The present technology relates to tilt/trim and steering bracket assemblies for marine outboard engines.
A marine outboard engine generally comprises a bracket assembly that connects the drive unit of the marine outboard engine to the transom of a boat. The drive unit includes the internal combustion engine and propeller. The marine outboard engine is typically designed so that the steering angle and the tilt/trim angles of the drive unit relative to the boat can be adjusted and modified as desired. The bracket assembly typically includes a swivel bracket carrying the drive unit for pivotal movement about a steering axis and a stern bracket supporting the swivel bracket and the drive unit for pivotal movement about a tilt axis extending generally horizontally. The stern bracket is connected to the transom of the boat.
Some marine outboard engines are provided with a hydraulic linear actuator connected between the stern and swivel brackets for pivoting the swivel bracket to lift the lower portion of the outboard engine above the water level or, conversely, lower the lower portion of the outboard engine below the water level. Some marine outboard engines are also provided with a distinct hydraulic linear actuator for pivoting the swivel bracket through a smaller range of angles and at slower rate of motion to trim the outboard engine while the lower portion thereof is being submerged. Some marine outboard engines are also provided with a hydraulic linear actuator connected between the swivel bracket and the drive unit for pivoting the drive unit about the steering axis in order to steer the boat.
In order to operate the one or more hydraulic actuators, hydraulic fluid needs to be supplied to the actuators, which requires one or more pumps, hydraulic fluid reservoirs, and multiple valves and hoses. Due to the fairly complex and bulky mechanical structure of the bracket assembly provided with the hydraulic actuators, the pumps and reservoirs are typically provided inside the boat. This can take up valuable space inside the boat and requires the routing of hoses between the pumps and actuators which can be cumbersome. Furthermore, the installation of the pumps and the connection of the pumps and hoses with the reservoirs, valves, and actuators can be time consuming and can lead to hoses being improperly connected or connected to the wrong component. For example, the hoses to be connected to each end of the hydraulic actuator used for steering, if connected backwards, lead to the boat being steered in the direction opposite to the intended direction.
It is an object of the present technology to ameliorate at least some of the inconveniences present in the prior art.
In one aspect, implementations of the present technology provide a marine outboard engine for a watercraft having a stern bracket for mounting the marine outboard engine to the watercraft, a swivel bracket pivotally connected to the stern bracket about a generally horizontal tilt/trim axis, a drive unit pivotally connected to the swivel bracket about a steering axis, the steering axis being generally perpendicular to the tilt/trim axis, a hydraulic actuator operatively connected to the drive unit and the swivel bracket for pivoting the drive unit relative to the swivel bracket about the steering axis, and a pump mounted to the swivel bracket. The pump is pivotable about the tilt/trim axis together with the swivel bracket. The pump is fluidly connected to the hydraulic actuator to supply hydraulic fluid to the hydraulic actuator.
In some implementations of the present technology, the pump is a first pump and the hydraulic actuator is a first hydraulic actuator. The marine outboard engine also has a second hydraulic actuator operatively connected to the stern bracket and the swivel bracket for pivoting the swivel bracket and the drive unit relative to the stern bracket about the tilt/trim axis, and a second pump mounted to the swivel bracket. The second pump is pivotable about the tilt/trim axis together with the swivel bracket. The second pump is fluidly connected to the second hydraulic actuator to supply hydraulic fluid to the second hydraulic actuator.
In some implementations of the present technology, the first pump is disposed between the tilt/trim axis and the second pump.
In some implementations of the present technology, the first hydraulic actuator has first and second ports. The first pump supplies hydraulic fluid to the first port to pivot the drive unit in a first direction about the steering axis. The first pump supplies hydraulic fluid to the second port to pivot the drive unit in a second direction about the steering axis. The marine outboard engine also has a valve unit containing at least one valve. A position of the at least one valve determines the one of the first and second ports that is supplied with hydraulic fluid from the first pump. The valve unit is mounted to the swivel bracket. The first pump is mounted to the valve unit. The valve unit defines a fluid reservoir for containing hydraulic fluid. The reservoir is fluidly connected to the second pump.
In some implementations of the present technology, the first and second hydraulic actuators are first and second rotary hydraulic actuators.
In some implementations of the present technology, the marine outboard engine also has a third hydraulic actuator. The third hydraulic actuator is a linear hydraulic actuator mounted to the swivel bracket between the swivel bracket and the stern bracket. The second pump is fluidly connected to the linear hydraulic actuator to supply hydraulic fluid to the linear hydraulic actuator. The linear hydraulic actuator is adapted to push the swivel bracket away from the stern bracket to pivot the swivel bracket and the drive unit away from the stern bracket about the tilt/trim axis up to a first angle. The second hydraulic actuator is adapted to pivot the swivel bracket and the drive unit relative to the stern bracket about the tilt/trim axis up to a second angle. The second angle is greater than the first angle.
In some implementations of the present technology, the first pump is disposed between the tilt/trim axis and the linear hydraulic actuator.
