The present invention belongs to the maritime rescue sector, and more specifically to alert systems of “man overboard” type, identification and rescue of persons who have fallen into the sea.
The main object of the present invention is an alert and rescue system of shipwrecked persons, as well as the control process of said system, whereby the location and identification processes of the persons who have fallen into the sea are maximized and optimized for their later rescue.
At present, different alert and maritime safety systems are known for the rescue of crew members who have fallen into the water, also known as PLB (Personal Locator Beacon) systems for situations of “man overboard” (MOB).
Said systems are generally based on emitter devices that work in the international rescue frequency, 121.5 MHz for civil use, and 243 MHz for military, and that due to the short range of its emission are only received by ships with receivers in said frequencies, which sail close to the accident (maximum 4-5 nautical miles).
Within these systems there are various modes of operation, with a greater or lesser success, which transmit the position of the shipwrecked person by the incorporation of a Global Positioning System (GPS, GLONASS, GALILEO, . . . ), hereinafter GPS, and the encoding of said position in the carrier wave, with the drawback of requiring a decoder onboard, specific for each manufacturer as there does not exist a coding regulation of said signal.
Likewise, global positioning systems are known, both of personal use and for the own ship, which, based on the different satellite navigation systems recognized by the GMDSS system (such as COSPAS SARSAT, GALILEO, GLONASS), send the satellites data regarding the position and identification of the victim using the 406 MHz frequency, and this information later reaches the maritime rescue coordination centres onshore, which report to the national authorities in whose waters the accident has occurred. These systems are not recognized for personal use nor are they accepted by the International Maritime Organization (IMO) or the International Convention for the Safety of Life at Sea (SOLAS).
On the other hand, signal emitting equipment of the MOB emergency signal by the name “Digital Selective Calling” (DSC) are currently on the market. DSC emissions are a subsystem of the GMDSS global system, which regulates all onboard safety and radio communication means. Said DSC call is a call which exclusively transmits data in communication channel 70, and it has several levels of severity (distress, urgent and safety). Again, both IMO and SOLAS are against the indiscriminate use of said channel 70 for personal use by the shipwrecked person, though not of the ship, faced with the possibility of generating a huge number of calls produced by false alarms, improper use, etc., causing a saturation of the channel. It is for this reason that it is desirable to look for a way to limit the use of said channel 70.
Finally, PLB-AIS calls are known, which using the AIS (Automatic Identification System) system, emit every given period of time, in accordance with the vessel speed but with a minimum of at least one emission every 5 minutes. Generally, the identifying data of the transmitter are the MMSI, position, speed and course. This emission is performed via VHF (emission in the frequencies of 161975 MHz and 162025 MHz), but unlike previous systems they do not give an alarm system, but simply inform of a position, which in principle shall be confused with that of a ship and not that of a shipwrecked person in MOB situation.
More specifically, emitter-receiver systems are known wherein the person who has fallen into the water emits a radiofrequency signal that is initially received by the vessels nearby the accident, and which is sent to shore by repetition of stations in vessels, called “MAYDAY RELAY”, until reaching a coastguards station located onshore, which coordinates the alarm and rescue process.
The technical problem posed here is that the current location systems do not allow a repeated search in terms of the location of the vessels in the immediate vicinity of the own ship (ship from which a crew member has fallen), so that with said current systems, if the own ship does not respond after the call of the shipwrecked person, there is no possible identification thereof by another vessels which may be a few miles away, the last hope remaining, and only if a general DSC call of maximum priority has been made, called “MAYDAY”, that the coastguards station has correctly received the coordinates of the shipwrecked person, this way of acting being very slow, dangerous and can clearly be optimized, as in these cases of extreme urgency every minute that passes is of vital importance. The ships located in the VHF range of the general DSC call will also receive the alarm signal, but will wait for the coastguard's station to check the veracity of said alarm, to then be coordinated by it to collaborate in the rescue, if possible. But as mentioned above, this type of general DSC call is totally questioned by the IMO, and it will be very difficult for it to be implemented in the GMDSS system of global application with no type of modification.
The present invention resolves the aforementioned drawbacks, providing an alert and maritime rescue system, particularly applicable to life jackets and/or onboard work suits, as well as a control process of said system, whereby maximum safety is provided for the crew members of a vessel, and in the event of a man overboard situation, hereinafter MOB, give a fast, effective and complete solution, performing a repetitive search of nearby vessels, without stopping in the attempt to communicate until a vessel of those among the closest to the shipwrecked person responds with an ACK confirmation signal (acknowledgement), additionally doing all of this without causing saturation of data communication channel 70.
The alert and rescue system object of the invention is designed to be incorporated in the life jacket or work suit of the crew member of a vessel, said system comprising manual or automatic actuation means, which may consists of conductivity sensors of water, pressure, temperature or any other variable.
