1. Field of the Invention
This invention relates to method and apparatus for removing contaminants from a cooling system in a marine motor and, more particularly, to a method and apparatus for mixing and conveying a colored cleaning solution for removing dirt, oil, and potentially corrosive contaminants in a marine motor.
2. Description of the Prior Art
Marine motors are commonly used in salt or brackish water. The cooling system of marine motors can be contaminated with salt, dirt, oil, etc. from the water. Henceforth, the cooling system must be repeatedly cleaned. Dirt, sand, silt, and oil can build up and clog the cooling system of marine motors. In addition, salts and acids can corrode the cooling system of marine motors. As a result, flushing of the cooling system should be part of the regular maintenance of a motor and can extend the useful its life.
Several devices have been suggested to convey a flushing liquid to a marine motor from a source. U.S. Pat. No. 3,002,488 discloses a flushing device having a tubular conduit for receiving fluid from a garden hose and for providing fluid to a motor. The flushing device does not include a mixing chamber, which can be used to mix compounds with water to form specially designed flushing fluids.
U.S. Pat. No. 5,482,483 discloses a portable reservoir for flushing a motor. The reservoir has a tubular member connected to its outlet end for attachment to a garden hose through a shut-off valve. The reservoir uses gravity to supply flushing fluid to the motor.
U.S. Pat. No. 4,919,800 discloses a flushing system for a liquid-cooled, internal combustion marine engine for flushing the engine. The flushing system includes a novel coolant strainer. The flushing system conveys flushing solution through the strainer and through a hose to the cooling system.
U.S. Pat. No. 5,725,403 discloses a method for flushing a motor using an open trough for receiving and transferring flushing fluid. The open trough accommodates a marine motor propeller. The use of organic detergent as a component of a flushing solution is disclosed, but the addition of a coloring agent or dye to indicate the completion of the flushing process is not suggested.
U.S. Pat. No. 5,775,964 discloses a dual-tube fluid mixing conduit for conveying fluid from a source to an outlet. The conduit includes a delivery tube connected in parallel with a mixing tube. The mixing tube is in fluid communication with the delivery tube and can mix components of a solution before conveying the solution to the outlet.
U.S. Pat. No. 4,121,948 discloses an apparatus for flushing the cooling system of a boat motor. The apparatus includes a specially designed pad and tubular connector for conveying flushing fluid. One end of the tubular connector connects to the pad. The second end of the tubular connector is V-shaped and has two legs. A first leg connects to a flushing fluid source to form a flow path from a fluid source to the cooling system. A second leg releasably connects to a container. The tubular connector has an actuator-aperture-valve system to allow fluid communication between the container and the flow path of the connector.
U.S. Pat. No. 5,823,836 patent discloses a similar connector to the connector disclosed in U.S. Pat. No. 4,121,948. The connector has a first end for connecting to a marine motor and a V-shaped second end. The V-shaped second end includes a leg for receiving fluid from a fluid source and a leg releasably attached to a container. The container is a disposable bottle, which contains lubricating fluid. The system allows the simultaneous lubrication and flushing of the cooling system of a marine motor.
U.S. Pat. No. 5,746,629 patent discloses a device for flushing a cooling system. The device includes a reservoir and a T-shaped member. The T-shaped member connects to the reservoir, a inlet for receiving water, and a outlet for conveying flushing solution. The T-shaped member also includes a valve that can be closed to prevent flow from the inlet to the outlet. The valve allows the reservoir to fill with water for mixing to form the flushing solution. The flushing solution can include baking soda or other commercially available fluids designed to prevent corrosion.
U.S. Pat. No. 5,011,615 discloses a collar that attaches to an outboard motor. The collar holds a biocide-containing tablet in a cavity. The cavity is positioned close to cooling water inlets, which are part of an outboard motor cooling system. The biocide flows from the cavity into the inlets.
