Not applicable
Not applicable
1. Field of the Invention
The present invention relates to marine lifting devices. More particularly, the present invention relates to an improved catamaran type lifting apparatus that employs spaced apart or catamaran hulls, each of the hulls supporting a truss or frame that spans between the hulls at spaced apart positions. Even more particularly, the present invention relates to an improved catamaran lifting apparatus for use in a marine environment, wherein spaced apart frames are connected to the hulls in a configuration that spaces the vessels apart, the first frame connecting with a first of the hulls with the universal joint and to the second hull with a hinged connection, the second frame connecting to the second hull with a universal joint and to the first hull with a hinged connection.
2. General Background
A catamaran lifting apparatus that can be used to lift multi-ton objects employs two spaced apart barges or hulls or vessels. In general, such lifting devices that employ a pair of spaced apart hulls have been patented, many patents having been issued to applicant as contained in the following table.
The present invention provides an improved catamaran lifting apparatus that employs first and second spaced apart vessels or hulls. The vessels can be barges, dynamically positioned marine vessels, other floating hulls or the like.
A first frame or truss spans between the vessels or hulls at a first position. A second frame or truss spans between the hulls at a second position. The first and second positions are spaced apart so that each frame can move independently of the other, notwithstanding wave action acting upon the hulls. Load spreaders can provide an interface between each frame or truss and each vessel (e.g. barge, ship, etc.)
The first of the frames or trusses connects to the first hull or vessel with a universal joint and to the second hull or vessel with a hinged connection. The second frame connects to the second hull with a universal joint and to the first hull with a hinged connection.
The catamaran hull arrangement of the present invention provides longitudinal flexibility in a quartering sea state due to the unique universal joint and hinge placement between the frames or trusses and the hulls or vessels.
Each frame extends upwardly in a generally inverted u-shape that provides space under each frame or truss and in between the vessels or hulls for enabling a marine vessel to be positioned in between the hulls and under the frames. The space in between the hulls or vessels and under the frames or trusses can also be used as clearance for elevating an object to be salvaged from the seabed to a position next to or above the water's surface.
In a plan view, each frame or truss can be generally triangular in shape. Winches and rigging such as a block and tackle arrangement can be used to lift objects with the apparatus of the present invention. The frames can each be of a truss configuration.
In a second embodiment, one or more slings can be provided that connect between a frame and a hull. The connection of each frame to a hull opposite the universal joint can be a pinned or a hinged connection.
For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein:
The first frame 13 connects to hull 11 with universal joint 15 (or articulating connection). The first frame 13 connects to vessel 12 with a pinned connection or hinge 16. Similarly, the second frame 14 connects to hull 12 with a universal joint 17 (or articulating connection) and to hull 11 with a hinge or pinned connection 18 (see
An interface such as a deck beam or load spreader platform 19 or 20 can be provided on the upper deck 30 of each hull 11, 12 for forming an interface between the frames 13, 14 and the vessels 11, 12. For example, vessel 11 is provided with deck beam or load spreader platform 19 on its deck 30 that forms an interface between each of the frames 13, 14 and the barge or vessel 11 deck 30. Deck beam or load spreader platform 20 provides an interface between each of the frames 13, 14 and deck 30 of the vessel or barge 12.
In
In
Each of the frames 13, 14 can be in the form of a truss as shown. The frames are generally speaking in the shape of an arch or inverted U so that an area is provided under the frames and above the water surface for raising an item that is being salvaged or to lift an item from a barge or other vessel or support that is under the frames. Each truss or frame 13, 14 can be a one piece structure (see
Slings can optionally be provided for connecting the center section 27 to the lower end portion of each of the smaller truss sections 28, 29. Shackles can be used to attach each of the slings to eyelets or padeyes on the center section 27. Likewise, shackles can be used to attach the slings to eyelets or padeyes on the smaller truss sections 28, 29.