At the same time, the actuation means are connected to a control unit which analyses the signals from said sensors, managing them so that they produce the activation of the system exclusively in real MOB situations, thus avoiding possible false alarms. Said control unit activates a GPS (Global Positioning System) location device whereby it is possible to obtain the exact location of the shipwrecked person, and a radio beacon adapted to emit an alarm signal to the nearby vessels.
More specifically, the system of the present invention fundamentally stands out as it incorporates and integrates in a single piece of equipment the intelligent management of an alarm signal via radio signal emission/reception devices, which are:
The operation and control process of the alarm and rescue system object of the invention is described below:
As a MOB situation of “man overboard” occurs, the alert system of the present invention is activated through the manual or automatic actuation means, and which as has been commented above may be formed by sensors of a different nature, whether conductivity, pressure, temperature sensors, etc., which in turn are managed by the control unit to guarantee that the alert system is exclusively actuated in real MOB situations, avoiding false alarms.
From that very point when the falling of the man overboard occurs, the radio beacon starts the constant emission of an alarm signal until the final rescue of the shipwrecked person, this emission being in the frequency of 121.5/243 MHz. Said radio beacon alerts of the emergency situation both to aircraft and vessels equipped with receivers in this frequency and situated within the range of said alarm signal, also acting as “radio beacon” frequency for the onboard receivers of said vessels or aircraft, guiding them to the position of the shipwrecked person.
At the same time, the DSC device makes an emergency call exclusively to the own ship (ship the shipwrecked person comes from), making a communication both of data (channel 70), and voice (channel 16), raising the alarm of a MOB situation. It is reminded that, by regulation, all ships must be equipped with a DSC transceiver and a keep it permanently tuned to voice channel 16. Likewise, it should be indicated that this first emergency call does not incorporate the GPS position of the shipwrecked person, since the global positioning system takes between about 40 to 90 seconds to obtain the first position. However, it is obvious for the ship, that in those first few moments the shipwrecked person is at a few metres in its wake.
It is important to highlight that when in the present specification we speak of emergency calls made by the DSC device, all these DSC calls are calls exclusively of ship-to-ship type, i.e. only the ship called receives it and MAYDAY RELAY is not generated, thus avoiding that a general alert call occurs which may create a situation of generalized confusion in the shipping area, which would lead to the automatic MAYDAY RELAY making said alarm reach the coastguards station. In other words, the entire alarm is exclusively limited to the VHF range, the ships located in said area being those which at their criteria rescue or raise the alarm by the MAYDAY RELAY of a general alert call to said coastguards station.
From the first instant of activation of the radio beacon, the AIS device is also activated which starts to emit the position of the shipwrecked person, which can be seen by any vessel within the VHF range (approximately 5-10 miles), at the same time as it identifies and records the MMSI of all the ships situated within said VHF zone.
As soon as the GPS system acquires the position from the satellites, the DSC device makes a second call to the own ship, informing of the exact position of the shipwrecked person.
Then, once the own ship receives the first or second emergency call from the DSC device, it is possible to act in two ways: If said own ship receives the emergency call and is in conditions to respond to it (it has not sunk or there is more crew onboard), it can go ahead with the rescue directly allowing the periodical DSC calls, or it may, if it considers that the rescue does not present any problems, respond to said signal by means of the DSC emitter of the ship with an ACK confirmation signal that cancels the emissions of the DSC device of the shipwrecked person. It must be highlighted that the emission from the AIS device of the shipwrecked person remains active, so that the position of the shipwrecked person continues visible through the AIS receptor of the vessel.
It should be indicated in the point that a vessel that has a class “A” DSC device can emit, whilst if the DSC device of the ship is of class “D” it shall only be capable of receiving data and information but it cannot emit an ACK confirmation signal.
If the own ship does not respond within a specific time period, the time established according to safety criteria, preferably 5 to 10 minutes, the system's intelligent control unit begins to select by order of proximity the MMSI of the closest ships previously identified by the AIS device, to later, through the DSC device, successively call each one of said ships, always ship-to-ship and through channel 70, as we have mentioned above. These calls to the different MMSI located in the area, shall continue constantly until receiving the ACK confirmation signal from one of them, the time when the DSC device of the shipwrecked person stops making DSC calls, both of data and voice, thus acting in a similar way to that described for the case of confirmation by the own ship.