Several detergents that include baking soda and washing soda have been suggested. U.S. Pat. No. 4,362,639, U.S. Pat. No. 6,001,789, and U.S. Pat. No. 3,635,829 disclose commercial detergent compositions. Milton J. Rosen, Surfactants and Interfacial Phenomena, second edition, John Wiley and Sons, 1989, p. 375-376, also discloses commercial detergent compositions. The compositions include surfactants, builders, and dyestuffs. Builders include baking soda, washing soda, and other carbonates.
U.S. Pat. No. 4,129,423 discloses a composition for removing the discoloration of hard surfaces. The composition includes 1-20% detergent (surfactant), fillers, and coloring agents. The list of possible fillers includes sodium bicarbonate.
U.S. Pat. Nos. 5,358,655 and 5,691,293 disclose the inclusion of detergents in tablets. The tablets are used in dishwashing machines.
While there are many known commercial detergent compositions, most known commercial detergents are produced for general use or for specific applications that do not include flushing solutions for marine motors. In addition, the known flushing solutions for marine motors do not include dyestuffs or other color indicators that indicate when a flushing operation is complete. Therefore, there is a need for a compound that forms colored water, which can be passed through a marine motor cooling system and can flow through the cooling system until the water becomes clear.
In accordance with the present invention there is provided an apparatus for removing contaminants from a cooling system in a marine motor that includes: a compound for flushing a cooling system in which the compound has a first component for cleaning the cooling system. A second component reduces corrosion in the cooling system. A third component provides water coloring. A conveying device transports water from a source to the cooling system. The conveying device includes a mixing chamber and a conduit portion. The mixing chamber is connected to the water source for mixing water with the compound to color the water in the chamber and direct the colored water to the conduit portion. The conduit portion conveys the colored water from the chamber to the cooling system for flushing the cooling system until a sufficient amount of the colored water from the mixing chamber has passed through the cooling system and water flow from the cooling system is clear indicating that the flushing operation is complete.
Further in accordance with the present invention, there is provided an apparatus for flushing a cooling system of a marine motor that includes: a chemical delivery system with a compound having an neutralizer for reducing corrosion in the cooling system. A detergent cleans the cooling system. A colorant is provided for coloring water to flush the cooling system. A flushing system includes an attachment having a connector for receiving water from a water source. A mixing chamber is releasably secured to the connector for mixing water with the compound to form a flushing solution. A conduit is connected to the mixing chamber at one end and to the cooling system at an opposite end for delivering the flushing solution to the cooling system.
Further in accordance with the present invention, there is provided a method for flushing a cooling system of a motor that includes the steps of conveying a coolant from a coolant source through a conveying device to an input of the cooling system. A predetermined amount of neutralizer is mixed with the coolant in the conveying device. A predetermined amount of cleaner is mixed with the coolant in the conveying device. A predetermined amount of coloring agent is added to the coolant to change the color of the coolant from an initial color to an indicating color. The coolant is conveyed to the cooling system. A volume of the coolant is conveyed through the cooling system until the color of the coolant changes from the indicating color to the initial color.
Further in accordance with the present invention, there is provided an apparatus for flushing a cooling system in a marine motor that includes a compound for flushing a cooling system. The compound has a first component for cleaning the cooling system. A second component reduces corrosion in the cooling system. A third component is provided for coloring water. Means is provided for mixing the compound with water to form a flushing solution. Means is provided for conveying the flushing solution to the cooling system. The means for conveying the flushing solution receives flushing solution from the means for mixing the compound with water. The means for conveying the flushing solution conveys the flushing solution until the concentration of the third component of the compound has fallen below a predetermined level in the flushing solution and the color of the flushing solution is clear.
Accordingly, a principal object of the present invention is to provide an apparatus and method for flushing the cooling system of a marine motor.
Another object of the present invention is to provide a flushing solution for a marine motor cooling system that includes a cleaning component, an anti-corrosive component, and a coloring agent.
A further object of the present invention is to provide a flushing solution for using in a flushing operation for a marine motor cooling system that includes a sufficient quantity of a colorant to color the flushing solution until the flushing operation is complete.
