Marked precoated strings and method of manufacturing same

Information

  • Patent Grant
  • 8772614
  • Patent Number
    8,772,614
  • Date Filed
    Wednesday, January 16, 2013
    11 years ago
  • Date Issued
    Tuesday, July 8, 2014
    9 years ago
Abstract
A coated string for a stringed device which includes a coating applied to the surface of the string. The coating includes a base layer bonded to the surface of the string and an at least partially transparent low-friction top coat applied to the base layer. The base layer includes heat activated pigments that change color when heated above a color shifting temperature. In one embodiment, the color of the pigment in one area contrasts with the color of the pigment in an adjacent area without otherwise affecting the low-friction surface of the coating. The areas of different color created in locations along the length of the low-friction coated string.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to the following commonly-owned co-pending patent application: “MARKED PRECOATED MEDICAL DEVICE AND METHOD OF MANUFACTURING SAME,” U.S. patent application Ser. No. 13/535,009, and “MARKED PRECOATED MEDICAL DEVICE AND METHOD OF MANUFACTURING SAME,” U.S. patent application Ser. No. 13/541,010.


BACKGROUND

Many different types or classes of musical instruments are known. One known type or class of musical instruments are string instruments. String instruments typically include one or more strings which, when contacted or touched, vibrate to create sounds or musical notes. Different types of known musical strings perform different functions. Various known stringed musical instruments employ a single or individual wired string (or a plurality of single or individual wired strings of different diameters) to produce higher pitched sounds. Another known stringed musical instrument employs a wound string (i.e., a central wire core with one or more separate wires wound around the central wire core) to produce lower pitched sounds. Wound strings rely on the additional string mass per unit length provided by the spiral wrap of the wound string to supply lower pitched notes at an acceptable string tension.


Certain known stringed musical instruments require human digital contact, human hand(s) contact, and/or contact with a musical instrument accessory (e.g., a pick or a bow) along one or more designated portions of the strings. These strings and specifically these wound strings tend to become contaminated with dirt, skin oils, bodily salts, bodily acids and perspiration after even a few hours of contact or playing. Such dirt and other contaminants infiltrate windings of the string causing the windings to gradually have less, restricted or limited motion which can change the sound quality (i.e., the pitch and/or the tone) of such musical strings. After a relatively short period of time, such strings often become musically “dead,” apparently due to the build-up of such contamination outside of the strings and additionally inside the windings of the wound strings. Wound strings that lose their sound quality must be adjusted (to maintain their sound quality) which is burdensome and time consuming for musicians. Moreover, after a period of time, such strings that lose their sound quality must be removed from the instrument because they cannot be effectively cleaned. This process is burdensome, time consuming, and expensive for musicians who play frequently and are very concerned about sound quality.


Another known problem with conventional musical strings, and particularly conventional wound musical strings, is that the action of fingering quickly up and down the strings often generates unwanted or unintended noises. For instance, it is common to hear a “squeak” from a guitar string, a bass string, a cello string and other wound strings as the musician's fingers rapidly move up and down a fret board or finger board. To avoid such unwanted or unintended noises, certain musicians often make concerted efforts to completely separate their fingers from the strings when repositioning pressure on the strings along the fret board or finger board. This repositioning action slows the musical note changes and further increases both physical fatigue and mental fatigue. Moreover, to avoid such unwanted or unintended noises, certain musicians use “flatwound” strings (i.e., square or rectangular wire wound over the core wire) or “groundwound” strings (i.e., round wire that have been partially ground smooth after winding over the core wire). However, such strings have an increased costs and do not entirely eliminate such unwanted or unintended noises.


Another known problem encountered with strings requiring fingering along a fret board or finger board (e.g., a guitar fret board) is that a substantial amount of pressure must often be applied by the musician against the fret board or finger board to produce different musical notes. This can be discouraging for beginning music students. Accomplished musicians often develop extensive calluses on their fingers from years of playing their instruments. Despite such calluses, the pressure and friction generated by playing the instruments tends to be one of the primary causes of frustration, fatigue and sometimes injury for many musicians.


Moreover, in the case of metal musical strings, the metal-to-metal contact between the frets or protrusions from the neck of the stringed instrument and the metal musical strings often causes wear to both the string and the underlying protrusion or fret. This wear can change the sound quality of such musical strings and expedite the need to replace such strings and/or the fret boards or adjust the string position after any fret board replacement.


Another problem with stringed musical instruments is that beginning music students are unaware of the exact location or range of locations at which to place theft fingers on each of the separate strings to produce a certain musical note. Additionally, many beginning music students are unaware of which exact string(s) to apply pressure to produce a certain musical note. Musical instrument strings of uniform color and/or non-distinctive color do not provide any indication of the exact string to choose nor do such strings provide any indication of which finger locations on the string correspond to which music notes the musician wants to play.


Accordingly, a need exists for improved musical strings for stringed musical instruments.


SUMMARY

The present disclosure relates in general to coated strings for stringed devices, stringed devices which include one or more coated strings and a method for manufacturing the same. In various embodiments, such coated strings are generally described herein as coated musical strings and such stringed devices are generally described herein as musical instruments including one or more coated musical strings.


In various embodiments, the present disclosure relates to a musical string including a coating applied to the outer surface(s) and/or inner surface(s) of wound musical strings. The coating includes a base layer (including one or more colored pigments) bonded to the surface of the musical string and an at least partially low-friction top coat on the base layer. Such a coated musical string thus includes one or more low friction, low surface energy, non-stick and/or corrosion resistant coatings which prolong the ability for the musical string to maintain the frequency at which it vibrates and do not adversely affect the sounds produced by such a musical string.


In one embodiment, the musical string is generally elongated and has a first, distal or adjustable end (i.e., the end of the musical string adjustably attachable to the musical instrument at which the tautness of the musical string can be adjusted with an adjustable mechanism), a second, proximal or attachable end (i.e., the end of the musical string statically attached to the musical instrument), and an outer surface. In one such embodiment, the musical string is straight or unwound and includes one or more monofilament or multifilament strands of a metal wire.


