Information
-
Patent Grant
-
6761599
-
Patent Number
6,761,599
-
Date Filed
Monday, April 29, 200222 years ago
-
Date Issued
Tuesday, July 13, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Liniak, Berenato & White, LLC
-
CPC
-
US Classifications
Field of Search
US
- 440 61 R
- 440 61 S
- 440 61 C
-
International Classifications
-
Abstract
A steering apparatus for a marine craft has a first bracket connectable to the stern of the marine craft. There is a second bracket connectable to the propulsion unit of the marine craft. The second bracket is rotatably connected to the first bracket for relative rotation about an axis of rotation. The propulsion unit can be rotated about the axis of rotation relative to the stern of the craft. The second bracket has a cylindrical bore extending therethrough. A piston is reciprocatingly received within the bore. The piston slidingly engages the bore and has a piston rod connected thereto. The piston rod is operatively connected to the propulsion unit.
Description
BACKGROUND OF THE INVENTION
This invention relates to hydraulic steering systems for marine craft, and more particularly for marine craft having outboard drives or inboard/outboard drives.
Smaller marine craft are typically powered by outboard drive units or inboard/outboard drive units which are mounted on the transom of the marine craft at the stern. The drive units can be tilted upwards about a horizontal axis of rotation for storage purposes, in shallow water, to perform maintenance operations or for other such purposes. The drive unit is usually mounted on a swivel bracket which allows the drive unit to be tilted upwards. The drive units can be rotated about a steering axis relative to the swivel bracket.
In some such marine craft, a hydraulic steering system is provided in order to rotate the drive unit about the steering axis. Various systems have been developed in the past which permit the drive units to be tilted upwards when so equipped with hydraulic steering systems.
For example, U.S. Pat. No. 6,276,771 to Treinen et al. discloses an integrated hydraulic steering actuator where the tilt bracket has a cylindrical portion. A hydraulic actuator, comprising a cylinder member and a piston member, are disposed within the cylindrical portion of the tilt bracket. However this arrangement has a number of disadvantages. For example, the assembly has a relatively large number of parts. The tilt bracket has a cylindrical portion with a cylindrical bore. Both an inner cylinder and an outer cylinder are disposed within the bore. A piston of a piston and piston rod assembly is reciprocatingly and slidingly received within the inner cylinder. The relatively large number parts increases to the cost of components as well as the assembly time and accordingly may increase the cost of the overall system. Furthermore, where different metals are used for the various components, such as the inner cylinder, the outer cylinder and the cylindrical portion of the tilt bracket, corrosion problems can result in a marine environment.
Accordingly is an object of the invention to provide an improved hydraulic steering system for marine craft having stern drives, where non-rotational travel of the hydraulic actuator is effectively eliminated when the stern drive is tilted, but which offers simpler construction and requires fewer parts than the prior art.
It is another object of the invention to provide an improved hydraulic steering system for marine craft where non-rotational travel of the hydraulic actuator is effectively eliminated when the stern drive is tilted, but which does not acquire a separate hydraulic cylinder, apart from the swivel bracket, to support the pivotal connection between the swivel bracket and the transom bracket.
Is further object of the invention to provide an improved hydraulic steering system for marine craft where non-rotational travel of the hydraulic actuator is effectively eliminated when the stern drive is tilted, and where potential corrosion between the steering cylinder and a tilt bracket is eliminated by forming the cylinder as part of the tilt bracket.
BACKGROUND OF THE INVENTION
According to the invention, there is provided a steering apparatus for marine craft having a stern and a propulsion unit mounted on the stern. The system includes a first bracket which is connectable to the stern of the marine craft. There is a second bracket connectable to the propulsion unit. The second bracket is rotatably connected to the first bracket for relative rotation about an axis of rotation. The propulsion unit can be rotated about the axis of rotation relative to the stern of the craft. The second bracket has a cylindrical bore extending therethrough. A piston is reciprocatingly received within the bore, slidingly engages the bore and has a piston rod connected thereto. The piston rod is operatively connected to the propulsion unit. Preferably the piston rod is coaxial with the axis of rotation.