An additional object of the present invention is to provide a flushing solution for using in a flushing operation for a marine motor cooling system that includes a sufficient quantity of a colorant to color the flushing solution until a predetermined quantity of a detergent has passed through the cooling system.
An additional object of the present invention is to provide a flushing solution for using in a flushing operation for a marine motor cooling system that includes a sufficient quantity of a colorant to color the flushing solution until a predetermined quantity of a neutralizer has passed through the cooling system.
These and other objects of the present invention will be more completely described and disclosed in the following specification, accompanying drawings, and appended claims.
Referring to the drawings and particular to
The conveying device 14 also receives the compound 12 and combines the compound 12 with water to form a solution for flushing the cooling system. The flushing solution includes three components that perform three different functions. The first component cleans the cooling system by removing oil, dirt, sand, silt or other substances from the cooling system. The second component reduces corrosion in the cooling system by neutralizing and/or removing corrosion-causing substances, such as acids, certain salts or other substances that form corrosion-causing ions in solution. The third component colors the flushing solution and can indicate whether the first component or the second component are present in the flushing solution.
The color of the flushing solution indicates whether the flushing operation has begun, is in process, or has ended. The flushing solution changes from its original color to a predetermined color when the compound 12 is mixed with water or another incoming liquid to form the flushing solution. The flushing solution changes from the predetermined color to its original color after the concentration of third component of the flushing solution falls below a predetermined level.
The flushing solution is colored for a period of time corresponding to the period of time between the initial mixing of the flushing solution to time when the third component has fallen below a predetermined level. The period of time can be adjusted by changing the original amount of the third component in the compound 12. In one embodiment, the concentration of the third component will fall below a predetermined level when a sufficient volume of the flushing solution has passed through the cooling system to flush the cooling system. In another embodiment, the initial concentration of the third component is selected to allow the third component to color the flushing solution for a predetermined time period.
The initial concentration of the third component can be selected to allow the concentration of the third component to fall below the predetermined level when a predetermined amount of the first component or the second component have passed through the cooling system. In one embodiment, the initial amount of the third component in the compound is proportional to the initial amount of the first component, such that the third component colors the flushing solution until a predetermined quantity of said first component has passed through the cooling system. In another embodiment, the initial amount of the third component in the compound is proportional to the initial amount of the second component, such that the third component colors the flushing solution until a predetermined quantity of said second component has passed through the cooling system.
As shown in
As illustrated in
As shown in
As shown in
Referring now to
The first component of the compound 12 facilitates the removal of foreign material such as oil, dirt, grease, sand, silt, or other similar substances from the cooling system. The first component cleans the cooling system by decreasing the surface tension between the flushing solution and the foreign material. The foreign material mixes with flushing solution to be conveyed out of the cooling system. Accordingly, the first component is a detergent that includes at least one surfactant or surface-active agent. The surfactant is selected from a group consisting of an anionic surfactant, cationic surfactant, zwitterionic surfactant, or non-ionic surfactant.
The second component of the compound 12 prevents foreign material from corroding the cooling system. The second component prevents the corrosion of the cooling system through any suitable corrosion prevention or reduction mechanism. Corrosion prevention or reduction mechanisms include, but are not limited to, reducing the concentration of electrolyte in solution in the cooling system, neutralizing acid in the cooling system, stabilizing the pH of solutions that pass through the cooling system, coating the interior surfaces of the cooling system with a corrosion resistant barrier, or adding an inhibitor to inhibit the corrosion mechanism that is causing the corrosion of the cooling system.
Accordingly, the second component of the compound 12 is an anti-corrosive material. In the preferred embodiment, the corrosion prevention or reduction mechanism is neutralization. The anti-corrosive material is a neutralizer. In the most preferred embodiment, the neutralizer is a sodium carbonate compound. Sodium carbonate compounds include, but are not limited to baking soda and washing soda.