In some implementations of the present technology, the hydraulic actuator has first and second ports. The pump supplies hydraulic fluid to the first port to pivot the drive unit in a first direction about the steering axis. The pump supplies hydraulic fluid to the second port to pivot the drive unit in a second direction about the steering axis. The marine outboard engine also has a valve unit containing at least one valve. A position of the at least one valve determines the one of the first and second ports that is supplied with hydraulic fluid from the pump. The valve unit is mounted to the swivel bracket. The pump is mounted to the valve unit.
In some implementations of the present technology, the at least one valve has a third port, a fourth port, and a fifth port. The pump is fluidly connected to the third port and supplies hydraulic fluid to the third port. The fourth port is fluidly connected to the first port. The fifth port is fluidly connected to the second port. In a first position of the at least one valve, the third port is fluidly connected to the fourth port, the third port is fluidly disconnected from the fifth port and the pump supplies hydraulic fluid to the first port via the at least one valve. In a second position of the at least one valve, the third port is fluidly connected to the fifth port, the third port is fluidly disconnected from the fourth port and the pump supplies hydraulic fluid to the second port via the at least one valve.
In some implementations of the present technology, the pump is an electric pump. The valve unit includes at least one pressure sensor sensing hydraulic pressure of hydraulic fluid in the valve unit. The marine outboard engine also has a control module communicating with the pump to control operation of the pump. The control module controls the pump based at least in part on a signal from the at least one pressure sensor.
In some implementations of the present technology, the drive unit includes the control module.
In some implementations of the present technology, the hydraulic actuator is a first hydraulic actuator. The pump is adapted to receive hydraulic fluid from a second hydraulic actuator via the valve unit, the second hydraulic actuator being driven by a helm of the watercraft. The pump supplies the hydraulic fluid received from the second hydraulic actuator via the valve unit to the first hydraulic actuator. The at least one pressure sensor includes a first pressure sensor and a second pressure sensor. One of the first and second pressure sensors senses a hydraulic pressure of hydraulic fluid flowing from the second hydraulic actuator to the valve unit. Another one of the first and second pressure sensors senses a hydraulic pressure of hydraulic fluid flowing from the valve unit to the second hydraulic actuator. The control module causes the pump to operate when a difference between the hydraulic pressure sensed by the first pressure sensor and the hydraulic pressure sensed by the second pressure sensor is above a predetermined value. The control module causes the pump to stop operating when the difference between the hydraulic pressure sensed by the first pressure sensor and the hydraulic pressure sensed by the second pressure sensor is below the predetermined value.
In some implementations of the present technology, the hydraulic actuator is a first hydraulic actuator. The pump is adapted to receive hydraulic fluid from a second hydraulic actuator. The second hydraulic actuator is driven by a helm of the watercraft. The pump supplies the hydraulic fluid received from the second hydraulic actuator to the first hydraulic actuator. The valve unit includes a low pressure bypass valve. The valve unit causes hydraulic fluid received from the second hydraulic actuator to bypass the pump when a pressure of the hydraulic fluid received from the second hydraulic actuator is below a predetermined pressure.
In some implementations of the present technology, the pump includes a shaft. The shaft is rotatable about a pump axis. The pump axis is generally parallel to the tilt/trim axis and generally perpendicular to the steering axis.
In some implementations of the present technology, a plurality of passages fluidly connecting the pump to the hydraulic actuator. At least a portion of the plurality of passages is integrally formed in the swivel bracket.
In some implementations of the present technology, the pump is disposed between the tilt/trim axis and a lower end of the swivel bracket.
In some implementations of the present technology, the drive unit is disposed on a first side of the swivel bracket. The stern bracket and the pump are disposed on a second side of the swivel bracket. The second side is opposite the first side.
In some implementations of the present technology, an upper drive unit mounting bracket connects the drive unit to a first end of the hydraulic actuator. A lower drive unit mounting bracket connects the drive unit to a second end of the hydraulic actuator. The pump is disposed between the upper and lower drive unit mounting brackets.
In some implementations of the present technology, the hydraulic actuator is a first hydraulic actuator. The pump is adapted to receive hydraulic fluid from a second hydraulic actuator. The second hydraulic actuator is driven by a helm of the watercraft. The pump supplies the hydraulic fluid received from the second hydraulic actuator to the first hydraulic actuator.
In some implementations of the present technology, the stern bracket defines a space between a left portion of the stern bracket and a right portion of the stern bracket. The pump is received at least in part in the space when the swivel bracket is in an upright position.
For purposes of this application, the term related to spatial orientation such as forward, rearward, left, right, vertical, and horizontal are as they would normally be understood by a driver of a boat sitting thereon in a normal driving position with a marine outboard engine mounted to a transom of the boat.
Implementations of the present technology each have at least one of the above-mentioned aspects, but do not necessarily have all of them. It should be understood that some aspects of the present technology that have resulted from attempting to attain the above-mentioned object may not satisfy this object and/or may satisfy other objects not specifically recited herein.
