With reference now to
The moving assembly 14 includes a turntable 26 rotatably mounted on a driver 28. Although not specifically shown in the drawings, the driver 28 is formed from a combination of a step servo motor whose output is connected to the rotatably mounted turntable 26 via a drive train. The step servo motor of the driver 28 is connected to a power source (also not shown) which in turn is controlled by the programmable lodge controller 11. The controller 11 controls the specific angle that the turntable 26 rotates by controlling the number of power pulses conducted to the step servo motor in a manner well known in the digital control arts. The moving assembly 14 further includes a template 30 formed from a plate 32 that lies on top of the turntable 26. The plate 32 has a recess 34 which is complementary in shape to the bottom edges of a particular model of green ceramic honeycomb structure. The template 30 includes a set of pins 35 (only one of which is shown) that position the plate 32 in proper alignment with the top surface of the turntable 26. While the template 30 has been referred to thus far in singular terms, the system 1 of the invention actually includes a plurality of templates 30 (shown in
The printer 16 includes an ink jet print head 36 which preferably has at least two ink jets (not shown) so as to be able to expeditiously print a mark containing the combination of a bar code, such as a two dimensional bar code, and a human-readable alphanumeric data string. Printer 16 is provided with an ink reservoir 38 for storing a heat resistive ink which is preferably comprised of a mixture of a particulate glass or glass ceramic frit and a metal oxide colorant in combination with an organic liquid, such as pine oil. The particulate glass or glass ceramic frit may be intimately mixed with particles of the metal oxide colorant (hereinafter referred to as “Approach No. 1”) or the colorant may be melted directly into the glass or glass ceramic flit prior to the application of the resulting ink to the ceramic marine body (hereinafter referred to as “Approach No. 2”). Examples of glass compositions suitable for an Approach No. 1 type ink are set forth in Table 1 below:
The above mixtures may be prepared by weighing separately the several powdered constituents, adding them to a polycarbonate bottle with some alumina grinding balls, rolling the mixture on low speed for approximately 15 minutes to achieve homogeneity, and then finally sieving the mixture through a 200 mesh screen to separate the grinding balls and to break up any soft agglomerates. Colorant compositions which may be mixed with above glasses in order to form an ink composition include Fe2O3, MnO2, Co3O4, NiO, and copper oxide (either Cu2O and CuO). Examples of frit/colorant ink compositions are set forth in Table 2 below:
Of all the glass compositions set forth in Table No. 1, the inventors found that Example 4 was more preferred, as very little chemical reactivity in the form of corrosion or chemical attack was observed between the composition of Example 4 and cordierite and AT, which are the most common ceramic compositions used to form honeycomb structures. Additionally, when this particular glass composition is mixed with iron oxide (Fe2O3) in 80-20 weight percentages as is illustrated in ink composition No. 10 in Table 2, the resulting ink exhibits good color stability as well as little reactivity with cordierite and AT. However, composition nos. 14 and 15 are the most preferred, as these compositions exhibit the positive characteristics of no reactivity on cordierite and AT along with good color stability. Hence, ink composition no. 10 is more preferred over compositions 1-9 and 11-13, while ink composition nos. 14 and 15 are the most preferred. Additionally, the applicants have found that all of the composition nos. 10, 14 and 15 are capable of withstanding firing temperature of over 1000° C. The term withstand firing as used herein means that the markings are not obliterated by such firing, and bar code and alphanumeric data string produced thereby are capable of being read by conventional bar code reading equipment after firing.
Table 3 illustrates two examples of frit/colorant ink compositions that utilize approach No. 2. Interestingly, the Ca-alumino-silicate glass composition that forms the frit is related to glass composition No. 4 which in turn forms the basis of the more-preferred Approach 1-type frit/colorant ink composition No. 10 of Table 2.
Additional compositions for Approach 2-type frit/colorant compositions are set forth in the table below:
Note in particular the similarities of the glass composition components used in Examples 20 and 21 to glass no. 5.
To help prevent settling of the frit and colorant and to avoid clogging of the ink jets, the particulate frit and colorant is preferably ground or otherwise processed to have a mean diameter between 5 and 20 microns, and more preferably between 5 and 10 microns. To further prevent settling of the frit and colorant within the organic solvent, the ink reservoir 38 is provided with an agitator 40 which may take the form, for example, of a vibrator or motor-operated stirring mechanism. The printer 16 further includes a radial distance adjuster 42 having a knob 43 that moves the print head 36 toward and away from the periphery of the turntable 26 by means of a screw mechanism (not shown), as well as a vertical height adjuster 44 for moving the print head 36 up or down by means of a knob 46 attached to a lead screw 47 threaded through a scissors-type linkage 48. Finally, the printer 16 includes a print head attitude adjuster 50 (best seen in
The optical reader 18 is may be a commercially-available bar code reader having a housing 52 that encloses the combination of a scanning light source 54 and digital imager 56 (both schematically indicated in phantom). The optical reader 18 further includes a vertical and rotary position adjuster 58 for properly positioning the front end of the housing 52 with respect to the marked sidewall 8 of the green body 3. The combination of the light source 54 and digital imager 56 are commercially-available components which, per se, do not constitute the invention. The output of the optical scanner is connected to the programmable logic controller 11.
