The present invention relates to cowlings for marine outboard engines.
A marine outboard engine includes a cowling which covers the engine and other internal components so as to help prevent them from being exposed to water and other exterior elements. The cowling covers at least part of the engine's exhaust system and other components located between the engine and the gearcase.
A marine outboard engine also includes components that need to be serviced, such as spark plugs, filters, and fuses, as well as components that do not, such as an Engine Management Module (EMM) for controlling engine operation and a throttle body. The cowling typically provides for some way of being at least in part disassembled to expose the engine components for servicing. Depending on each particular design of the cowling and depending on each particular design of the engine that the cowling covers, the servicing of the engine's components can be more or less difficult.
It is an object of the present technology to ameliorate at least some of the inconveniences present in the prior art.
The developers of the present technology have observed that while some engine components require more frequent inspection and maintenance than other engine components, in prior art marine outboard engines, placement of the former engine components relative to the engine block in combination with the particular design of prior art cowlings makes at least some of these components relatively difficult to inspect, service and/or replace.
Furthermore, the developers of the present technology have observed that, in at least some prior art marine outboard engines, removing a part of the cowling to gain access to the components requiring more frequent inspections/service also exposes other components that may not require inspection or servicing. The developers of the present technology have further observed that some such other components, such as the EMM and the throttle body of the engine, may be relatively sensitive and should only be inspected and adjusted by skilled technicians, and therefore needlessly exposing these components should be discouraged.
In view of the above, the developers of the present technology have designed a cowling that allows for relatively easy access to engine components that typically require more frequent inspection and service while keeping other, more sensitive engine components, covered and out of sight. The cowling according to the present technology discourages “needless” access to at least some of the engine's more sensitive engine components by making these components more difficult to access.
More particularly, the cowling provides two panels that mate along a split line. The split line extends vertically along at least parts of the front and rear portions of the two panels and horizontally along at least parts of the top portions of the two panels. A first one of the panels is affixed to and covers one lateral side of the engine assembly with panel-to-engine-assembly connectors. Engine components of the marine outboard engine are positioned relative to the engine assembly such that the first panel covers those of the components to which access is discouraged. A second one of the panels is received on and covers the other lateral side of the engine assembly. Due to the positioning of the engine components, the second panel covers those of the components that require relatively more frequent inspections/service.
Unlike the first panel, the second panel is not directly attached to the engine assembly and is instead attached to the first panel via one or more panel-to-panel connectors. The second panel is therefore easier to remove from the engine assembly than the first panel. When the second panel is detached and removed from the first panel, the first panel remains attached to the engine and thereby maintains the components to which access is discouraged out of view of the person(s) servicing the engine. If required, the first panel can be removed from the engine assembly by taking additional steps which include removing panel-to-engine-assembly connectors.
According to one aspect of the present technology, there is provided a marine outboard engine comprising: an internal combustion engine assembly comprising an internal combustion engine and having a front, a back, a top, a first lateral side, and a second lateral side; an electrical system operatively connected to the internal combustion engine to operate the internal combustion engine, the electrical system comprising a fuse assembly; a fuel filter operatively connected to the internal combustion engine to supply fuel to the internal combustion engine from an external fuel tank; a spark plug connected to the internal combustion engine; a gearcase including one of a propeller and an impeller operatively connected to the internal combustion engine assembly; a swivel bracket operatively connected to the internal combustion engine assembly; and a cowling at least partially covering the internal combustion engine assembly.
In some embodiments, the cowling includes: a service panel disposed on the first lateral side of the internal combustion engine assembly and engaging the first lateral side via at least one first damping member that positions the service panel relative to the first lateral side, and an affixed panel disposed on the second lateral side of the internal combustion engine assembly and engaging the second lateral side via at least one second damping member that positions the affixed panel relative to the second lateral side, the service and affixed panels defining a split line therebetween and being removably attached to each other by a panel-to-panel connector.
In some embodiments, the fuse assembly, the fuel filter, and the spark plug are all mounted to one of: the first lateral side of the internal combustion engine assembly, and the affixed panel proximate to the split line, so as to be at least in part accessible from the first lateral side of the internal combustion engine when the service panel is detached and removed from the affixed panel with the affixed panel remaining on the second lateral side of the internal combustion engine.