Additional and/or alternative features, aspects, and advantages of implementations of the present technology will become apparent from the following description, the accompanying drawings, and the appended claims.
For a better understanding of the present technology, as well as other aspects and further features thereof, reference is made to the following description which is to be used in conjunction with the accompanying drawings, where:
With reference to
The drive unit 12 includes an upper portion 32 and a lower portion 34. The upper portion 32 includes an engine 36 (schematically shown in dotted lines in
The engine 36 is coupled to a driveshaft 44 (schematically shown in dotted lines in
To facilitate the installation of the outboard engine 10 on the watercraft, the outboard engine 10 is provided with a box 48. The box 48 is connected on top of the rotary actuator 26. As a result, the box 48 pivots about the tilt/trim axis 24 when the outboard engine 10 is tilted, but does not pivot about the steering axis 30 when the outboard engine 10 is steered. It is contemplated that the box 48 could be mounted elsewhere on the bracket assembly 14 or on the drive unit 12. Devices located inside the cowling 38 which need to be connected to other devices disposed externally of the outboard engine 10, such as on the deck or hull 18 of the watercraft, are provided with lines which extend inside the box 48. In one implementation, these lines are installed in and routed to the box 48 by the manufacturer of the outboard engine 10 during manufacturing of the outboard engine 10. Similarly, the corresponding devices disposed externally of the outboard engine 10 are also provided with lines that extend inside the box 48 where they are connected with their corresponding lines from the outboard engine 10. It is contemplated that one or more lines could be connected between one or more devices located inside the cowling 38 to one or more devices located externally of the outboard engine 10 and simply pass through the box 48. In such an implementation, the box 48 would reduce movement of the one or more lines when the outboard engine 10 is steered, tilted or trimmed.
Other known components of an engine assembly are included within the cowling 38, such as a starter motor, an alternator and the exhaust system. As it is believed that these components would be readily recognized by one of ordinary skill in the art, further explanation and description of these components will not be provided herein.
Turning now to
The rotary actuator 26 includes a cylindrical main body 58, a central shaft (not shown) disposed inside the main body 58 and protruding from the ends thereof, and a piston (not shown) surrounding the central shaft and disposed inside the main body 58. The main body 58 is located at an upper end of the swivel bracket 50 and is integrally formed therewith. It is contemplated that the main body 58 could be fastened, welded, or otherwise connected to the swivel bracket 50. The central shaft is coaxial with the tilt/trim axis 24. Splined disks 60 (
The piston is engaged to the central shaft via oblique spline teeth on the central shaft and matching splines on the inside diameter of the piston. The piston is slidably engaged to the inside wall of the cylindrical main body 58 via longitudinal splined teeth on the outer diameter of the piston and matching splines on the inside diameter of the main body 58. By applying pressure on the piston, by supplying hydraulic fluid inside the main body 58 on one side of the piston, the piston slides along the central shaft. Since the central shaft is rotationally fixed relative to the stern bracket 52, the oblique spline teeth cause the piston, and therefore the main body 58 (due to the longitudinal spline teeth), to pivot about the central shaft and the tilt/trim axis 24. The connection between the main body 58 and the swivel bracket 50 causes the swivel bracket 50 to pivot about the tilt/trim axis 24 together with the main body 58. Supplying hydraulic fluid to one side of the piston causes the swivel bracket 50 to pivot away from the stern bracket 52 (i.e. tilt up). Supplying hydraulic fluid to the other side of the piston causes the swivel bracket 50 to pivot toward the stern bracket 52 (i.e. tilt down). In the present implementation, supplying hydraulic fluid to the left side of the piston causes the swivel bracket 50 to tilt up and supplying hydraulic fluid to the ride side of the piston causes the swivel bracket 50 to tilt down.
U.S. Pat. No. 7,736,206 B1, issued Jun. 15, 2010, the entirety of which is incorporated herein by reference, provides additional details regarding rotary actuators similar in construction to the rotary actuator 26. It is contemplated that the rotary actuator 26 could be replaced by a linear hydraulic actuator connected between the swivel bracket 50 and the stern bracket 52.