In another embodiment, the musical string is generally elongated and has a first, distal or adjustable end, a second, proximal or attachable end, an outer surface and one or more inner surfaces. In one such embodiment, the musical string is wound and includes one or more monofilament or multifilament strands of a metal wire around which additional monofilament or multifilament strands of wire are wound or braided. It should be appreciated that various different dimensioned musical strings and various different types and configurations of musical strings may be coated with one or more of the coatings described herein.


In different embodiments, the musical string may be made of natural or synthetic materials or combinations of natural and synthetic materials. In one such embodiment, one or more polymers, polyamides, such as nylon, or synthetic polymers may be used as a single string or as a central strand. In another embodiment, the natural product called “gut” (which is derived from animal sources) is used for the musical strings disclosed herein. In different embodiments, composite strings, metal strings and strings made of any suitable material or combination of materials may be used in certain applications of the musical strings disclosed herein.


In one embodiment, a coating is applied to the outer surface(s) of a musical string. In different embodiments, the coating applied to the outer surface of the musical string includes a binder resin (such as any epoxy, polyimide, polyamide, polyetheretherketone (PEEK), polyetherketone (PEK) and/or polyarylsulfone), and one or more suitable pigments (such as any suitable heat activated pigment, organic pigment, inorganic pigment, extender pigment, magnetic receptive pigment, and/or laser excitable pigment). In various embodiments, the above-mentioned binder or matrix coating also includes particles of a low friction and/or low surface energy material (such as PTFE, fluorinated ethylene propylene (FEP), polyethylene (PE), perfluoroalkoxy (PFA), tetrafluoroethylene perfluoromethyl vinyl ether copolymer (MFA), PEEK, PEK, PEK graphite, silicone particles, ceramic particles, and/or carbon particles).


In one embodiment, after the coating is applied to the outer surface(s) of the musical string, the musical string and the applied coating are heated above a designated temperature, such as 500° F. (260° C.), for a designated period of time to cure the coating. During this curing process, the low-friction particles soften and at least some of the low-friction material migrates or flows to the surface of the coating. At or near the surface of the coating, the low-friction material fuses or glazes over the base layer to create a smooth, substantially continuous top coat comprised of low-friction material. Also during this curing process, the binder material binds with the surface of the musical string and the pigment is left interspersed within the binder material. When curing is complete, the musical string coating includes a base layer including a binder material and a pigment, and an at least partially transparent or translucent top coat substantially comprised of low friction or low surface energy materials (which may be suitably textured due to larger particles that protrude thru the base layer). Accordingly, this embodiment provides a musical string with a transparent, partially transparent or translucent low-friction top coat which is situated above a plurality of pigments and binder or matrix resins.


In one embodiment, after the initial or first curing of the specific coating on the surface of the musical string, markings within the coating are created by selectively heating or by otherwise selectively applying an external energy source to portions of the coating (which include a heat activated pigment) to cause such pigments to change or shift colors. For example, using a jet of hot air, open flame, or other suitable mechanism or apparatus for applying heat, the color of a small length of the musical string in a first location is shifted such that the musical string has a band of different color around its circumference. In such an embodiment, the binder resin and pigment are generally stable at the first curing temperature such that the color shifting temperature must be greater than the first curing temperature to ensure that the pigment does not shift or change color during the first curing process. The color shifting temperature must also be less than the temperatures at which either the binder material significantly loses its adhesion to the surface of the musical string, or the low-friction material of the coating substantially degrades. That is, if the color shifting temperature is too high, then the low-friction character of the top coat will degrade (nullifying the effectiveness of the low-friction coating), and the binder material will lose adhesion to the surface of the musical string (causing the coating to deteriorate, delaminate or peel off) before the pigment can be heated above the color shifting temperature.


Accordingly, in this embodiment, a proper color shifting temperature enables the color of one or more of the pigments to shift to create areas of different or contrasting color after the first curing without substantially affecting, degrading, deteriorating, compromising or changing the chemical composition of the low-friction material of the coating and/or affecting, degrading, deteriorating, compromising or changing one or more characteristics, functions, or properties of the low-friction material of the coating. In this embodiment, a proper color shifting temperature also enables the color of one or more of the pigments to shift to create areas of different or contrasting color after the first curing without substantially affecting, degrading, deteriorating, compromising or changing one or more characteristics, properties, or functions of the adherence of the coating to the surface of the musical string. Therefore, a proper color shifting temperature enables markings to be created on the coated musical string without adversely affecting the function of the musical string or the coating thereon.


In one example embodiment, a first area of the low-friction coating is heated or activated to the color shifting temperature to shift or change the color of the heat activated pigment for a specific distance. In this embodiment, a distance is then measured from the first area to a second area. The second area is subsequently heated to the color shifting temperature to shift or change the color of the heat activated pigment.


In one embodiment, creating areas of shifted color on one or more coated strings can result in specific markings, such as a company logo or a musical band name, displayed on the coated musical strings disclosed herein. In another embodiment, creating areas of shifted color on one or more coated strings can result in specific markings displayed on the coated musical strings, such as indications of where a musician should place their fingers at designated locations to play a specific musical note. In one such embodiment, each of the musical strings of a stringed instrument is coated with a different color (which can include different shades of a color) which are created by heating the musical strings at different heat ranges. In this embodiment, a beginning student can quickly identify the exact string by the specific color of that string. In another embodiment, creating areas of shifted color on one or more coated strings can result in decorative color markings which different musicians may use to distinguish themselves from other musicians. Accordingly, the coated musical string and method disclosed herein provides specific markings that do not significantly increase or decrease the diameter of the musical string, do not significantly adversely affect the function of the low-friction coating and do not significantly adversely affect the sound quality produced by such musical strings.


In another embodiment, a plurality of anti-microbial particles are applied to or otherwise incorporated into one or more of the surfaces of the coated musical string to reduce and kill bacteria and other potential germs that are located on the surface(s) of the coated musical string, within the interstices of the wound constructions of a wound string or otherwise incorporated into the coating formulation. In this embodiment, the anti-microbial particles are capable of killing bacteria, pathogens and other harmful organisms which contact the surface of the coated musical string while in storage or while the coated musical string is in use.


Additional features and advantages are described herein, and will be apparent from, the following Detailed Description and the figures.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A is a flow chart describing one embodiment of the disclosed method of coating a musical string.



FIG. 1B is a flow chart describing one embodiment of the disclosed method of coating and marking a musical string.