In some embodiments, the fuse assembly comprises fuses and relays.
In some embodiments, the internal combustion engine assembly further comprises an exhaust housing attached to and extending downward from the internal combustion engine to the gearcase.
In some embodiments, the affixed panel is further connected to the internal combustion engine assembly via a panel-to-engine-assembly connector.
In some embodiments, the panel-to-engine-assembly connector is a resilient connector; the internal combustion engine includes an engine block; and the resilient connector is removably attached to one of: a component of the internal combustion engine, the engine block, the exhaust housing, and the gearcase.
In some embodiments, the resilient connector is a rubber cord having first and second end portions and a mid portion extending between the first and second end portions; part of the second end portion has a first diameter; the mid portion has a second diameter; the first diameter is larger than the second diameter; the first end portion is fixed to the affixed panel; the second end portion is removably received in one of a recess and an aperture defined in the one of: the component of the internal combustion engine, the engine block, the exhaust housing, and the gearcase; the first diameter is larger than a diameter of the second recess; and the resilient connector is in tension.
In some embodiments, the resilient connector is a first resilient connector of a plurality of resilient connectors; the plurality of resilient connectors includes: a first resilient connector attached to a front side of the internal combustion engine assembly, and a second resilient connector attached to the back of the internal combustion engine assembly.
In some embodiments, the internal combustion engine further includes: a cylinder block, and a cylinder head connected to the cylinder block, the cylinder head and the cylinder block defining a cylinder therebetween; the spark plug is received in a corresponding aperture defined in the cylinder head and extends in part into the cylinder; a vertical bank plane defines a bank angle of the cylinder block relative to a vertical longitudinal center plane of the marine outboard engine, the vertical bank plane passing through a central axis of the cylinder; and the spark plug is disposed at least in part between the vertical bank plane and the service panel.
In some embodiments, the marine outboard engine further includes an ignition coil operatively connected to the spark plug, the ignition coil is mounted to one of the first lateral side of the internal combustion engine assembly, and the affixed panel proximate to the split line.
In some embodiments, the service panel and the affixed panel each include an air intake aperture in a top portion thereof and a baffle; the internal combustion engine has an air intake; and the baffles define a tortuous air path between each baffle and the respective service panel and the affixed panel, the tortuous air path guiding air from the air intake aperture toward the air intake of the internal combustion engine.
In some embodiments, the marine outboard engine further includes a first baffle attached to the service panel and a second baffle attached to the affixed panel. In some such embodiments, the first and second baffles are disposed on opposite sides of a vertical longitudinal center plane of the internal combustion engine and extend from the top of the internal combustion engine to the back of the internal combustion engine; the service panel defines a first air intake aperture in a top portion thereof; the affixed panel defines a second air intake aperture in a top portion thereof; the internal combustion engine has an air intake; the first baffle defines a first portion of a tortuous air path between the first baffle and the service panel, the first portion of the tortuous air path guiding air from the first air intake aperture toward the air intake of the internal combustion engine; and the second baffle defines a second portion of the tortuous air path between the second baffle and the affixed panel. In some such embodiments, the second portion of tortuous air path guides air from the second air intake aperture downward, along the back of internal combustion engine assembly.
In some embodiments, the internal combustion engine further includes: a cylinder block, and a cylinder head connected to the cylinder block, the cylinder head and the cylinder block defining a cylinder therebetween; the spark plug is received in a corresponding aperture defined in the cylinder head and extends in part into the cylinder; the cylinder head is angularly offset from a vertical longitudinal center plane of the marine outboard engine by a bank angle; and the bank angle is selected such that a majority of the cylinder head is disposed on a same side of the vertical longitudinal center plane as the service panel.
In some embodiments, the marine outboard engine further includes an engine cooling circuit thermostat, an engine cooling circuit blow off valve, an ignition coil, a starter motor, and a vapor separator. In some such embodiments, the engine cooling circuit thermostat, the engine cooling circuit blow off valve, the ignition coil, the starter motor, and the vapor separator are operatively connected to the internal combustion engine and mounted to one of the first lateral side of the internal combustion engine assembly, and the affixed panel proximate to the split line.