To maintain the swivel bracket 50 in a half-tilt position (i.e. a position intermediate the positions shown in
As best seen in
A shaft 70 with rollers 72 thereon extends from one rod 68 to the other. The rollers 72 are made of stainless steel, but other materials, such as plastics, are contemplated. As best seen in
By supplying hydraulic fluid inside the cylinders 64 on the side of the pistons 66 opposite the side from which the rods 68 extend, the pistons 66 slide inside the cylinders 64. This causes the rods 68 to extend further from the cylinders 64 and the rollers 72 to roll along and push against the curved surfaces 74 formed by the ramps 75 connected to the stern bracket 52. The shaft 70 helps maintain the rollers 72 in alignment with each other. It is also contemplated that the alignment of the rollers 72 could be maintained in another manner. For example, it is contemplated that the complementary shapes of the pistons 66 and the cylinders 64, or alternatively of the rods 68 and the cylinders 66, could maintain the alignment of the rollers 72. The ramps 75 are fastened to the back of the stern bracket 52. It is contemplated that the ramps 75 could be welded to the stern bracket 52, integrally formed with the stern bracket 52, or otherwise connected to the stern bracket 52. As the rods 68 extend from their respective cylinders 64, the rollers 72 roll down along the curved surfaces 74. As the rollers 72 roll down along the curved surfaces 74, they move away from the stern bracket 52 due to the profile of the surfaces 74. As a result of the rods 68 extending from the cylinders 64 and the rollers 72 rolling along the surfaces 74, the swivel bracket 50 pivots away from the stern bracket 52 (i.e. trims up) about the tilt/trim axis 24 up to the angle shown in
Similarly to the rotary actuator 26, the rotary actuator 28 includes a cylindrical main body 76, a central shaft (not shown) disposed inside the main body 76 and protruding from the ends thereof and a piston (not shown) surrounding the central shaft and disposed inside the main body 76. The main body 76 is centrally located along the swivel bracket 50 and is integrally formed therewith. It is contemplated that the main body 76 could be fastened, welded, or otherwise connected to the swivel bracket 50. The central shaft is coaxial with the steering axis 30. Splined disks (not shown) are provided over the portions of the central shaft that protrude from the main body 76. The splined disks are connected to the central shaft so as to be rotationally fixed relative to the central shaft. An upper generally U-shaped drive unit mounting bracket 78 has a splined opening therein that receives the upper splined disk therein. Similarly, a lower generally U-shaped drive unit mounting bracket 80 has a splined opening therein that receives the lower splined disk therein. The upper and lower drive unit mounting brackets 78, 80 are fastened to the drive unit 12 so as to support the drive unit 12 onto the bracket assembly 14. As a result, the drive unit 12, the splined disks and the central shaft are all rotationally fixed relative to each other. Anchoring end portions 82 (only the upper one of which is shown) are fastened to the upper and lower drive unit mounting brackets 78, 80 over the splined openings thereof and the ends of the central shaft, thus preventing displacement of the drive unit 12 along the steering axis 30.
The piston is engaged to the central shaft via oblique spline teeth on the central shaft and matching splines on the inside diameter of the piston. The piston is slidably engaged to the inside wall of the cylindrical main body 76 via longitudinal splined teeth on the outer diameter of the piston and matching splines on the inside diameter of the main body 76. By applying pressure on the piston, by supplying hydraulic fluid inside the main body 76 on one side of the piston, the piston slides along the central shaft. Since the main body 76 is rotationally fixed relative to the swivel bracket 50, the oblique spline teeth cause the central shaft and therefore the upper and lower drive unit mounting bracket 78, 80, to pivot about the steering axis 30. The connections between the drive unit 12 and the upper and lower drive unit mounting brackets 78, 80 cause the drive unit 12 to pivot about the steering axis 30 together with the central shaft. Supplying hydraulic fluid to one side of the piston causes the drive unit 12 to steer left. Supplying hydraulic fluid to the other side of the piston causes the drive unit 12 to steer right. In the present implementation, supplying hydraulic fluid above the piston causes the drive unit 12 to steer left and supplying hydraulic fluid below the piston causes the drive unit 12 to steer right.
U.S. Pat. No. 7,736,206 B1, issued Jun. 15, 2010, provides additional details regarding rotary actuators similar in construction to the rotary actuator 28. It is contemplated that the rotary actuator 28 could be replaced by a linear hydraulic actuator connected between the swivel bracket 50 and the drive unit 12.
The upper drive unit mounting bracket 78 has a forwardly extending arm 84. Two linkages 86 are pivotally fastened to the top of the arm 84. When more than one marine outboard engine is provided on the transom 16 of the watercraft, one or both of the linkages 86, depending on the position and number of marine outboard engines, of the marine outboard engine 10 are connected to rods which are connected at their other ends to corresponding linkages on the other marine outboard engines. Accordingly, when the marine outboard engine 10 is steered, the linkages 86 and rods cause the other marine outboard engines to be steered together with the marine outboard engine 10.
Two arms 88 extend from the upper end of the swivel bracket 50. As can be seen in
To supply hydraulic fluid to the rotary actuators 26, 28 and the linear actuators 22, the bracket assembly 14 is provided with a hydraulic unit 100. As best seen in
As best seen in
As best seen in
The pumps 102, 104, 106 are bi-directional electric pumps. Each pump 102, 104, 106 includes a motor (not shown), a shaft 116 (shown in dotted lines only for pump 106 in
The pump 102 is used to supply hydraulic fluid to the rotary actuator 26 and the linear actuators 22. Therefore, actuation of the pump 102 controls the tilt and trim. It is contemplated that the pump 102 could be replaced with two pumps: one controlling the upward motion (tilt/trim up) and one controlling the downward motion (tilt/trim down). The pump 102 is fluidly connected to the fluid reservoir 110 via the valve unit 108. The fluid present in the reservoir 110 and the volume of the reservoir 110 account for the variation in volume of hydraulic fluid in the hydraulic circuit to which the pump 102 is connected that is caused by the displacement of the pistons 66 in the linear actuators 22.