The third component of compound 12 includes a coloring agent for coloring the flushing solution. The particular color of the coloring agent is not critical. However, the difference in appearance between the incoming solution and the flushing solution must be sufficient to determine whether the concentration of coloring agent in the flushing solution is above a critical level. The critical level is a predetermined concentration level of the coloring agent that corresponds to the completion of the flushing process. In the preferred embodiment, the coloring agent is a dye.
In a preferred embodiment, the compound 12 is packaged in tablet form in a kit with the conveying device 14. In one embodiment the compound 12 includes between about 0.5 to 10% by weight detergent, between about 80 to 99% by weight baking soda, and up to about 10% by weight dye. The tablet 12 is formed of the following constituents by weight: 55% sodium bicarbonate, 25% sodium carbonate, 15% citric acid, 2% surfactant, 2% sodium silicate, and 0.5% FD & C Blue #1 (dye).
Referring now to
In forming the flushing solution, a predetermined amount of neutralizer is mixed with the coolant in the mixing chamber 20 of the conveying device 14. A predetermined amount of cleaner is mixed with the coolant in the mixing chamber 20 of the conveying device 14. A predetermined amount of coloring agent is added to the coolant in the mixing chamber 20 of the conveying device 14 to change the color of the coolant from an initial color to a color that indicates that the compound 12 is in solution with the coolant to form the flushing solution.
The flushing operation is monitored through visual inspection of the coolant that passes through the conveying device 14. In one embodiment of the invention, the coolant that passes through the cooling system is inspected to determine when the flushing operation has been completed. In another embodiment of the invention, coolant is conveyed through a transparent portion of the conduit 22 of the conveying device 14 and visually inspected.
The appearance of the coolant due to the concentration of coloring agent in the coolant is used to determine when a predetermined quantity of the coolant has passed through the cooling system. The flushing operation must be continued until a sufficient quantity of neutralizer and cleaner has passed through the cooling system.
In one embodiment of the invention, the flushing operation is complete after a predetermined volume of coolant has passed through the coolant system. The concentration of coloring agent remains above a predetermined level until a volume of the coolant has been conveyed through the cooling system and the color of the coolant changes from a predetermined color to its initial color.
In another embodiment of the invention, the flushing operation is complete after a predetermined amount of neutralizer has been conveyed through the cooling system. The concentration of coloring agent remains above a predetermined level until a predetermined amount of neutralizer has been conveyed through the coolant system and the coolant has changed from the predetermined color to its initial color.
In another embodiment of the invention, the flushing operation is complete after a predetermined amount of cleaner has been conveyed through the cooling system. The concentration of coloring agent remains above a predetermined level until a predetermined amount of the cleaner has passed through the cooling system and the coolant has changed from a predetermined color it its initial color.
According to the provisions of the patent statutes, I have explained the principle, preferred construction, and mode of operation of my invention and have illustrated and described what I now consider to represent its best embodiments. However, it should be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically illustrated and described.
Number | Name | Date | Kind |
---|---|---|---|
3002488 | Guhlin | Oct 1961 | A |
3635829 | Yang | Jan 1972 | A |
4121948 | Guhlin | Oct 1978 | A |
4129423 | Rubin | Dec 1978 | A |
4362639 | Eoga | Dec 1982 | A |
4919800 | Vinoski | Apr 1990 | A |
5011615 | Minderman | Apr 1991 | A |
5063896 | Hyatt et al. | Nov 1991 | A |
5358655 | Kruse et al. | Oct 1994 | A |
5482483 | Rice | Jan 1996 | A |
5691293 | Kruse et al. | Nov 1997 | A |
5725403 | Ridolfo | Mar 1998 | A |
5746629 | Smith | May 1998 | A |
5775964 | Clark | Jul 1998 | A |
5823836 | Anderson | Oct 1998 | A |
5853068 | Dixon et al. | Dec 1998 | A |
5855219 | Spencer | Jan 1999 | A |
6001789 | Trinh et al. | Dec 1999 | A |
20030015554 | Gatzke | Jan 2003 | A1 |