The dryer 20 is positioned approximately midway between the printer 16 and optical reader 18, and functions to dry the ink that is applied to the side wall 4 of the green body 3 by the ink jet print head 36 of the printer 16. To this end, the dryer 20 includes a housing 61 that encloses an electrically powered, heated air jet 63. Alternatively, the dryer 20 may be comprised of a source of infrared radiation. While the dryer 20 is part of the preferred embodiment of the marking station 5, it should be noted that the dryer 20 of the system 1 (as well as the drying step of the process of the invention) may not be necessary if the heat resistant ink is sufficiently rapidly-drying.
With reference now to
Although sanding may be employed, the method may be further accomplished by only covering the mark (e.g., bar code) with any covering material suitable to cover the mark, such as a titanium dioxide-containing cover material. For example, a covering material may be applied, for example, by brush painting, spraying, sponging, rolling, rubbing, or even by crayon application over the mark to effectively cover the mark. Optionally, an ink may be sprayed overtop the mark, for example by an ink jet printer head similar to that employed to produce the mark. This ink jet repair head may be part of the same apparatus and system used for producing the mark. The degree of cover should be sufficient to adequately cover the mark, such that it cannot be easily seen through the repair, or read by bar code reading equipment. The color of the covering material should be the same or similar color as the fired ceramic, if possible. After the step of covering, the mark (e.g., the barcode and/or human-readable data string) may be reapplied. The mark may be reapplied overtop the repair area, after being dried, or applied in a new, undisturbed area of the structure.
Like the previously described moving assembly 14 and optical reader 18, the printer 16, the dryer 20 and the bar code removal and covering station 22 are electrically connected to and controlled by the programmable logic controller 11.
Turning now to the upper frame 7, the lift assistor 69 is formed from a pair of retractable and extendable forks 70a, b which are moveably mounted via a roller assembly 72 onto the frame 7. The entire lift assistor 24 may be vertically moved away from the station 5 via a crane-type mechanism (not shown) in order to pick up and load unmarked green bodies 3 on the moving assembly 14.
The method of the invention is best understood with reference to
With reference now to
With reference now to
With reference now to
With reference now to
Data for each unique individual identifier code or number assigned and relating to an individual honeycomb is stored in a relational database during the manufacturing sequence and may later be extracted at any time. As such, the origin, manufacturing materials and processes used, and equipment and apparatus used to manufacture the honeycomb, as well as performance, properties, and attributes of the honeycomb may be readily looked up. Accordingly, any defect or variation in the honeycomb may be readily related to the materials, processes, and equipment use. Thus, if desired, changes may be made in the raw materials, processes, etc. to effect changes in properties or attributes.
Such a two-dimensional barcode is preferred, since (due to informational redundancies inherent in such codes) up to 30% of the barcode 74 may be obliterated without any loss of information. Preferably, the mark 73 further include a human readable, alpha numeric data string 75. Such a data string not only provides an additional measure of redundancy in the data incorporated in the mark 73, but further allows a human operator to extract the manufacturing information contained in the mark 73 without a barcode reader.
In one embodiment, the unique individual identification number or code is the same information as is contained in machine readable form in the bar code. The unique identifier information is generated by a computer program that ensures that the number or code is unique to that honeycomb, and that honeycomb alone, for significant periods of time, for example, greater than a decade. This allows for traceability of that particular honeycomb to any process it underwent during its manufacture, including traceability to the raw materials used, the specific batches and processes employed, the date of manufacture, specific extruder lines and extrusion dies used, particular kilns and firing cycles, as well as finishing operations employed. The unique identifier numeral or code is placed on the surface of the structure, preferably in the direct vicinity of the bar code, such that both may be read by one reader apparatus.
While this invention has been described with respect to a preferred embodiment, various modifications, additions, and variations will become evident to the persons in the art. All such variations, additions, and modifications are encompassed within the scope of this invention, which is limited only by the appended claims, and the equivalents thereto.
This invention claims priority to, and the benefit of, U.S. Provisional Application No. 60/841,074 filed Aug. 30, 2006 and entitled “System And Method For Printing A Data Carrying Mark On A Ceramic Structure.”
Number | Date | Country | |
---|---|---|---|
60841074 | Aug 2006 | US |