Hydraulic fluid can be added to the fluid reservoir 110 via a reservoir inlet 120. When the hydraulic unit 100 is mounted to the swivel bracket 50, the reservoir inlet 120 is in alignment with an aperture (not shown) in the side of the swivel bracket 50. As such, the reservoir 110 can be filled without having to remove it from the swivel bracket 50. As can be seen in
The pump 102 is fluidly connected to a valve assembly located in the valve unit 108. To trim the swivel bracket 50 up, the pump 102 pumps fluid from the reservoir 110 and fluid from the pump 102 is caused by the valve assembly to flow out of apertures 122, 124 in the valve unit 108. From the aperture 122, the fluid flows to an aperture 126 in the swivel bracket 50 (
To tilt the swivel bracket 50 up, fluid from the pump 102 is caused by the valve assembly to flow out of the aperture 122 in the valve unit 108, through the aperture 126 in the swivel bracket 50. From the aperture 126, fluid flows in another passage (not shown) integrally formed in the swivel bracket 50 to a port (not shown) in the main body 58 to supply the fluid to the left side of the piston of the rotary actuator 26. As this occurs, fluid on the right side of the piston of the rotary actuator 26 flows out of another port (not shown) in the main body 58 into another passage (not shown) integrally formed in the swivel bracket 50. From this passage, fluid flows out of an aperture 134 (
To tilt the swivel bracket 50 down, fluid from the pump 102 is caused by the valve assembly to flow out of the aperture 136 in the valve unit 108, into the aperture 134 in the swivel bracket 50 and to the port in the main body 58 to supply hydraulic fluid to the right side of the piston of the rotary actuator 26. As this occurs, fluid on the left side of the piston of the rotary actuator 26 flows out of its associated port to the aperture 126 in the swivel bracket 50, into the aperture 122 in the valve unit 108 and back to the pump 102.
It should be noted that, as the swivel bracket 50 is being trimmed up or down by the linear actuators 22, fluid is being simultaneously supplied to the rotary actuator 26 to obtain the same amount of angular movement in the same direction and at the same rate.
A screw 137 (
The pump 102 is actuated in response to the actuation by the driver of the watercraft of tilt and trim actuators (not shown) in the form of switches, buttons or levers for example. It is contemplated that the pump 102 could also be controlled by a control unit of the outboard engine 10 or of the watercraft to automatically adjust a trim of the drive unit 12 based on various parameters such as watercraft speed, engine speed and engine torque for example.
The valve assembly used to open and close the apertures 122 and 136 is a shuttle type spool valve similar to the one schematically illustrated in
When the pump 102 is not being operated, the valve assembly 138 is in the configuration shown in
When the pump 102 is operated to supply fluid through aperture 142, as in
As would be understood, when the pump 102 is operated to supply fluid through aperture 144, the hydraulic pressure created in the chamber 166 opens the port 148 and causes the shuttle 162 to open the port 146. Therefore, hydraulic fluid can flow in the direction opposite to the one illustrated in
It is contemplated that other types of valves or valve assemblies could be used instead of the valve assembly 128.
The pumps 104 and 106 are used to supply hydraulic fluid to the rotary actuator 28. Therefore, actuation of the pumps 104 and 106 control left and right steering of the drive unit 12. In the present implementation, both pumps 104, 106 are used for both left and right steering motion. It is contemplated that only one of the pumps 104, 106 could be used for providing the left steering motion with the other one of the pumps 104, 106 being used for providing the right steering motion. It is also contemplated that each one of the pumps 104, 106 could normally be used for providing one steering motion each with the other one of the pumps 104, 106 being used to provide a boost in pressure to steer when needed or to provide the pressure in case of failure of the pump normally being used to steer in a particular direction. It is also contemplated that only one pump could be used to supply the hydraulic pressure to the rotary actuator 28 to steer both left and right.
The pumps 104, 106 are fluidly connected to valve assemblies located in the valve unit 108. The valve assemblies are similar to the valve assembly 138 described above, but it is contemplated that other types of valves and valve assemblies could be used.
To steer the drive unit 12 to the left, fluid from the pumps 104, 106 is caused by the valve assemblies to flow out of an aperture 168 in the valve unit 108 into an aperture 170 in the swivel bracket 50 (
To steer the drive unit 12 to the right, fluid from the pumps 104, 106 is caused by the valve assemblies to flow out of an aperture 176 in the valve unit 108 into an aperture 178 in the swivel bracket 50 (
The swivel bracket 50 is also provided with an aperture 180 (
The pumps 104, 106 are actuated in response to signals received from one or more sensors sensing a position of a helm assembly 190 of the watercraft.