In one example, the second bracket has an actuator portion. The bore extends through the actuator portion. The second bracket comprises a cylinder for the actuator. The actuator portion may have a cylindrical bushing surface. The first bracket has an extension. The extension has a cylindrical bore rotatably receiving the bushing surface. The bushing surface and the cylindrical bore are co-axial with the axis of rotation.
The invention offers significant advantages over the prior art. It provides a hydraulic steering system for stern drives where there is no arcuate travel of the hydraulic actuator when the stern drive is tilted. At the same time, it significantly reduces the complexity of the mechanism compared to U.S. Pat. No. 6,276,977 because it does not require a separate outer or inner cylinder apart from a bore through the swivel bracket itself. In effect, a portion of the swivel bracket becomes the cylinder of the actuator.
Nor is it feasible to readily modify the above U.S. patent to delete the inner and outer cylinders. This is because the extensions to the clamp brackets are beside the cylindrical portion of the swivel bracket which therefore does not present a continuous cylindrical bore for a cylinder. Furthermore, the outer cylinder is required in order to act as a pin in the hinged connection between the extensions to the clamp brackets and the cylindrical portion of the swivel bracket.
Corrosion cannot occur between the hydraulic cylinder and the tilt bracket according to the invention because they comprise a single component in the preferred embodiment.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings:
FIG. 1
is a top plan view of the steering system for a marine craft according to an embodiment of the invention;
FIG. 2
is a front view thereof;
FIG. 3
is a side elevation thereof;
FIG. 4
is an enlarged front view, similar to
FIG. 2
, with the actuator thereof and steering arm thereof shown in section along line
4
—
4
of
FIG. 1
;
FIG. 5
is a sectional view along line
5
—
5
of
FIG. 3
;
FIG. 6
is a view similar to
FIG. 2
of an alternative embodiments with a double acting actuator;
FIG. 7
is a view thereof equivalent to
FIG. 4
; and
FIG. 8
is a fragmentary, side elevational view of the stern portion of a marine craft with an outboard motor mounted thereon and a steering system according to the embodiment of FIG.
1
.
DETAILED DESCRIPTIONS OF THE PREFERRED EMBODIMENTS
Referring to the drawings, and first to
FIG. 8
, this shows a hydraulic steering apparatus
20
used in conjunction with an outboard motor
22
which is mounted on transom
28
at stern
30
of a boat
26
. The steering apparatus is used to steer the boat by rotating the motor about steering axis
27
. However the steering apparatus allows the motor to be rotated upwardly from the normal operating position shown about a generally horizontal axis of rotation
31
as indicated by arrow
32
. It should be understood however that the invention is also applicable to other types of stern drives, such as inboard/outboard drives.
Referring to
FIGS. 1-3
, these show the steering apparatus
20
in more detail. The apparatus includes a pair of first or stern brackets
36
and
37
which are connected to a second or swivel bracket
38
so as to permit rotation of the motor about the axis of rotation
31
. In an alternative embodiment the stern brackets are combined into a single bracket. The swivel bracket has a cylinder-like actuator portion
40
forming part of the bracket and adjacent top
42
thereof. There is a position sensor
43
mounted on the top of the swivel bracket.
Referring to
FIG. 4
, the actuator portion
40
of the swivel bracket has a cylindrical bore
44
extending therethrough and thereby forms the cylinder for a hydraulic actuator
45
. A piston
46
, equipped with sealing ring
47
, is reciprocatingly received within the bore and slidingly engages the bore. There is a piston rod
48
connected to the piston. The piston rod is connected to steering arm
50
by a link arm
52
having pivotal connections
54
and
56
to steering arm and piston rod respectively as seen in
FIGS. 1 and 4
. Thus the piston rod is operatively connected to the propulsion unit which is mounted on the swivel bracket
38
. The piston rod in this embodiment is coaxial with the axis of rotation
31
.
Referring again to
FIG. 4
, actuator portion
40
has a pair of spaced apart cylindrical bushing surfaces
51
and
53
on the outside thereof. Each of the stern brackets
36
and
37
has an upper extension
56
, shown in
FIGS. 3 and 4
, each having a cylindrical bore
58
which rotatably receives one of the bushing surfaces
51
or
53
. The bushing surfaces and the cylindrical bores in this embodiment are coaxial with the axis of rotation
31
.