FIG. 1C is a flow chart describing one embodiment of the disclosed method of coating and marking a string.



FIG. 2 is a side view of one embodiment of a segment of an uncoated musical string disclosed herein.



FIG. 3 is a side view, partially in section, of the musical string of FIG. 2 including an uncured coating applied to the surface thereof.



FIG. 3A is a side view, partially in section, of another embodiment of the musical string of FIG. 2 including an uncured coating applied to the surface thereof, the uncured coating at least including a plurality of anti-microbial particles.



FIG. 4 is a side view, partially in section, of the musical string of FIG. 3 after the coating is cured.



FIG. 4A is a side view, partially in section, of the embodiment of the musical string of FIG. 3A after the coating is cured.



FIG. 5 is a side view, partially in section, of the coated musical string of FIG. 4 including markings resulting from shifting the color of selected areas of the base layer of the coating.



FIG. 5A is a side view, partially in section, of the embodiment of the coated musical string of FIG. 4A including markings resulting from shifting the color of selected areas of the base layer of the coating.



FIG. 6 is a side view of the coated musical string of FIG. 5.



FIG. 7 is a side view, partially in section, of the coated musical string of FIGS. 5 to 6, including a laser for heating portions of the coating of the coated musical string.



FIG. 8 is a side view of the coated musical string of FIGS. 5 to 6 including a magnetic induction coil for heating portions of the coated musical string.



FIG. 9 is a side view of the coated musical string of FIGS. 5 to 6 including markings having geometric shapes.



FIG. 10 is a side view of the coated musical string of FIGS. 5 to 6 including markings having different colors.



FIG. 11 is a side view of the coated musical string of FIGS. 5 to 6 including a progression of a plurality of interrupted colors along the length of the musical string.



FIG. 12 is a side view of the coated musical string of FIGS. 5 to 6 including a first shifted color which runs from an adjustable end of the musical string to a halfway or middle point of the musical string and a second, different, contrasting color which runs from the attached end of the musical string to the halfway or middle point of the musical string.



FIG. 13 is a side view of the coated musical string of FIGS. 5 to 6 including a plurality of pigments having different color shifting characteristics, wherein certain portions of the coating include a plurality of pigments that shift color.





DETAILED DESCRIPTION

In different embodiments, the coated musical string disclosed herein may be utilized in any suitable stringed musical instrument utilized in the music industry, whether by an amateur musician or a professional musician, including, but not limited to: guitars, basses, banjos, violins, violas, cellos, mouth organs, zithers, sitars, harps, and mandolins. In different embodiments, the musical string can be constructed from any suitable material, including but not limited to: natural materials, synthetic materials, combinations of natural and synthetic materials. In different embodiments, the musical strings are constructed from nylon, nylon/polyamides, non-metallic composite materials or metals such as steel (both high-carbon and low-carbon content), stainless steel, aluminum, titanium, copper, nickel, silver, nitinol, and other metals and metal alloys and any combination thereof. In different embodiments, the musical strings are constructed from glass, ceramics, rubber, any suitable polymer material and any suitable plastic, including but not limited to: nylon, polyetheretherketone (PEEK), polyetherketone (PEK), polyphenylenesulphide (PPS), acrylonitrile-butadiene-styrene (ABS), polycarbonate, epoxy, polyester, and phenolic, or any combination thereof.


In one embodiment, before applying a coating to the outer surface(s) of the musical string, the musical string is prepared for coating as indicated in block 100 of FIGS. 1A and 1B. As seen in FIG. 2, before having a coating applied thereto, the musical string 200 is generally elongated and has a distal or adjustable end 202, a proximal or attached end 204, and an outer surface 206.


In one embodiment, to prepare the musical string for coating, the musical string is cleaned with a cleaner to remove impurities which are present on the surface of the musical string. Impurities such as oils may impede bonding of a coating to the surface of the musical string. The cleaner, such as a solvent, acid solution or alkaline, is manually applied, mechanically applied or ultrasonically applied to the musical string. In one embodiment, the musical string is cleaned by condensing a heated and vaporized cleaner on the surface of the musical string, wherein the cleaner dissolves and washes away the oils on the surface of the musical string. In another embodiment, grit blasting, tumble blasting, or sandblasting with a medium such as aluminum oxide, garnet, or silicone carbide is used to clean the surface of the musical string and create a roughened surface which promotes bonding with a coating. In another embodiment, the surface of the musical string is etched with acid or alkaline to clean and roughen the surface of the musical string followed by a suitable neutralization procedure. In another embodiment, a chemical phosphate type bath is used to deposit a relatively thin (e.g., such as 3 microns or in a range of 3 to 13 microns) bonding layer to the surface of the musical string. In another embodiment, a silane coupling agent is used to leave the proper amount of bonding agent molecules on the surface of the musical string prior to the application of the coating described herein. In another embodiment, a silane coupling agent is employed in combination with the liquid cleaning agents disclosed herein. In this embodiment, when the solvent or liquid cleaning agents evaporate, the silane coupling agent remains on the surface of the musical string (and within the winding surfaces of the wound musical strings). Such remaining silane coupling agent provides a primer that enhances adhesion of the coatings disclosed herein (without the optional roughening the surface of the musical string). In another embodiment, the musical string is cleaned with an ultrasonic cleaner used in combination with a solvent such as acetone or another degreaser. It should be appreciated that in another embodiment, subsequent to the liquid cleaning processes described above, a vacuum or vacuum heated system is employed to remove any excess liquid materials that may be within the coils, interior spaces or interstices of wire under the outer surface of a wound musical string.


In another embodiment, to prepare the musical string for coating, the musical string is pre-cleaned or the method is performed in a “clean room” where the cleaned part is manufactured and the step is not necessary. In another embodiment, the musical string is heated to a temperature, depending on the metal alloy or other material of the musical string, in excess of approximately 500° F. (260° C.) to 700° F. (371° C.) for a period of time sufficient to thermally degrade surface impurities, draw oils and other impurities out of any pores in the surface of the musical string and create a non-acidic “passivation” of the surface of the musical string (depending on any metal alloy of the musical string). In another embodiment, the musical string is cleaned in a batch or bulk cleaning method, thereby cleaning all of the surfaces of the musical string. In another embodiment, the musical string is heated before applying a coating to reduce ambient moisture on the surface of the musical string and improve adhesion of a coating to the musical string. In another embodiment, the musical string is cleaned with a grit-blasting system which includes several grit-blasting nozzles cleaning the surface of the musical string with relatively high velocity particles of an abrasive such as aluminum oxide or silicon carbide. In other embodiments, any combination of the cleaning methods mentioned above are used to improve the cleaning process and promote adhesion of a coating to the musical string.