As illustrated in
To drain the hydraulic fluid from the hydraulic unit 100, a threaded fastener 192 (
When the hydraulic unit 100 is mounted to the swivel bracket 50, every aperture of the valve unit 108 is in alignment with and adjacent to its corresponding aperture in the swivel bracket 50. As such, no hydraulic lines need to be connected between corresponding apertures, which simplifies the mounting of the hydraulic unit 100 to the swivel bracket 50.
Turning now to
The hydraulic unit 200 includes a pump 102 (same type as above), a valve unit 208, and a hydraulic fluid reservoir 210. The pump 102 is mounted via fasteners 112 to the valve unit 208. The valve unit 208 is mounted to the swivel bracket 50 via fasteners inserted into apertures 114 provided in the valve unit 208. The fluid reservoir 210 is disposed on top of the valve unit 208 and is fastened to the valve unit 208.
As best seen in
The valve unit 208 corresponds to the lower part of the valve unit 108 described above. As such, the valve unit 208 is provided with apertures 122, 124, 132 and 136 that perform the same function and communicate with the same apertures in the swivel bracket 50 as the apertures 122, 124, 132 and 136 of the valve unit 108. As would be understood, the pump 102 is therefore used in tilting and trimming the swivel bracket 50 relative to the stern bracket 52.
The reservoir 210 fluidly communicates with the valve unit 208 to supply fluid to or receive fluid from the valve unit 208. The reservoir has a reservoir inlet 220 that is used to fill the reservoir 210 in the same manner as the reservoir inlet 120 of the reservoir 110 described above. The reservoir 210 and its inlet 220 are shaped differently from the reservoir 110 and its inlet 120 in order to properly be received in its different location on the swivel bracket 52.
Since the hydraulic unit 200 is not provided with pumps to supply hydraulic fluid to the rotary actuator 28 used to steer the drive unit 12, in order to steer the drive unit 12, hydraulic fluid is provided to the rotary actuator 28 via the lines 184, 186 from the hydraulic actuator 188 driven by the helm assembly 190 of the watercraft in the same manner as is schematically illustrated in
It is contemplated that the hydraulic unit 200 could have a different valve unit 208 that has additional apertures, valves and valves assemblies, such that the valve unit 208 would fluidly communicate with the apertures 170, 172, 178 and 180 in the swivel bracket 50 such that the pump 102 would be used for tilting, trimming and steering the drive unit 12. It is also contemplated that at least some elements of the hydraulic unit 200 could be mounted to the stern bracket 52.
Turning now to
The hydraulic unit 300 includes a pump 302, and a valve unit 304. The pump 302 is a unidirectional electric pump, but it is contemplated that other types of pumps could be used. The pump 302 is used to supply hydraulic fluid to the rotary actuator 28. Therefore, actuation of the pump 302 controls left and right steering of the drive unit 12. It is contemplated that two pumps could be used to control steering as in the hydraulic unit 100 described above. As is schematically illustrated in
As can be seen in
The valve unit 304 defines a fluid reservoir 322 (shown in dotted lines in
Hydraulic fluid can be added to the fluid reservoir 322 via a reservoir inlet closed by a cap 326 (
As can be seen in
An anode 330 is fastened to the front of the valve unit 304. The anode 304 helps prevent corrosion of the components of the bracket assembly 14″. It is contemplated that the anode 330 could be omitted and/or that one or more anodes 330 could be disposed elsewhere on the bracket assembly 14″.
Turning now to
The pump 302 is fluidly connected to a valve assembly 332 (
A low pressure sensor 336 is connected on top of the valve unit 304 to sense hydraulic fluid pressure upstream of the pump 302. The low pressure sensor 336 is in communication with a control module 338 (
A low pressure steering bypass valve 346 (
Apertures 362, 364, 366 and 368 (
The hydraulic unit 380 will now be described in greater detail with respect to
Turning now to
As can be seen in
With respect to
If the pressure of the hydraulic fluid upstream of the pump 302 is less than a first predetermined pressure, 50 psi for example, the control module 338 causes the motor 306 to stop and thereby causes the pump 302 to stop operating. This could occur for example if the helm assembly is turned slowly or if the watercraft is moving slowly. When the pump 302 stops, the hydraulic pressure in the passage upstream of the pump 302 causes the low pressure steering bypass valve 346 to open and hydraulic fluid flows from the valve assembly 332, through the valve 346, thereby bypassing the pump 302, and back to the valve assembly 332. The low pressure steering backflow preventer valve 354 prevents hydraulic fluid from flowing back into the pump 302 via the outlet of the pump 302.