In some embodiments, the marine outboard engine further includes a fuel injector operatively connected to the internal combustion engine and mounted to the first lateral side of the internal combustion engine assembly.
In some embodiments, the electrical system comprises an Engine Management Module (EMM); the marine outboard engine further comprises a throttle body operatively connected to the internal combustion engine; and at least one of the EMM and the throttle body is disposed on the second lateral side between the internal combustion engine and the affixed panel.
In some embodiments, the marine outboard engine further includes a tilt-trim system coupled to the swivel bracket for adjusting a tilt-trim angle of the internal combustion engine, an Engine Management Module (EMM) operatively connected to the tilt-trim system to operate the tilt-trim system, the EMM being part of the electrical system, and a tilt-trim button operatively connected to the EMM for operating the tilt-trim system via the EMM. In some such embodiments, the tilt-trim button is on an outer side of the affixed panel.
In some embodiments, the marine outboard engine further includes battery terminals operatively connected to a starter motor of the internal combustion engine assembly for connecting a battery thereto. In some such embodiments, the battery terminals are on an outer side of the affixed panel.
According to one aspect of the present technology, there is provided a marine outboard engine that includes an internal combustion engine assembly comprising and internal combustion engine and having a front, a back, a top, a first lateral side, and a second lateral side; an electrical system operatively connected to the internal combustion engine to operate the internal combustion engine, the electrical system comprising battery terminals for connecting an external battery to the electrical system; a gearcase including one of a propeller and an impeller operatively connected to the internal combustion engine assembly; a swivel bracket operatively connected to the internal combustion engine and coupled to a tilt-trim system for adjusting a tilt-trim angle of the internal combustion engine; a tilt-trim button operatively connected to the tilt-trim system to operate the tilt-trim system; and a cowling at least partially covering the internal combustion engine.
In some such embodiments, the cowling includes: a service panel disposed on the first lateral side of the internal combustion engine assembly and engaging the first lateral side via at least one first damping member, and an affixed panel disposed on the second lateral side of the internal combustion engine assembly and engaging the second lateral side via at least one second damping member, the service and affixed panels defining a split line therebetween and being removably attached to each other by a connector. In some such embodiments, the battery terminals are at least one of disposed on an outer side of the affixed panel, mounted to the first lateral side of the internal combustion engine assembly and mounted to the affixed panel proximate the split line. In some such embodiments, the tilt-trim button is disposed on an outer side of the affixed panel.
In some embodiments, the marine outboard engine further includes a lubricant reservoir mounted to the internal combustion engine assembly, a lubricant hose fluidly connected at one end to the lubricant reservoir, and a lubricant filler cap assembly fluidly connected to another end of the lubricant hose. In some such embodiments, the lubricant filler cap assembly is attached to the affixed panel.
In some embodiments, the marine outboard engine further includes a fuse assembly, a fuel filter, and a spark plug, the fuse assembly being part of the electrical system, the fuel filter being operatively connected to the internal combustion engine to supply fuel to the internal combustion engine from an external fuel tank, the spark plug being connected to the internal combustion engine. In some such embodiments, the fuse assembly and the fuel filter are mounted to one of: the first lateral side of the internal combustion engine assembly, and the affixed panel proximate to the split line; and the spark plug is mounted to the first lateral side of the internal combustion engine assembly.
In some embodiments, the marine outboard engine further includes a fuel supply hose operatively connected via one end to the internal combustion engine for supplying fuel to the internal combustion engine, and at least one communication wire operatively connected via one end to the EMM. In some such embodiments, the fuel supply hose and the at least one communication wire is at least one of attached to the outer side of the affixed panel, mounted to the first lateral side of the internal combustion engine assembly and mounted to the affixed panel proximate the split line.
In some embodiments, the affixed panel includes a rigging panel that stays with the affixed panel when the service panel is detached and removed from the affixed panel, and a rigging grommet bracket attached to the rigging panel. In some such embodiments, another end of the fuel supply hose is received through a first aperture defined through the rigging grommet bracket; and another end of the at least one communication wire is attached to the rigging grommet bracket.