After preparing the musical string for coating, a coating is applied to one or more surfaces of the musical string as indicated in block 102 of FIGS. 1A and 1B. As seen in FIG. 3, one embodiment of the musical string is illustrated wherein the musical string includes an uncured coating 208 applied to its surface.


In one embodiment, as illustrated in FIG. 3, the coating includes a binder material 210a, such as an epoxy, phenolic, phenoxy, polyimide, polyamide, polyamide-amide, polyphenylene sulfide, polyarylsulfone, polyethylene, polytetrafluoroethylene, fluorinated ethylene propylene, ethylene chlorotrifluoroethlyene (ECTFE), ethylene tetrafluoroethylene (ETFE), perfluoroalkoxy, PEEK, PEK or any suitable binder or resin. Such suitable binders include any binder which, when cured, adheres to the surface of the musical string, and is flexible, stable, resistant to chemicals, and/or is readily sterilized and resistant to contamination. In one embodiment, the coating includes an ultraviolet light cure resin to semi or fully cure the coating. In another embodiment, the coating includes an electron beam cure resin.


In one embodiment, as illustrated in FIG. 3, the coating also includes at least one pigment 212a such as any suitable organic pigment, inorganic pigment, extender pigment, magnetic receptive pigment and/or laser excitable pigments. The organic pigments (with low to moderate heat resistance and which are represented as bright colors) include, but are not limited to: phthalocyanine blues and greens, diarylide yellows and oranges, quanacridone, naphthol and toluidine reds, and carbizole violets. The inorganic pigments (with moderate to high temperature resistance and which are represented as dull to moderately bright colors) include, but are not limited to: iron oxide reds and yellows, chrome oxide greens, titanium oxide white, cadmium reds, ultramarine blues, moly oranges, lead chromate yellows, and mixed metal oxides of various shades of brown, yellow, blue, green and black, carbon pigments, such as carbon black, graphite/carbon pigments and graphite pigments. The extender pigments (which are inorganic and provide a reinforcing/strengthening function) include, but are not limited to: talc, calcium carbonate, silicate and sulfate, silica, mica, aluminum hydrate and silicate, and barium sulfate (blanc fixe/barites). The laser exciteable pigments (which are excited by laser energy), such as near-infrared reflective pigements include, but are not limited to: mica, pearl pigment, Kaolin and aluminum silicate derivatives, antomony trioxide, metallic pigment, aluminum flake pigment, and iron oxide. Additionally, the coating may also include one or more of the following functional pigments, such as conductive pigments, flatting pigments for controlling gloss, clays and other rheology modifying pigments.


In one embodiment, as seen in FIG. 3, the coating also includes particles of a low-friction material 214a such as PTFE, PFA, MFA, PEEK, PEK and other fluoropolymer or silicone materials. In one embodiment, the particles are micron- and/or sub-micron-sized. In another embodiment, the low-friction material is resistant to chemicals such that the low-friction material will provide a low surface energy outer layer and not corrode, oxidize, break down, form bonds with other materials, or otherwise be affected by contacting other chemicals. In another embodiment, the low-friction material is irradiated, prior to incorporation in the coating, with electron beam particles to create an easily wetted surface which enables better adhesion to the binder material.


In one embodiment, a coating is applied by spraying the surface of a musical string with the coating. In one embodiment, the coating is sprayed on by a siphon, gravity, or pressure pot method which forces the coating through a nozzle at high pressure such that the coating forms a vapor or mist which is directed toward the surface of the musical string. In another embodiment, the coating is applied with a variation of siphon or gravity spraying wherein the coating is sprayed at a lower pressure and in higher volume to reduce the amount of volatile organic compounds released during the spraying process. In another embodiment, a musical string device is dipped into a reservoir filled with the coating. Once submerged, the musical string is removed from the reservoir and “spun” or rapidly rotated to remove excess coating by centrifugal force. In another embodiment, a musical string is “tumbled” in a rotating barrel or other rotating enclosure including a coating. Hot air is blown over the tumbling musical string to at least partially cure the coating as it is applied to the musical string. In another embodiment, a musical string is passed under a falling curtain of the coating to coat the surface of the musical string. In another embodiment, primers including one or more silane coupling agents are applied by dipping the musical strings into a liquid solution followed by applied centrifugal forces to remove any excess primer materials.


In another embodiment, a powder coating system is employed. This powder coating system includes a primer, where required, of a liquid that is preapplied and either cured to dry or remains wet prior to the application of a topcoat of a powder. In this embodiment, the powder may include a low-friction material such as PFA, FEP, PTFE, PE, PEEK, PEK or appropriate low-friction particles or a combination of the above plus appropriate pigments similar to those described in the liquid-type coatings described above.


In another embodiment, an electrostatic, tribo-charged or opposite electrostatic charged liquid spray or powder spray method is used to apply the coating to a musical string. The electrostatically charged spray enables an operator to better control the application uniformity of the coating and thereby enhances the uniformity, density and application of the coating on the surface of the musical string. It should be appreciated that the coating may have one or more characteristics altered to enable for more efficient electrostatic, tribo-charged or opposite electrostatic charged spray techniques to be used to apply the coating to a musical string. R should be further appreciated that the above-described “tribo-charge” or electrically charged application technique alters the edge coverage thickness of the applied coating based on any design requirements which require a more uniformly applied coating to all surfaces of the musical string, whether the configuration has sharp or round edges. This technique results in greater coating transfer efficiency while also optimizing the consistency of the coating coverage thicknesses of the applied coating.


After the coating is applied to the surface of the musical string, the coating is cured to harden the coating and strengthen the bond between the coating and the musical string as indicated in block 104 of FIGS. 1A and 1B. The curing process is performed by heating the coating at a predetermined temperature or temperatures for a predetermined length or lengths of time, air-drying the coating at ambient temperature, or by utilizing any suitable internal or external curing process. It should be appreciated that curing may be accomplished by exposure to light from an infrared, visible, or ultraviolet light source.