If the pressure of the hydraulic fluid upstream of the pump 302 is greater than or equal to the first predetermined pressure, the control module 338 causes the motor 306 to run and thereby causes the pump 302 to operate. The pump 302 pressurizes the hydraulic fluid, causes it to flow through the steering backflow preventer valve 354 and then to the valve assembly 332 via the pump return port 414. The pressure of the hydraulic fluid flowing from the pump 302 to the valve assembly 332 causes the low pressure steering bypass valve 346 to be closed. The high pressure sensor 340 senses the pressure of the hydraulic fluid flowing from the pump 302 to the valve assembly 332 and sends a signal representative of this pressure to the control module 338. The speed at which the control module 338 causes the motor 306 to run, and thereby regulates the operation of the pump 302, is determined at least in part by the hydraulic fluid pressure sensed by the pressure sensors 336, 340. It is contemplated that the control module 338 could also regulate the operation of the pump 302 as a function of one or more operational characteristics of the watercraft and the outboard engine 12 such as, for example, watercraft speed, throttle request and engine speed. The information regarding the one or more operational characteristics is received by the control module 338 via one or more signals from the control unit of the outboard engine 12. If the pressure of the hydraulic fluid sensed by the high pressure sensor 340 is above a second predetermined pressure, 1700 psi for example, the control module 338 causes the motor 306 to stop and thereby causes the pump 302 to stop operating in order to prevent the high pressure to damage the pump 302, the valve unit 304 and the other hydraulic components. A second layer of protection is provided by the high pressure blow-off valve 350. Should the pressure of the hydraulic fluid in the passage between the pump 302 and the valve assembly 332 continue to rise above the second predetermined pressure, the high pressure blow-off valve 350 opens when the pressure of the hydraulic fluid reaches a third predetermined pressure, 1800 psi for example, to help stopping the pressure to increase further and then decrease. It is contemplated that the first, second and third predetermined pressures could have values that differ from those provided in the above examples.
From the valve assembly 332, the hydraulic fluid received via the valve 346 or from the pump 302, as the case may be, is supplied to the rotary actuator 28. If the helm assembly 190 has been turned to make a left turn, the hydraulic fluid is supplied from the valve assembly 332 to the rotary actuator 28 above the piston 382, causing the piston 382 to move down, and thereby causing the drive unit 12 to be steered to make a left turn, as in
The operation of the hydraulic steering system to make a left turn and a right turn will now be explained in more detail with respect to
The operation of the hydraulic steering system to make a left turn will now be explained in more detail with respect to
The aperture 362 is hydraulically linked with the shuttle actuation port 406 of the valve assembly 332 and the pumped hydraulic fluid will therefore cause the shuttle 335 to move toward the right with respect to the orientation of the valve assembly 332 in
With the shuttle 335 having reached the position shown in
The hydraulic fluid that flows out of the actuator port 412 causes the actuator valve 358 to open and to fluidly connect the actuator port 412 with the rotary actuator 28. The hydraulic fluid flowing out of the actuator port 412 also causes the actuator valve 360 to open via the passage 426, thereby allowing hydraulic fluid to be returned to the valve assembly 332 from the aperture 368 of the valve unit 304 as will be discussed below. From the actuator valve 358, the hydraulic fluid flows through the aperture 364 of the valve unit 304 and then through the aperture 374 of the swivel bracket 50″. From the aperture 374, the hydraulic fluid flows into the rotary actuator 28 above the piston 382. As a result, the piston 382 moves down which causes the drive unit 12 to pivot about the steering axis 30 to make the watercraft turn left, as shown in
As a result of the piston 382 moving down, hydraulic fluid present in the rotary actuator 28 below the piston 382 flows out of the rotary actuator 28, through the aperture 378 of the swivel bracket 50″ and then through the aperture 368 of the valve unit 304. From the aperture 368, the hydraulic fluid can flow through the opened actuator valve 360. From the actuator valve 360, the hydraulic fluid can flow into the valve assembly 332 via the actuator port 416 and then out of the valve assembly 332 via the helm port 418 (see
From the helm port 418, the hydraulic fluid flows through the aperture 366 of the valve unit 304 and then through the aperture 376 of the swivel bracket 50″. From the aperture 376, the hydraulic fluid flows through the opened one-way valve 400 and then back to the helm pump 384 via the port 390 of.
The operation of the hydraulic steering system to make a right turn will now be explained in more detail with respect to
The aperture 366 is hydraulically linked with the shuttle actuation port 422 of the valve assembly 332 and the pumped hydraulic fluid will therefore cause the shuttle 335 to move toward the left with respect to the orientation of the valve assembly 332 in
With the shuttle 335 having reached the position shown in
The hydraulic fluid that flows out of the actuator port 416 causes the actuator valve 360 to open and to fluidly connect the actuator port 416 with the rotary actuator 28. The hydraulic fluid flowing out of the actuator port 416 also causes the actuator valve 358 to open via the passage 430, thereby allowing hydraulic fluid to be returned to the valve assembly 332 from the aperture 364 of the valve unit 304 as will be discussed below. From the actuator valve 360, the hydraulic fluid flows through the aperture 368 of the valve unit 304 and then through the aperture 378 of the swivel bracket 50″. From the aperture 378, the hydraulic fluid flows into the rotary actuator 28 below the piston 382. As a result, the piston 382 moves up which causes the drive unit 12 to pivot about the steering axis 30 to make the watercraft turn right.