In some embodiments, the marine outboard engine further includes a gearcase lubricant reservoir fluidly connected to a cavity defined in the gearcase, the cavity containing a lubricant. In some such embodiments, the at least a part of the gearcase lubricant reservoir is one of: transparent and translucent; the gearcase lubricant reservoir is attached to the affixed panel; and at least the part of the gearcase lubricant reservoir is visible when the service panel is detached and removed from the affixed panel with the affixed panel remaining on the second lateral side of the internal combustion engine.
In some embodiments, the cowling further comprises a top cap covering a top portion of the service panel and a top portion of the affixed panel.
In some embodiments, the cowling further comprises a rear seam cover covering at least in part the split line.
The foregoing examples are non-limiting.
For purposes of this application, terms related to spatial orientation such as forward, rearward, upward, downward, left, and right, should be understood in a frame of reference where the propeller position corresponds to a rear of the marine outboard engine and where the outboard engine is oriented such that its driveshaft extends vertically. Terms related to spatial orientation when describing or referring to components or sub-assemblies of the engine separately from the engine should be understood as they would be understood when these components or sub-assemblies are mounted to the engine, unless specified otherwise in this application.
Embodiments of the present technology each have at least one of the above-mentioned object and/or aspects, but do not necessarily have all of them. It should be understood that some aspects of the present technology that have resulted from attempting to attain the above-mentioned object may not satisfy this object and/or may satisfy other objects not specifically recited herein.
Additional and/or alternative features, aspects and advantages of embodiments of the present technology will become apparent from the following description, the accompanying drawings and the appended claims.
For a better understanding of the present technology, as well as other aspects and further features thereof, reference is made to the following description which is to be used in conjunction with the accompanying drawings, where:
Referring to
The exhaust housing 105, which can be sometimes known as a driveshaft housing, an exhaust casing, or an upper casing, extends downward from the internal combustion engine 102 to the gearcase 106. In the present embodiment, the exhaust housing 105 houses, inter alia, a driveshaft 107. The driveshaft 107 connects a crankshaft 115 (
The gearcase 106 includes a propeller shaft 109 connected at a front end thereof to the transmission 111. A skeg 108 extends from a bottom of the gearcase 106. It is contemplated that the marine outboard engine 100 could have any other transmission. The rear end of the propeller shaft 109 extends rearward out of the gearcase 106. The propeller 110 is mounted onto the rear end of the propeller shaft 109 for propelling the marine outboard engine 100. It is contemplated that the marine outboard engine 100 could have a jet drive with a gearcase having an impeller (not shown) instead of the propeller 110.
The marine outboard engine 100 further includes a stern bracket 112 and a swivel bracket 114 that are used to mount the internal combustion engine assembly 101 to a watercraft. The stern bracket 112 is attachable to a stern (not shown) of the watercraft and can take various forms, the details of which are conventionally known. The internal combustion engine assembly 101 is pivotably connected to the swivel bracket 114 via upper engine mounts 117 and lower engine mounts 119 to pivot about a vertical steering axis (not shown). This allows for steering of the marine outboard engine 100 and the watercraft to which it is attached. It is contemplated that any other mechanism could be used for mounting the marine outboard engine 100 onto a watercraft.
The swivel bracket 114 is pivotably connected to the stern bracket 112 to pivot relative to the stern bracket 112 about a horizontal tilt-trim axis 118. Briefly referring to
Referring back to
Briefly referring to
Briefly referring to
As will be described in more detail below, the cowling 124 and the components covered thereby are arranged to make it easier to inspect and/or service at least some components of the internal combustion engine 102 that require regular servicing and/or check-ups (for convenience, referred to below as “regular maintenance components”), while making it more difficult to access at least some of the other components of the internal combustion engine 102 (for convenience, referred to below as “other components”).