A hook 40 or other lifting fitting can be attached to a lifting line 41 and payed out from winch 42. More than one lifting line 41 and hook 40 can be provided as shown. Sheaves 43, 44, 45 as needed can be used to route the line 41 from winch 42 to hook 40. Line 41 can be a multiple line assembly to increase lift capacity such as is shown in
In
In
The damaged platform section 34 to be salvaged can be fitted with beams 52 such as I-beams as an example. As the damaged or sunken platform section 34 rests upon seabed 55, grabs 60 can be attached to the beams 52 with slings 53 as shown in
In
In
An area 81 is provided in between each of the vessels 71, 72 as shown in
A plurality of winches 88-91 are provided, 2 winches 88-89 or 90, 91 for each frame 73, 74. Each of the winches 88-91 provides a winch line that enables the winch to lift objects from a seabed or from the water surface area 83 via a crown block or block and tackle arrangement as shown in the drawings. The winch 88 provides a winch line 92. The winch 89 provides a winch line 93. The winches 88, 89 are mounted upon frame 73 as shown in
Each frame 73, 74 is preferably in the form of a truss. In
In the embodiment of
Double universal joint 100 provides a larger pin 101 supported by a pair of pin supports 128, 129 as shown on
Larger pin 101 (
Smaller pin 110 has end portions 111, 112. These end portions 111, 112 protrude from bearing 105 when pin 110 occupies bore 107. Smaller pin 110 has flat surfaces at 113, 114 next to end portions 111, 112 as shown in
After assembling smaller pin 110 into the bore 107 of bearing 105, plates 121, 122 are then welded to pin 110 at flat surfaces 113, 114 respectively. The placement of the plates 121, 122 on the end portions 111, 112 of pin 110 are illustrated by arrows 119, 120 in
Pin 110 and bearing 105 can be removed for servicing by using the second or redundant part of double universal joint 100. The second part or redundant part of double universal joint 100 is provided by front and rear beams 131, 132 and left and right side beams 133, 134. Each left and right side beam 133, 134 connects to a front beam 131 and a rear beam 132 using pins 135 as illustrated in
The inner universal joint has two axes of rotation 109 (
Each of the front and rear beams 131, 132 provides a pair of openings 136 that are receptive of pins 135 when connecting to the left side beam 133 and a pair of openings 137 for connecting the right side beam 134 to front beam 131. Each front beam 131 and rear beam 132 provide a central opening 138 (see
The inner or first universal joint of double universal joint 100 is defined by larger pin 101 and smaller pin 110 which is rotatably attached to a frame 13 or 14. The smaller pin 110 can be rotatably supported as can bearing 105 by supports 128, 129 by slightly elevating either the left side beam 133 or the right side beam 134 or both of the side beams 133, 134 using pancake jacks 145. Such pancake jacks 145 are commercially available. The pancake jacks 145 are quite powerful for lifting many tons of weight upwardly a short distance such as, for example, up to a few inches (e.g. 0-4 inches).
Each of the left and right side beams 133, 134 provides a connector 146 or 147 that is receptive of pins 135 when joining the left side beam 133 or right side beam 134 to the front beam 131. These beam connectors 146, 147 thus provide pin receptive openings at 148, 149 (see
Each beam connector 146, 147 provides a cavity at 151 or 152 that is receptive of a pancake jack 145. A horizontal plate at 153, 154 is engaged by the upper end portion of a pancake jack 145 expands upwardly. The pancake jack 145 rests upon the upper surface 155 of front beam 131 in a position in between openings 136 or 137.
In order to remove pin 110 or bearing 105, a pancake jack 145 is placed in one of the cavities 151, 152. The pancake jack is extended a short distance such as for example about one inch or 1-2 inches. This action transfers load between load spreader platform 19 or 20 and a frame 13 or 14 to the outer or second universal joint defined by the beams 131, 132, 133, 134 and relieves pressure on the pins 100, 110. The pin 110 can be removed using a cable 156 which can be attached to either one of the eyelets or eyebolts 117, 118 that are attached to pin 110 as shown in
Any suitable known connector can join a frame 13 or 14 to the beams 133, 134 to provide this carriage of the articulating load, such as for example a cylindrical bearing at 159 (
The following is a list of parts and materials suitable for use in the present invention.
All measurements disclosed herein are at standard temperature and pressure, at sea level on Earth, unless indicated otherwise. All materials used or intended to be used in a human being are biocompatible, unless indicated otherwise.
The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims.
This is a continuation-in-part of U.S. Ser. No. 11/610,271, filed Dec. 13, 2006.
Number | Name | Date | Kind |
---|---|---|---|
485398 | Tyler et al. | Nov 1892 | A |
4714382 | Khachaturian | Dec 1987 | A |
5607260 | Khachaturian | Mar 1997 | A |
5609441 | Khachaturian | Mar 1997 | A |
5662434 | Khachaturian | Sep 1997 | A |
5800093 | Khachaturian | Sep 1998 | A |
5836463 | Khachaturian | Nov 1998 | A |
5863085 | Khachaturian | Jan 1999 | A |
5975807 | Khachaturian | Nov 1999 | A |
6000562 | Khachaturian | Dec 1999 | A |
6039506 | Khachaturian | Mar 2000 | A |
6079760 | Khachaturian | Jun 2000 | A |
6149350 | Khachaturian | Nov 2000 | A |
6213319 | Khachaturian | Apr 2001 | B1 |
6296288 | Khachaturian | Oct 2001 | B1 |
6318931 | Khachaturian | Nov 2001 | B1 |
6364574 | Khachaturian | Apr 2002 | B1 |
6367399 | Khachaturian | Apr 2002 | B1 |
6412649 | Khachaturian | Jul 2002 | B1 |
6425710 | Khachaturian | Jul 2002 | B1 |
6435773 | Khachaturian | Aug 2002 | B1 |
6435774 | Khachaturian | Aug 2002 | B1 |
6601717 | Khachaturian | Aug 2003 | B1 |
6692190 | Khachaturian | Feb 2004 | B2 |
6719495 | Khachaturian | Apr 2004 | B2 |
7066343 | Khachaturian | Jun 2006 | B1 |
7399018 | Khachaturian | Jul 2008 | B1 |
Number | Date | Country | |
---|---|---|---|
Parent | 11610271 | Dec 2006 | US |
Child | 12261425 | US |