In one embodiment, as illustrated in FIG. 4, during the curing process, the molecules of a binder, such as epoxy 210a crosslink and form chemical bonds with each other, and bond with the surface of the musical string. The crosslinked epoxy molecules form an epoxy matrix 216 including crosslinked binder molecules, one or more low-friction materials, one or more pigments, and one or more other ingredients such as wetting agents, coupling agents, hardening agents, and/or other additives. Moreover, during the curing process, the particles of low-friction material such as PTFE 214b soften and at least some of the PTFE or other low-friction material is squeezed out or displaced from the epoxy matrix and migrates, rises, or flows to the surface of the coating. At or near the surface of the coating, the PTFE molecules bond or fuse together to form a thin, partially transparent top coat 218 of PTFE on the outer surface of the coating (such that at least some visible light may pass through the low-friction material). When the curing process is complete, as illustrated in FIG. 5, the coating includes a base layer including the epoxy matrix, and a top coat including fused molecules of PTFE. It should be appreciated that when the coating is cured, the epoxy matrix exhibits a first color corresponding to the color of the pigments in the epoxy matrix which is visible through the at least partially transparent PTFE top coat. Accordingly, this embodiment provides a musical string with a transparent, partially transparent or translucent low-friction top coat which is situated above one or more colored pigments to provide a low-friction coated colored musical string.


In one embodiment, different pigments are utilized for different musical strings to associate one or more colors with a musician, a manufacturer of musical strings, a distributor of musical strings and/or an importer of musical strings. In this embodiment, different musicians, different manufacturers, different distributors and/or different importers use different colored musical strings or different groups or combinations of colored musical strings to distinguish themselves from other musicians, manufacturers, distributors and/or importers. In one such embodiment, a musician may be associated with a designated color wherein the pigments along the entire length of one or more of the musical strings for that musician are that designated color for such pigments are heat activated, as described below, to change the entire length of such musical strings the designated color). For example, certain musicians want their entire costumes and all their musical instruments to be monochromatic and such a monochromatic musical string provides that even the musical strings of their musical instruments are the same color.


In another embodiment, the coating disclosed herein includes pigments which are different colors in normal daylight and artificial lighting, such as colors that fluoresce under ultraviolet or “black” light. Such coated musical strings provide a musician/entertainer with another method of identifying a specific musical string visually and also providing a visual affect for the audience to differentiate that musician from any other musicians on the same stage.


In one such embodiment, a musical string includes a primer or base coating that contains pigments that fluoresce under “black” light or certain artificial lamps. In another such embodiment, a musical string includes a primer or base coating that contains pigments that glow in the dark when subjected to “black” light or electromagnetic radiation in the near ultraviolet range of light. In different embodiments, the fluorescent pigments are incorporated into a base coating including an epoxy, a polyimide-amide, PES (or other suitable high strength resins) and particles of PTFE (or other suitable low friction material). In one embodiment, such a fluorescing primer or base coat is then covered with a separate, liquid or powder low friction coating. The two coatings are then cured using appropriate heat (or another suitable energy source) such that the topcoat is integrally bonded to the base coat providing the tactile benefits described above. In this embodiment, the bonded coatings form a two coat, low friction colored coating containing selected pigments or mixtures of pigments and additives that results in a first range of visible color under a first lighting condition (such as in daylight). In this embodiment, when subjected to “black” light, ultraviolet light or other artificial light, the coated musical strings will change from a translucent or colored primary color to a vivid fluorescent color, such as but not limited to: white, green blue, pink yellow, red, black, grey or any suitable color combination. Accordingly, this embodiment provides a musical string wherein the strings appear as a second range of visible color under a second lighting condition (such as when exposed to an ultraviolet light or other artificial light) to create a vivid color on the coated musical strings of the instrument. It should be appreciated that this process may be combined with one or more of the different marking processes or coating elements described herein.


In one embodiment, a string is coated in discrete lengths, wherein certain portions of the string are coated with one or more of the coatings described herein and certain other portions of the string are not coated with one or more of the coatings described herein. In another embodiment, a string is coated in a continuous length (i.e., a reel-to-reel coating), wherein the entire surface of the string is coated with one or more of the coatings described herein. In one such embodiment, after a string has been coated (either over discrete lengths or a continuous length) is the coated string assembled to form a wound string as disclosed herein.


In one embodiment, different amounts of coatings are applied to different segments of the musical string disclosed herein. In one such embodiment, the segment or area of the musical string near the frets of the musical instrument are coated with a lighter or thinner low-friction coating while the segment or area of the musical string that is fingered or picked is coated with a heavier or thicker wear-resistance coating.


In one embodiment, a plurality of anti-microbial particles such as silver, ceramic, silver ceramic, silver oxide, glass silver or silver compounds or any suitable anti-microbial agent are applied to one or more of the surfaces of the coated string to reduce and kill bacteria and other potential germs that are located on the surface(s) of the coated string or otherwise incorporated into the coating formulation. In one embodiment, the anti-microbial particles are interspersed with the uncured coating. During the curing process, some of the anti-microbial particles migrate or rise to the surface of the coating in addition to the low-friction material. The anti-microbial particles are capable of killing bacteria and other harmful organisms which contact the surface of the coated musical string while in storage or while the coated musical string is in use. For example, as seen in FIG. 3A, one embodiment of the musical string is illustrated wherein the musical string 200 includes an uncured coating 208 applied to its surface, the coating including a binder material 210a, at least one pigment 212a, a plurality of particles of a low-friction material 214a and a plurality of particles of an anti-microbial material 315. As seen in FIG. 4A, during the curing process: (i) the molecules of a binder, such as epoxy 210 crosslink, form chemical bonds with each other, and bond with the surface of the musical string to form an epoxy matrix 216; (ii) the particles of low-friction material such as PTFE 214 soften, at least some of the PTFE or other low-friction material is squeezed out or displaced from the epoxy matrix and migrates, rises, or flows to the surface of the coating where such PTFE molecules bond or fuse together to form a thin, partially transparent top coat 218 of PTFE on the outer surface of the coating; and (iii) some of the anti-microbial particles 315 migrate or rise to the surface of the coating. In this illustrated example, when the curing process is complete, as seen in FIG. 5A, the coating includes a base layer including the epoxy matrix, and a top coat including fused molecules of PTFE, wherein some of the anti-microbial particles 315 partially protrude from the top coat.