More particularly, and referring to
Further, to simplify removal of the service panel 126, components of the outboard engine 100 that connect or otherwise engage both the internal combustion engine assembly 101 and the cowling 124 (for example by wire, hose or the like) are connected, mounted or extended through the affixed panel 126 and, as such, do not need to be disconnected to enable access to the regular maintenance components. In addition, to discourage needless access to the other components, the other components are positioned on the left side of the internal combustion engine 102 under the affixed panel 126, between the affixed panel 126 and the internal combustion engine 102. To this end, and as described in more detail below, the affixed panel 126 is mounted to be relatively more difficult to remove from the internal combustion engine 102 than the service panel 128. In addition to discouraging needless access to the other components, the relatively more permanent nature of the affixed panel 126 assists technicians in assembling the marine outboard engine 100 by making it easier to connect various engine components to the affixed panel 126 as a result of not having to manually hold the affixed panel 126 in place. Additionally, some of the other components are mounted to the affixed panel 126 instead of being mounted to the internal combustion engine 102. This helps reduce vibration transmitted from the internal combustion engine 102 to these components.
Referring to
Now referring to
Referring to
As best shown in
Referring back to
The flywheel/magneto 150 is part of and powers an electrical system 156 that enables and controls operation of the marine outboard engine 100 during operation. Briefly referring to
Referring to
As shown in
Also part of the electrical system 156 is a fuse assembly 164 (
The position of the fuse assembly 164 relative to the affixed panel 126 makes the fuse assembly 164 visible when the service panel 128 is detached and removed from the affixed panel 126 with the affixed panel 126 remaining on the left side of the internal combustion engine 102. The position of the fuse assembly 164 relative to the affixed panel 126 also makes the fuse assembly 164 accessible for inspecting and/or replacing the fuses and/or relays, when the service panel 128 is detached and removed from the affixed panel 126 with the affixed panel 126 remaining on the left side of the internal combustion engine 102. In some embodiments, the fuse assembly 164 is mounted to the internal combustion engine 102 on the same side as the service panel 128 so as to at least provide the accessibility aspect described directly above.
Still referring to
A fuel system 174 of the marine outboard engine 100 is described next, with reference to
As shown in
The fuel supply hose 176 is fluidly upstream of the fuel pump and vapor separator assembly 178. A front part of the fuel supply hose 176 is received through a grommet (not separately labeled) in a rigging grommet bracket 186 and terminates at a quick-connect fitting 188. In some embodiments, the fuel supply hose 176 is attached to the outer side of the affixed panel 126. In some embodiments, the fuel supply hose 176 is mounted to the right side of the internal combustion engine assembly 101. In some embodiments, the fuel supply hose 176 is mounted to the affixed panel 126 proximate the split line 129. In some cases, such positioning improves access to the fuel supply hose 176.
The affixed panel 126 includes a left rigging panel 190 that is attached along a front side thereof. The rigging grommet bracket 186 is L-shaped and is friction fitted into a congruously shaped slot 187 (
The quick-connect fitting 188 on the outer end of the fuel supply hose 176 allows an external fuel tank (not shown) provided with a hose having a corresponding quick-connect fitting (not shown) to be fluidly connected to the quick-connect fitting 188 to supply fuel to the fuel pump and vapor separator assembly 178. The fuel pump and vapor separator assembly 178 includes a vapor separator (not separately labeled) which stores some of the fuel for removing vapor therefrom. The fuel pump and vapor separator assembly 178 also includes a fuel pump (not separately labeled). The fuel pump supplies fuel from the fuel pump and vapor separator assembly 178 to the fuel injectors 162 via the fuel filter 180 and respective additional fuel hoses.
Still referring to
The lubricant filler cap assembly 194 is received through and fixed within an aperture 195 (
A neck portion 204 of the lubricant filler cap assembly 194 is disposed under the top of the affixed panel 126 and directs the lubricant into a top end of the lubricant filler hose 196. The lubricant filler hose 196 directs the lubricant into the lubricant reservoir 198. The remote lubricant supply hose 200 also connects to the lubricant reservoir 198. Similar to the fuel supply hose 176, a front part of the lubricant supply hose 200 is received through a grommet (not separately labeled) in the rigging grommet bracket 186.
