carried on the first marine platform, the first fluid transfer hose having a first end and a second end; a second marine platform; a second fluid transfer hose carried on the second marine platform, the second fluid transfer hose having a first end and a second end; a quick release manifold system carried on the first marine platform and in fluid communication with the first end of the first cryogenic liquid hose, wherein the quick release manifold system comprises a first valve in fluid communication with first end of the first cryogenic liquid hose to control fluid flow within the first cryogenic liquid hose; a first coupler attached to the first cryogenic valve; a drain tank carried on the first marine platform and in fluid communication with the first coupler; and a pressurized fluid source carried on the first marine platform and in fluid communication with the first coupler; and a second valve in fluid communication with first end of the second fluid transfer hose to control fluid flow within the second cryogenic liquid hose, wherein the second marine platform is adjacent the first marine platform; and wherein the second valve is in fluid communication with the first coupler. In one or more embodiments, a fluid handling system includes a first fluid transfer hose, the first fluid transfer hose having a first end and a second end; a second fluid transfer hose, the second fluid transfer hose having a first end and a second end; a first valve in fluid communication with first end of the first fluid transfer hose to control fluid flow within the first fluid transfer hose; a second valve in fluid communication with first end of the second fluid transfer hose to control fluid flow within the second fluid transfer hose; a first coupler attached to the first valve and the second valve, the first coupler having a first port in fluid communication with the first valve, a second port in fluid communication with the second valve, a purging fluid inlet and a waste fluid outlet; a pressurized fluid source in fluid communication with the purging fluid inlet of the first coupler; and a drain tank in fluid communication with the waste fluid outlet of the first coupler. In one or more embodiments, a fluid handling system includes a first valve having a valve port; a second valve having a valve port; a coupler attached to the first valve and the second valve, the coupler having a first port in fluid communication with the valve port of the first valve, a second port in fluid communication with the valve port of the second valve, a purging fluid inlet and a waste fluid outlet; a pressurized fluid source in fluid communication with the purging fluid inlet of the coupler; and a drain tank in fluid communication with the waste fluid outlet of the coupler.
Any of the foregoing fluid cargo handling system may further include, alone or in combination, any of the following:
In addition, a method of transferring fluid cargo between two marine platforms has been described. One embodiment of the fluid cargo transfer method includes utilizing a quick release mechanism to couple a first valve of a first marine platform to a second valve of a second marine platform; operating the first and second valves to initiate flow of a cargo fluid between the first and second marine platforms; closing the first and second valves to isolate the quick release mechanism; injecting a pressurized flushing fluid into the quick release mechanism; and utilizing the injected pressurized fluid to flush the quick release mechanism of cargo fluid remaining in the quick release mechanism after the first and second valves are closed. One embodiment of the fluid cargo transfer method includes utilizing a quick release mechanism to couple a first valve of a first marine platform to a second valve of a second marine platform; operating the first and second valves to initiate flow of a cargo fluid between the first and second marine platforms; closing the first and second valves to isolate the quick release mechanism; injecting a pressurized flushing fluid into the quick release mechanism; flushing the quick release mechanism of cargo fluid remaining in the quick release mechanism after the first and second valves are closed; and utilizing the injected pressurized fluid to drive the flushed cargo fluid into a drainage tank. In other embodiments, a fluid transfer method includes utilizing a quick release mechanism to couple a first valve to a second valve; operating the first and second valves to initiate flow of a fluid between the first and second valves; closing the first and second valves to isolate the quick release mechanism; injecting a pressurized flushing fluid into the quick release mechanism; and utilizing the injected pressurized fluid to flush the quick release mechanism of fluid remaining in the quick release mechanism after the first and second valves are closed. One embodiment of a fluid transfer method includes utilizing a quick release mechanism to couple a first valve to a second valve; operating the first and second valves to initiate flow of a fluid between the first and second valves; closing the first and second valves to isolate the quick release mechanism; injecting a pressurized flushing fluid into the quick release mechanism; flushing the quick release mechanism of fluid remaining in the quick release mechanism after the first and second valves are closed; and utilizing the injected pressurized fluid to drive the flushed fluid into a drainage tank. One embodiment of a fluid transfer method includes utilizing a quick release mechanism to couple a first valve to a second valve; operating the first and second valves to initiate flow of a cryogenic liquid between the first and second valves; closing the first and second valves to isolate the quick release mechanism; injecting a pressurized flushing gas into the quick release mechanism; flushing the quick release mechanism of cryogenic liquid remaining in the quick release mechanism after the first and second valves are closed; and utilizing the injected pressurized flushing gas to drive the cryogenic liquid into a drainage tank.
Any of the foregoing embodiments of a method for transferring fluid cargo between two marine platforms may include alone or in combination, any of the following:
Although various embodiments have been shown and described, the disclosure is not limited to such embodiments and will be understood to include all modifications and variations as would be apparent to one skilled in the art. Therefore, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed; rather, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure as defined by the appended claims.
This application claims the benefit of priority to U.S. Provisional Application No. 63/363,983, filed May 2, 2022, the benefit of which is claimed and the disclosure of which is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63363983 | May 2022 | US |