In another embodiment, a clear or transparent top coat is applied to one or more of the surfaces of the coated musical string. In different embodiments, the top coating is a liquid or powder low-friction or release coating or material, such as fluorinated materials, polytetrafluoroethylene, perfluoro-alkoxy, fluoroethylenepropylene, MFA, PEEK, PEK, polyethylene, silicone, ceramic composites, paralyene silane polymers, a modified fluoropolymer, an irradiated polymer powder, an irradiated polymer particle, a graphite, carbon nanotubes, carbon particles, silicone materials and other suitable low-friction coatings. In different embodiments, the top coating is a liquid or powder high-strength clear or translucent PTFE or low-friction based material. In one embodiment, such a top coating provides that any colored pigments and/or any created markings (as described below) are substantially covered or sealed underneath an additional layer skin of a low friction coating. Such a top coating can be selectively applied to the length of the musical string, whereby no additional topcoat is applied to the portion of the musical string that is tensioned or adjusted.


In one embodiment, the pigment included in the coating is a heat activated pigment or laser excitable pigment configured to change color when heated above a color shifting temperature. In this embodiment, the color shifting temperature is greater than the designated temperature at which the coating is cured (such as by 50-100° F. (10-38° C.)) to enable the coating to be cured without changing the color of the pigment during the curing process. In this embodiment, the color shifting temperature of the heat activated pigment is also lower than the temperatures at which either the low-friction characteristics of the low-friction material, or the adhesive characteristics of the binder resin, are substantially affected, degraded, or deteriorated, or the chemical composition, characteristics, functions, or properties of the low-friction coating and/or base resin are changed.


In one such embodiment, after curing the applied coating to harden the coating and form a low-friction top coat, one or more portions of the coating are selectively heated to change the pigment from a first color to a second different color as indicated in block 106 of FIG. 1B. As seen in FIGS. 5 & 6, markings 220a and 220b are created on the coated musical string by selectively heating portions of the coating above a color shifting temperature while simultaneously maintaining adjacent portions 222a, 220b, and 220c at a cooler temperature (with a suitable masking device). When heated above the color shifting temperature, the pigment in the selectively heated portions changes from a first color to a second color. For example, in one embodiment, as illustrated in FIG. 5, the coating applied to the musical string is generally light blue in color. However, at measured intervals along the length of the musical string, short sections of the base layer of the coating are dark brown or black in color. Thus, a first segment such as a 100 mm long segment of the coated musical string is light blue in color. A second adjacent segment such as a 3 cm long segment of the coated musical string is dark brown in color, and a third segment such as a 50 mm long segment, adjacent to the second segment, is light blue in color. The pattern of alternating light blue and dark brown or black segments is repeated from the adjustable end to the attached end of the coated musical string, resulting in a coated musical string having markings which visually indicate each 50 mm of length of the coated musical string. It should be appreciated that the color transitions of the coated musical string may be absolute (i.e., a first color ends and a second, contrasting color begins) or gradual or feathered (i.e., a first color bleeds into a second, transitioning color which bleeds into a third color which contrasts with the first color). It should be appreciated that these markings are examples of a color shifting process, wherein such markings may be used, at any end of the musical string, to denote style, size, quality, brand name, finger location for specific musical notes, lot or manufacturing codes and similar identification markings.


Referring to FIG. 7, in one or more embodiments, the pigment in the coating is heated above the color shifting temperature by radiated heat. Radiated heat is applied from any radiant source, such as hot air, open flame, heated filaments, or lasers 226. Radiated heat can be directed to specific portions of the coating by masking portions of the coating (with a suitable masking device) that are not intended to be heated above the color shifting temperature. Masking is accomplished by any suitable mechanism configured to shield the coating from the heat source. In one embodiment, hot air is blown toward a specific portion of the coating through a nozzle or other apparatus of directing or funneling air. In another embodiment, when radiated or infrared heat is directed to a portion 224 of the coating, the at least partially transparent top coat enables certain designated amounts of radiated or infrared heat to pass through the top coat to the base layer, which absorbs the heat. This method heats the base layer while simultaneously keeping the low-friction top coat at a slightly cooler temperature, which has the advantage of preserving the low-friction character of the top coat and maintains the at least partial transparency of the top coat.


In different embodiments, radiation, microwaves, concentrated sound waves or other vibrations, or other external energy sources may also be used to selectively stimulate the pigment and/or binder resin to cause the pigment and/or binder resin to shift color. In another embodiment, laser energy, such as provided by a CO2 (carbon dioxide), YAG lasers (Ytterbium), and fiber laser systems, provide the necessary energy to selectively stimulate the pigment and/or binder resin to cause the pigment, additive and/or binder resin to shift color. In this embodiment, these lasers have different depths of penetration, different “dot” sizes and/or different energy outputs which can be pulsed to selectively stimulate the pigment and/or binder resin to cause the pigment and/or binder resin to shift color. In different embodiments, the coated musical strings includes a plurality of relatively small sized dots of color shifted pigments (created by the appropriate laser energy) to form legible letters, numbers or symbols which can be used to denote manufacturer, date of production, quality of string, lot of production, serial number, finger location for specific musical notes, and any number of suitable identifications relating to the musical string.


In another embodiment, the musical string is formed from a magnetic-type steel and is heated by magnetic induction (as seen in FIG. 8) wherein an induction coil 230 is energized with a frequency current, which imparts thermal energy in the musical string. In this embodiment, electrical resistance in the musical string causes electrical current energy to transform into heat energy. Heat from the musical string then transfers to the base layer by thermal conduction, thus shifting the color of the portion of the base layer 228 above the heated segment of the musical string. This method also has the advantage of keeping the low-friction top coat at a slightly cooler temperature, which preserves the low-friction character of the top coat. It should be appreciated that any suitable external energy source, such as flame heat, short wave infrared, medium wave infrared, hot air (electrically heated) with little orifices to make a small mark on the musical string, induction heat provided through a “bobby pin” or circular shaped coil and/or at right angles, and/or heat provided using induction energy may be used to stimulate the pigment and/or binder resin to cause the pigment and/or binder resin to be heated to shift color.