The lubricant supply hose 200 can be fluidly connected to a hose from a remote lubricant supply. This connection allows lubricant to be supplied to the lubricant reservoir 198 from the remote lubricant supply. Since the lubricant filler cap assembly 194, lubricant filler hose 196, and the remote lubricant supply hose 200 are all attached to the affixed panel 126, detaching and removing the service panel 128 from the affixed panel 126 for servicing the marine outboard engine 100 does not disturb these elements and the associated fluid connections.
In the present embodiment, the lubricant reservoir 198 is made of three connected parts (not separately labeled) that are molded from plastic. The lubricant reservoir 198 is attached to a rear portion of the exhaust housing 105 proximate a lower part of the engine block 132. As shown by
Still referring to
In the present embodiment, the lubricant pump 202 is attached to a rear top of the engine block 132 by an inverted-U shaped bracket 208. The position of the bracket 208 relative to the engine block 132 is selected so that the lubricant pump 202 is visible and accessible from the right side of the internal combustion engine 102 when the service panel 128 is detached and removed from the affixed panel 126 with the affixed panel 126 remaining on the left side of the internal combustion engine 102. The lubricant hose 206 is routed from the lubricant reservoir 198 to the lubricant pump 202 on the right side of the internal combustion engine 102 so as to be visible and accessible when the service panel 128 is detached and removed from the affixed panel 126.
Now referring to
To optimize power output, the internal combustion engine 102 is provided with an exhaust valve assembly 210, commonly known as R.A.V.E.™ valve assembly 210, and a muffler 212 on the left side thereof. The muffler 212 wraps in part around the left and back sides of the internal combustion engine 102 and the exhaust housing 105. The muffler 212 has an exhaust pipe 214 that extends rearward out of the cowling 124 and exhausts the exhaust gases from the internal combustion engine 102 when the internal combustion engine 102 is idling or is operated at very low speeds. When the internal combustion engine 102 is operated at moderate to high speeds, exhaust gases are exhausted via an exhaust conduit (not shown) that extends through the exhaust housing 105 and terminates at the propeller 110.
Still referring to
The throttle body 216 controls air supply into the air intake plenum 218 when the internal combustion engine 102 operates. In the present embodiment, the EMM 170 is attached to the air intake plenum 218. The air intake plenum 218 extends in front of and above the EMM 170 on the left side of the engine block 132. The air intake plenum 218 guides air received from the air intake 220 via the throttle body 216 to an air intake manifold (not shown) of the internal combustion engine 102.
Still referring to
Briefly referring to
The gearcase lubricant reservoir 222 is translucent. More particularly, in the present embodiment, a sidewall 224 of the gearcase lubricant reservoir 222 is made of a translucent plastic. Therefore, when the service panel 128 is detached and removed from the affixed panel 126 with the affixed panel 126 remaining on the left side of the internal combustion engine 102, the sidewall 224 is visible and it is thus possible to observe a condition of lubricant that may be contained in the gearcase lubricant reservoir 222.
It is contemplated that a part of the sidewall 224 of the gearcase lubricant reservoir 222 could be translucent or transparent. As an example, it is contemplated that the gearcase lubricant reservoir 222 could have a translucent or transparent observation window in the sidewall 224. In some such embodiments, the gearcase lubricant reservoir 222 is positioned relative to the affixed panel 126 so that the translucent/transparent part/window is visible when the service panel 128 is detached and removed from the affixed panel 126 so as to provide for the lubricant viewing function described above. In some embodiments of the marine outboard engine 100, the gearcase lubricant reservoir 222 is omitted.
The construction of the affixed and service panels 126, 128 and the positioning of the various engine components relative thereto will be described next, in detail. The construction of the affixed and service panels 126, 128 is described in the order of their assembly of the marine outboard engine 100. Hence, the affixed panel 126 is described first.
Referring to
As best shown in
The post portions 227 of the resilient engine cover mounts 226 are cast into the engine block 132 and the exhaust housing 105. It is contemplated that a different construction and/or attachment means of the resilient engine cover mounts 226 to the exhaust housing 105 could be used. To help improve vibration isolation, each of the two resilient engine cover mounts 226 includes a resilient bushing 228 mounted to an outer end of the post portion 227 thereof. The resilient bushings 228 are frustoconical in shape and are made of rubber.