As a result of the piston 382 moving up, hydraulic fluid present in the rotary actuator 28 above the piston 382 flows out of the rotary actuator 28, through the aperture 374 of the swivel bracket 50″ and then through the aperture 364 of the valve unit 304. From the aperture 364, the hydraulic fluid can flow through the opened actuator valve 358. From the actuator valve 358, the hydraulic fluid can flow into the valve assembly 332 via the actuator port 412 and then out of the valve assembly 332 via the helm port 410 (see
From the helm port 410, the hydraulic fluid flows through the aperture 362 of the valve unit 304 and then through the aperture 372 of the swivel bracket 50″. From the aperture 372, the hydraulic fluid flows through the opened one-way valve 394 and then back to the helm pump 384 via the port 388.
It is contemplated the hydraulic unit 300 could be omitted. In such an implementation, the reservoir 210 is provided on the hydraulic unit 200. Also, a left fitting (not shown) is connected to the swivel bracket 50″ by fasteners inserted into the aperture 318 above the apertures 372, 374 and into the aperture 432 below the apertures 372, 374 (see
Turning back to
The swivel bracket 50″ has two bleeder valves 434 installed thereon. The bleeder valves 434 fluidly communicate with passages in the swivel bracket 50″ that fluidly communicate with the hydraulic unit 300 and the hydraulic unit 380. The bleeder valves 434 are opened when the hydraulic fluid reservoirs 311, 392 are being filled in order to allow air to escape from the hydraulic system.
The swivel bracket 50″ also has two liquid tie bar passages on the left side of the rotary actuator closed by plugs 436, 438 and one liquid tie bar passage on the right side of the rotary actuator 28 closed by a plug (not shown but generally indicated by arrow 440). When multiple outboard engines 10 are mounted to a transom of the watercraft 16, the liquid tie bar passages provide an alternative to connecting rods between linkages 86 of the outboard engines 10 in order to permit simultaneous steering of all the drive units 12 using only one hydraulic unit 300. When multiple outboard engines 10 are mounted to a transom of the watercraft 16, the plugs 436, 440 are replaced with fittings (not shown) similar to the fittings 396, 402 and are connected to corresponding fittings on another outboard engine 10 via hydraulic lines (not shown) and the plug 438 is replaced by a plug (not shown) defining passages that modify the flow of hydraulic fluid inside the swivel bracket 50″. As a result, when hydraulic fluid is supplied to the rotary actuator 28 of the outboard engine having the hydraulic unit 300 to steer the drive unit 12, hydraulic fluid is supplied to the rotary actuator 28 of another outboard engine 10 not provided with a hydraulic unit 200 via the liquid tie bar passages in order to steer the other drive unit 12 in the same direction.
Turning now to
In the alternative implementation of the hydraulic unit 300 shown in
Also in the alternative implementation of the hydraulic unit 300 shown in
The speed at which the control module 338 causes the motor 306 to run, and thereby regulates the operation of the pump 302, is determined at least in part by the hydraulic fluid pressure sensed by the pressure sensors 450, 452. If the difference between the pressures of the hydraulic fluid sensed by the pressure sensors 450, 452 are above a predetermined value, 6 psi for example, the control module 338 causes the motor 306 to run.
As can be seen in
Two one-way valves 456 are provided inside the pump 302 in the passages connecting the fluid reservoir 311 to the pumping member 310. The valves 456 ensure that fluid only flows from the reservoir 311 to the pumping member 310 in these passages. It is contemplated that the valves 456 could also be provided in the pump 302 of the implementation of
Modifications and improvements to the above-described implementations of the present technology may become apparent to those skilled in the art. The foregoing description is intended to be exemplary rather than limiting. The scope of the present technology is therefore intended to be limited solely by the scope of the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 14/606,636, filed Jan. 27, 2015, which claims priority to U.S. Provisional Patent Application No. 61/931,981, filed Jan. 27, 2014, the entirety of both of which is incorporated herein by reference. The present application is related to U.S. Pat. No. 8,840,439, issued Sep. 23, 2014, U.S. Pat. No. 8,858,279, issued Oct. 14, 2014, U.S. Provisional Patent Application No. 61/491,561, filed May 31, 2011, and U.S. Provisional Patent Application No. 61/591,429, filed Jan. 27, 2012, the entirety of all of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4605375 | Ferguson | Aug 1986 | A |
6454619 | Funami et al. | Sep 2002 | B1 |
6820567 | Kishi et al. | Nov 2004 | B1 |
7318386 | Dudra et al. | Jan 2008 | B2 |
7497183 | Dudra et al. | Mar 2009 | B2 |
7736206 | McChesney et al. | Jun 2010 | B1 |
7901258 | McChesney | Mar 2011 | B1 |
8840439 | Wiatrowski et al. | Sep 2014 | B1 |
8858279 | Wiatrowski et al. | Oct 2014 | B1 |
Number | Date | Country | |
---|---|---|---|
61931981 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14606636 | Jan 2015 | US |
Child | 15298667 | US |