Preferably, the information transmitted by the DSC call, both in data and voice communication, is the following:
Furthermore, it has been provided that the alert system object of invention can be configured so that it works according to military protocols. In said military uses, the microprocessor of the radio beacon can be programmed with a list of “friendly MMSIs”, so that from all the MMSIs received through the AIS device of the shipwrecked person, said friendly MMSIs are the only ones that can call. This special military use programming has the option of further cancelling the AIS emission device, so that the position of the shipwrecked person cannot be detected through the AIS device, but it does receive the existing signals. Furthermore, the possibility has been provided that in this programming neither is it emitted by 121.5 MHz until the ACK confirmation signal of a “friendly MMSI” activates it, all in order to avoid interference from third ships undesired in the MOB situation.
On the other hand, if after a certain time has passed since the falling of the man overboard occurred (time established by the maritime rescue organizations), the AIS device of the shipwrecked person has not read MMSI information of any nearby ship, then the DSC device makes a geographic call to all vessels within the VHF range. It should be indicated that said geographic call is not of MAYDAY type (maximum emergency), since this type of call would automatically generate the MAYDAY RELAY (automatic broadcasting of the ship-to-ship call until reaching the coastguards station), but it is of “SECURITE” type (intermediate emergency), which does not activate the MAYDAY RELAY, the recipient ship deciding whether to go ahead with the rescue or inform the coastguards station in order for it to coordinate the rescue. This way of acting is of special use when the closest ships to the shipwrecked person have an AIS device with receiving capacity, but without the capacity to emit its MMSI signal, so that the AIS device of the shipwrecked person does not “see” them, not being able to detect said ships and, in consequence, without the possibility of calling them ship-to-ship.
Finally, after receiving an ACK confirmation signal and the shipwrecked person being rescued, the radio beacon, the DSC device and the AIS device of the alert system object of invention are manually switched off. Nevertheless, if after a time limit, preferably 20 minutes, the shipwrecked person has not been picked up and the radio beacon has manually deactivated, the control unit then reactivates the DSC device, with the entire control process described above restarting.
Preferably, it has been provided that said DSC device additionally comprises means of voice recording and/or playing, whereby it is possible to transmit a distress message, whether through the voice of the shipwrecked person, or by a synthetic voice with the message of “man overboard”, MOB.
Finally, it should be indicated that the alert and rescue system described here makes it possible to avoid saturation through communication channel 70, therefore a reduced number of calls are made through said channel. This is due to the fact that the DSC device of the present invention only makes ship-to-ship calls, until it receives a confirmation signal (ACK signal) from one of them. In this way, unlike with the current DSC systems, instead of making continuous calls to all ships until said DSC systems are manually deactivated, the DSC device of the present invention exclusively makes calls to each one of the ships previously detected by the AIS device, until it is recognized by a ship which silences it by an ACK signal, without limitations of previous knowledge of any MMSI, except the military mode of use.
To complement the description being made and in order to aid towards a better understanding of the characteristics of the invention, in accordance with a preferred example of practical embodiment thereof, a set of drawings is attached as an integral part of said specification wherein, with illustrative and non-limiting character, the following has been represented.
FIG. 1.—Shows a view of a block diagram where the different elements that make up the alert and rescue system object of the invention can be observed.
An example of preferred embodiment of the alert system (1) object of the invention is described below, without this supposing any limitation in the scope of protection of the present invention.
As can be observed in the block diagram of
Furthermore, the alert and rescue system (1) object of the invention incorporates a DSC (Digital Selective Calling) selective calling device (30), equipped with voice recording and/or playing means (31) which allow transmitting a distress message AIS (Automatic Identification System) automatic identification device (40), both being connected with the control unit (50) and the GPS device (10), and both devices, DSC and AIS (30, 40), having signal emission and reception capacity.
More in particular, the alert system (1) fundamentally stands out due to the combined action of the control unit (50) and said DSC and AIS devices (30, 40), whereby it is possible to perform a repetitive search of vessels close to the shipwrecked person, without stopping in the attempt to communicate until a vessel of those among the closest to the shipwrecked person responds with an ACK confirmation signal. Furthermore, it should also be equally highlighted that all the emergency calls made by the DSC device (30), whether to the own ship or to the vessels located by the AIS device (40), are calls of ship-to-ship type, i.e. only the ship receives the call and no MAYDAY RELAY is generated.
Finally, it should be indicated that the actuation means (100) of the alert system (1) described here can be are manually triggered, by the action of a button (60) designed to be pressed by the shipwrecked person; or can be automatic, through an electronic circuit (70) comprising moisture sensors and/or pressure and/or temperature sensors, among others. More particularly, for the case of the manual actuation means (100), it has been provided that the button (60) incorporates a protection system which avoids the accidental trigger or actuation of the alert system (1), such as a folding cap or cover above the button (60), or incorporates an internal electronic system which demands and requires the button (60) to be kept pressed during a short period of time, such as 3 seconds.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/ES2011/070666 | 9/23/2011 | WO | 00 | 4/15/2014 |