Now also referring to
The ribbed cylindrical members 230 receive respective ones of the resilient bushings 228 therein. One such engagement is seen in
The ribbed cylindrical members 230 are made from the same material as the rest of the affixed panel 126. It is contemplated that different mating shapes and/or materials of the resilient engine cover mounts 226 and the ribbed cylindrical members 230 could be used. It is contemplated that the resilient engine cover mounts 226 could be placed in different positions relative to the internal combustion engine assembly 101 and/or that a different number of resilient engine cover mounts 226 could be used. It is contemplated that the resilient bushings 228 could be omitted. It is also contemplated that the affixed panel 126 could have the resilient engine cover mounts 226 and the exhaust housing 105 could have the ribbed cylindrical members 230.
Returning to
In the present embodiment, one of the three cords 232 is fixed at one end to a top portion of the inner side of the affixed panel 126. A second one of the three cords 232 is fixed at one end to a bottom rear portion of the inner side of the affixed panel 126. A third one of the three cords 232 is fixed at one end to a lower front portion of the inner side of the affixed panel 126, between the first two of the cords 232.
The three cords 232 are all the same and therefore only the construction of the upper one of the cords 232 will be described in detail. The components of the other two cords 232 are labeled with the same reference numerals as the corresponding components of the upper one of the cords 232. Each of the cords 232 is a resilient connector and is an example of what is referred to in the present specification as a panel-to-engine-assembly connector. It is contemplated that a different arrangement and/or number and/or combination of the panel-to-engine-assembly connectors could be used to attach the affixed panel 126 to the internal combustion engine assembly 101.
For example, it is contemplated that one or more of the resilient engine cover mounts 226 could include some means, such as a locking element, for keeping the affixed panel 126 on the internal combustion engine assembly 101 while the service panel 128 is detached and removed therefrom. In such embodiments, the one or more of the resilient engine cover mounts 226 would serve as panel-to-engine-assembly connectors. It is contemplated that a combination of different panel-to-engine-assembly connectors could be used.
Referring to
As best shown in
Still referring to
Returning to
The three cords 232 are thus in tension, engage respective ones of the recesses 244, 246, 248 and thereby hold the affixed panel 126 on the resilient engine cover mounts 226 on the left side of the internal combustion engine 102 while various engine components are being attached to the affixed panel 126 during assembly of the marine outboard engine 100 or after a service of the marine outboard engine 100 requiring removal of the affixed panel 126. The three cords 232 also hold the affixed panel 126 on the resilient engine cover mounts 226 on the left side of the internal combustion engine 102 when the service panel 128 is detached and removed from the affixed panel 126 for servicing the engine components on the right side of the internal combustion engine 102. In at least some cases, this makes the servicing easier.
Reference is now made back to
As shown in
It is contemplated that any suitable communication wires, including a single wire, and/or any suitable connectors could be used to connect controls to the marine outboard engine 100. In the present embodiment, a length of each communication wire 191 extends past the rigging grommet bracket 186, into the space between the rigging area 254 and the top cap 130. Similarly, a length of each of the fuel supply hose 176 and the remote lubricant supply hose 200 extend past the rigging grommet bracket 186, into the space between the rigging area 254 and the top cap 130.
It is also contemplated that the quick-connect connectors of the communication wires 191, the fuel supply hose 176 and the remote lubricant supply hose 200 could be mounted directly in the left rigging panel, such that the wires 191 and hoses 176 and 200 do not extend beyond the rigging area and that the corresponding wires and hoses from the watercraft are plugged into connectors mounted flush with the left rigging panel 190, a right rigging panel 278 (described below) and/or the rigging grommet bracket 186. It is also contemplated that such connectors could be located under the cowling 124, along the right lateral side of the internal combustion engine assembly 101 or mounted to the affixed panel 126 proximate the split line 129, such that they are accessible when the service panel 128 is detached and removed for servicing the marine outboard engine 100.