The actuator
45
includes threaded end fittings
60
and
62
with O-rings
65
and
66
respectively which sealingly engage opposite ends of the actuator portion
40
so as to seal the opposite ends of the bore
44
. Fitting
60
is provided with a hydraulic fitting
64
for the passage of hydraulic fluid into and out of the portion of the actuator to the left of the piston, from the point of view of FIG.
4
.
Referring to
FIG. 5
, end fitting
62
has an aperture
66
extending therethrough with bushing
73
mounted in the aperture. The piston rod
48
extends through bushing
73
and sealingly through the aperture by means of seal
68
and wiper
70
mounted on the end fitting about the aperture
66
. There is a swivel member
72
rotatably mounted on the end fitting
62
between bushing
74
and retaining ring
76
. The swivel member is annular in shape and has an inner, annular groove
78
which coincides with a similar, annular groove
80
in the end fitting. The two grooves form an annular hydraulic conduit which allows hydraulic fluid to pass between hydraulic fitting
84
and passageway
86
in the end fitting
62
as shown in FIG.
4
. Two annular grooves
75
and
76
with O-rings
77
and
79
respectively, seal the annular hydraulic conduit. This permits the actuator
45
to rotate about the axis
31
without displacing the hydraulic fitting
84
.
FIGS. 6 and 7
show an alternative embodiment were like parts have like numbers with the addition of “0.1”. In this embodiment however actuator
45
.
1
is double acting and piston rod
48
.
1
extends on both sides of the piston
46
.
1
. Therefore, in this case, there is a hydraulic fitting
62
.
2
, which is a mirror image of the fitting
62
of the previous embodiment, at the end of the actuator opposite to fitting
62
.
1
.
It will be understood by someone skilled in the art that many the details provided above are by way of example only and are not intended to limit the scope of the invention which is to be interpreted with reference to the following claims:
Claims
- 1. A steering apparatus for a marine craft having a stern and a propulsion unit mounted on the stern, the system comprising:a first bracket connectable to the stern of the marine craft, the first bracket having an extension, said extension having a cylindrical bore; and a second bracket connectable to the propulsion unit, the second bracket having an actuator portion with a cylindrical bushing surface, the cylindrical bore receiving the bushing surface, the second bracket being rotatably connected to the first bracket for relative rotation about an axis of rotation, the bushing surface and the cylindrical bore being coaxial with the axis of rotation, whereby the propulsion unit can be rotated about the axis of rotation relative to the stern of the craft, the second bracket having a cylindrical bore extending through the actuator portion thereof and comprising a cylinder for an actuator, a piston being reciprocatingly received within the bore, slidingly engaging the bore and having a piston rod connected thereto, the piston rod being operatively connected to the propulsion unit and being coaxial with the axis of rotation.
- 2. The steering apparatus as claimed in claim 1, including a pair of first brackets, the actuator portion having a pair of spaced apart cylindrical bushing surfaces, each of the first brackets having an extension with a cylindrical bore rotatably receiving one of the bushing surfaces.
- 3. The steering apparatus as claimed in claim 2, wherein the bushing surfaces and the cylindrical bores are coaxial with the axis of rotation.
- 4. The steering apparatus as claimed in claim 3, including end fittings sealingly engaging opposite ends of the bore in the second bracket, the end fittings each having a hydraulic connector for connecting a hydraulic conduit to the second bracket.
- 5. The steering apparatus as claimed in claim 4, wherein at least one of the end fittings has an aperture therethrough, the piston rod extending sealingly through the aperture, said at least one end fitting having a swivel member rotatably mounted thereon, one of the hydraulic connectors being mounted on the swivel member, whereby the second bracket can rotate relative to said one hydraulic connector.
- 6. The steering apparatus as claimed in claim 5, wherein said one of the end fittings has a cylindrical outer surface, the swivel member having a cylindrical opening rotatably receiving the cylindrical outer surface.
- 7. The steering apparatus as claimed in claim 6, including an annular hydraulic conduit extending between the cylindrical outer surface and the cylindrical opening.
US Referenced Citations (6)