In one embodiment, markings are created in the coating in any desired pattern or colors, or any combination of patterns and colors. In one such embodiment, creating areas of shifted color on one or more coated strings can result in specific markings, such as a company logo or musical band name, displayed on the coated musical strings disclosed herein. In another embodiment, creating areas of shifted color on one or more coated strings can result in specific markings displayed on the coated musical strings, such as indications of where a musician should place their fingers at designated locations to play a specific musical note. In one such embodiment, each of the musical strings of a stringed instrument is coated with a different color (which can include different shades of a color) which are created by heating the musical strings at different heat ranges. In this embodiment, a beginning student can quickly identify the exact string by the specific color of that string. In another embodiment, creating areas of shifted color on one or more coated strings can result in decorative color markings which different musicians may use to distinguish themselves from other musicians.


In different embodiments, the formed markings disclosed herein indicate any suitable information including, but not limited to: a length of the musical string, one or more designated locations along the musical string, a size, a type, one or more materials, a part number, a lot number, a lot code, a style markings, a batch number, a manufacturing date, a location of manufacturing, a manufacturing code, a serial number, and/or a manufacturer of the coated musical string or any suitable identification information and/or counterfeit protection information. The formed markings can also include one or more bar codes or other codes, or other properties or instructions associated with the coated musical string. In another embodiment, the markings are utilized to provide one or more musical strings of a commemorative string set which includes one or more markings of a particular design for a musician or group of musicians. In another embodiment, as illustrated in FIG. 9, one or more geometric shapes, including but not limited to circles 240, squares 242, rectangles 244, triangles 246, parallelograms 248, and other polygrams are created in the coating of the musical string.


In another embodiment, a plurality of different colors are created to indicate distances from the middle point, adjustable end or attached end of the coated musical string. The different colors are created by selectively heating a plurality of different pigments (with different properties and color shifting temperatures) above their respective color shifting temperatures. For example, in one embodiment, a progression of a plurality of uninterrupted colors is created along the length of the coated musical string. For illustrative purposes only, FIG. 10 illustrates one embodiment wherein a first segment 250 of the coating of the musical string is a first color. A second segment 252 of the musical string adjacent to the first segment is a second color. The adjacent segments 254, 256, and 258, are also each different colors. In different embodiments, such adjacent segments are suitably spaced, such as 1, 2 3, 4 and/or 6 mm marks to provide different segments of different colors. It should be further appreciated that a combination of one or more marking methods disclosed herein can provide musician with additional information about the musical string of the stringed musical instrument. For example, the embodiment of FIG. 10 includes segments of different colors and also includes equally spaced markings of a first color.


In another embodiment, a progression of a plurality of interrupted colors is created along the length of the coated musical string. For illustrative purposes only, FIG. 11 illustrates one embodiment wherein a first segment 260 of the coating of the musical string is a first color, a second segment 262a of the musical string adjacent to the first segment has not been selectively heated and is a default, second color of the cured base material. For this example, a third segment 264 of the coating of the musical string is a third color, a fourth segment 262b of the musical string adjacent to the third segment has not been selectively heated and is the default, second color of the cured base material and a fifth segment 266 of the coating of the musical string is a fourth color.


In another embodiment, a coated musical string disclosed herein includes a first shifted color (which runs from an attached end of the coated musical string to a halfway or middle point of the coated musical string) and a second, different, contrasting color (which runs from the adjustable end of the coated musical string to the halfway or middle point of the coated musical string). For illustrative purposes only, FIG. 12 illustrates one embodiment wherein a first segment 268 of the musical string (which runs from the attached end of the musical string to a middle point) is coated and selectively heated to a first color shifting temperature to change the color of a first pigment (and thus change the color of the first segment) to a first color, such a green. As further seen in FIG. 12, a second segment 270 of the musical string (which is of equal or substantially equal length as the first segment and runs from the adjustable end of the musical string to the middle point) is coated and selectively heated to a second color shifting temperature to change the color of a second, different pigment (and thus change the color of the second segment) to a second, different color, such as yellow.


In another embodiment, a plurality of pigments having different color shifting characteristics are included in the coating, wherein certain portions of the coating include a plurality of pigments that shift color. For illustrative purposes only, FIG. 13 illustrates one embodiment wherein a first segment 272 of the musical string (which accounts for 25% of the length of the musical string) is coated and selectively heated to a first color shifting temperature to change the color of a first pigment (and thus change the color of the first segment) to a first color, such as yellow. As further seen in FIG. 13, a second segment 274 of the musical string (which accounts for another 25% of the length of the musical string) is coated and selectively heated to a second color shifting temperature to change the color of a second pigment (and thus change the color of the second segment) to a second color, a third segment 276 of the musical string (which accounts for another 25% of the length of the musical string) is coated and selectively heated to a third color shifting temperature to change the color of a third pigment (and thus change the color of the third segment) to a third color and a fourth segment 278 of the musical string (which accounts for another 25% of the length of the musical string) is coated and selectively heated to a fourth color shifting temperature to change the color of a fourth pigment (and thus change the color of the fourth segment) to a fourth color. In this example, in addition to using heat activated pigments to shift the colors of the four segments, additional markings 280a to 280h are created along the length of the musical string by utilizing laser activated pigments to selectively change certain portions of the musical string a fifth color. That is, although one or more pigments located in the coating of the first segment of the musical string were previously heat activated to change the first segment to a yellow color, additional pigments located in the coating of the first segment are laser activated to indicated marks 280a and 280b as a brown color in the first segment.


In another such embodiment which utilizes a plurality of pigments having different color shifting characteristics in the coating (not shown), a first segment of a coated musical string (which runs from the attached end of the musical string to a designated point of the coated musical string) is selectively heated to a first color shifting temperature to change the color of a first pigment (and thus change the color of the first segment) to a first color, such a black. In this embodiment, a second segment of the coated musical string (which runs from the adjustable end of the musical string to the designated point) is then selectively heated to a second color shifting temperature to change the color of a second, different pigment (and thus change the color of the second segment) to a second, different color, such as yellow. In this embodiment, a third pigment located in certain portions of the first segment of the coated musical string are excited or otherwise activated to change to a third color, such as white (and thus create suitable markings in the first segment of the coated musical string) and a fourth pigment located in certain portions of the second segment of the coated musical string are excited or otherwise activated to change to a fourth color, such as brown (and thus create suitable markings in the second segment of the coated musical string).