In the present embodiment, the left rigging panel 190 also includes battery terminals 256 thereon. The battery terminals 256 are for connecting an external battery (not shown) thereto, for powering the starter motor 154. Having the communication wires 191 and the battery terminals 256 on the left rigging panel 190 allows the communication wires 191 and the electrical wires from the battery terminals 256 to remain undisturbed when the service panel 128 is detached and removed from the affixed panel 126 for servicing the marine outboard engine 100. In some embodiments, the battery terminals 256 are disposed on the outer side of the affixed panel 126. In some embodiments, the battery terminals 256 are mounted to the right side of the internal combustion engine assembly 101 so as to be accessible when the service panel 128 is detached and removed from the affixed panel 126. In some embodiments, the battery terminals 256 are mounted to the affixed panel 126 proximate the split line 129. In some cases, such positioning improves access to the battery terminals 256.
Referring to
Referring to
The air intake 220 is disposed vertically lower than the air intake aperture 262 in the affixed panel 126, but vertically higher than a bottom edge 264 of the baffle 167. As shown in
Now referring to
The female electrical quick-connector 270 is disposed on the inner side of the affixed panel 126 and mates with a matching male quick-connector 272, also shown schematically in
Mounting the tilt-trim buttons 121 on the affixed panel 126 and running the electrical wires 273 on the left side of the internal combustion engine 102, in combination with the cords 232 holding the affixed panel 126 on the left side of the internal combustion engine 102, allows the electrical connection between the tilt-trim buttons 121 and the tilt-trim system 120 to be undisturbed when the service panel 128 is detached and removed from the affixed panel 126 for servicing the marine outboard engine 100.
When the affixed panel 126 needs to be removed for servicing engine components on the left side of the internal combustion engine 102, the male quick-connector 272 of the electrical wires 273 can be detached from the female electrical quick-connector 270 of the tilt-trim buttons 121 by reaching behind the left rigging panel 190 after the service panel 128 has been detached and removed from the affixed panel 126, and pulling it out of the female electrical quick-connector 270. This allows the affixed panel 126 to be removed from the left side of the internal combustion engine 102 without pulling on the electrical wires 273 leading to the EMM 170.
Still referring to
Now referring to
As can be seen from
In the present embodiment, the service panel 128 is received on the right side of the internal combustion engine 102 on a pair of resilient engine cover mounts 226 with resilient bushings 228. The resilient engine cover mounts 226 on the right side of the internal combustion engine 102 are similar to the resilient engine cover mounts 226 on the left side of the internal combustion engine 102. The resilient engine cover mounts 226 on the right side of the internal combustion engine 102 have therefore been labeled with the same reference numerals as the resilient engine cover mounts 226 on the left side of the internal combustion engine 102 and will not be described in detail.
Now referring to
Engagement between the inner surfaces of the ribbed cylindrical members 230 of the service panel 128 and the respective ones of the resilient bushings 228 on the right side of the internal combustion engine 102 positions the service panel 128 relative to the right side of the internal combustion engine 102 and isolates some of the engine's 102 vibration from the service panel 128.
Referring to
The bolts 274 (
Each of the bolts 274 is an example of what is referred to in the present specification as a panel-to-panel connector 274. It is contemplated that a different type and/or combination and/or number of the panel-to-panel connectors 274 could be used to removably attach the service panel 128 to the affixed panel 126. Examples of different panel-to-panel connectors 274 include clasps, latches, or the like. Unlike the affixed panel 126, the service panel 128 is not directly attached to the internal combustion engine 102 or the exhaust housing 105.
Returning to
Still referring to
Referring to
The portion 284 of the air path 261 is similar to the portion 259 of the air path 261 and is therefore not described in detail. As shown in
As shown in
As shown in
Referring to back to
It is contemplated that any suitable material(s) and manufacturing methods could be used, so long as the functionality described in this document is provided. Modifications and improvements to the above-described embodiments of the present technology may become apparent to those skilled in the art. The foregoing description is intended to be exemplary rather than limiting.
The present application claims priority from U.S. Provisional Patent Application No. 62/784,123, filed Dec. 21, 2018, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62784123 | Dec 2018 | US |