In another embodiment, different heat activated pigments are utilized to denote different information, such as diameters, lengths, sizes and/or tonal qualities of different coated musical strings. For example, a first coated musical string of a first length is heated at or above a first color shifting temperature to cause a first pigment (in the base layer applied to the first coated musical string) to change to a first designated color. In this example, a second coated musical string of a second, different length is heated at or above a second color shifting temperature to cause a second pigment (in the base layer applied to the second coated musical string) to change to a second designated color. Accordingly, by utilizing different heat activated pigments, different coated musical strings of different lengths can be properly identified without increasing or decreasing the diameter of the coated musical string, or significantly adversely affecting the function of the low-friction coating applied to such coated musical strings.


In another embodiment, at designated points on the coated musical string, the color shifting material is applied and the marks are created in a gradation of successively, incrementally darker colors by using gradually increasing or higher energy levels in directly adjacent areas to create a progressively darker and darker mark to further enhance the ability of the device manufacturer to create markings on the coated musical string. This gradation of color shift method can be combined with cessation of energy input to create “breaks” in the color gradation to denote marks which are of the original color and are notably different from the gradation of darker markings.


In another embodiment, a plurality of pigments having different color shifting temperatures are included in the coating. By selectively heating portions of the coating above the color shifting temperature of a first pigment but below the color shifting temperature of a second pigment, the color of the coating can be changed from a first color to a second different color. By selectively heating portions of the coating above the color shifting temperature of the second pigment, the color of the coating can be changed from the first color to a third different color. In one embodiment, for example, a coated musical string includes a base color such as light blue, a first set of markings in a second color, such as tan, and a second set of markings in a third color such as brown or a lighter color such as white or tan.


In one such embodiment, one or more of the pigments in the coating are formulated to change or shift colors a plurality of times. For example, a designated pigment in the coating is initially a green or blue color that will change or shift to a white or white/grey color with one level of laser energy. In this example, the designated pigment will further change or shift to a dark black color with another, higher laser energy. Accordingly, such pigments are formulated, depending on the different levels of applied laser energy, different laser types or different color shifting temperatures, to provide a plurality of different color markings on a single coated musical string.


In another embodiment, the coating applied to the musical string includes a first non-heat activated pigment and one or more heat activated second pigments. In this embodiment, the musical string has a base color (i.e., the first pigment), wherein different areas of the musical string may shift colors to indicate one or more additional colors (i.e., the activated second pigments). It should be appreciated that any suitable decorative use of the coated musical strings disclosed herein is contemplated.


In another embodiment, the low-friction applied liquid coating disclosed herein prevents or delays the corrosion of musical strings. In another embodiment, a liquid primer coating or layer is applied to the surface of the musical string and then, while the liquid layer is still wet, a low-friction powder top coating or layer is applied over the liquid primer layer. In one such embodiment, ultrasonic energy is used to enhance and assist the penetration of thin (e.g., at least one-angstrom thick) deposits of the liquid or powder corrosion resistant coating to the inner surfaces, the outer surfaces and the interstices of the wound musical string. Such coating provides corrosion resistance that does not affect the tonal quality of the musical string (and maintains the tonal quality of the musical string longer than an uncoated musical string).


In one such embodiment, a corrosion resistant liquid coating primer or base is first applied to the inner surfaces, the outer surfaces and the interstices of the wound musical string and then a second coating or layer including any suitable energy activated pigment is applied to this coated musical string. In this embodiment, any subsequently applied pigmented topcoat placed over the corrosion resistant coating (previously applied to the outer layer of the wound musical string) will provide a musical string with low friction and corrosion resistance characteristics, as well as color identification and the ability to be selectively marked. In another embodiment, a corrosion resistant coating or base is first applied to the inner surfaces, the outer surfaces and the interstices of the wound musical string and then a second clear or translucent topcoat is applied to this coated musical string. In this embodiment, the subsequently applied clear topcoat placed over the corrosion resistant coating previously applied to the outer layer of the wound musical string will provide a musical string with low friction and corrosion resistance characteristics.


As seen in FIG. 1C, in one example embodiment, after preparing a string for coating, a first corrosion resistant coating is applied to a surface of a string as indicated in block 110. Following the application of this first corrosion resistant coating, as indicated in block 112, a second coating a applied to at least a portion of the coated surface of the string. As further indicated in block 112, this second coating includes a pigment and a plurality of particles of a low-friction material. Following the application of the second coating, as indicated in block 114, at least one portion of the applied second coating is heated. As further seen in block 114, the pigment is heated above a color shifting temperature to cause the pigment to change from a first color to a second different color without substantially degrading the low-friction material.


In another embodiment, a first or base low-friction layer, including a low-friction material, such as PTFE, is applied to a surface of the musical sting and suitably cured. In one such embodiment, the first low-friction layer includes a first relatively light colored pigment, such as a white colored pigment. After applying the first low-friction layer, a relatively thin (as compared to the first or base low-friction layer) second low-friction layer, including a low-friction material, such as PTFE, is applied to the coated surface of the musical string and suitably cured to bond the two layers together. In one such embodiment, the second low-friction layer includes a second relatively dark colored pigment, such as a green, black or blue colored pigment. In another such embodiment, the second low-friction layer also includes one or more laser receptive pigments.


After applying the two low-friction layers of contrasting color, a suitable laser and laser energy is selectively applied to different areas of the coated musical string. In this embodiment, the laser ablates or removes the relatively thin outer second low-friction layer while not adversely affecting the first low-friction layer. That is, the second low-friction layer with the relatively dark colored pigment (and optionally the additional laser receptive pigments) absorbs the energy (or more of the energy) of the laser and is accordingly vaporized or ablated from the coated surface of the musical string, while the first low-friction layer with a relatively light colored pigment does not absorb the energy of the laser and is thus not affected by (or is not significantly affected by) the applied laser energy. After the laser energy is selectively applied to different areas of the musical string, the resulting outer surfaces of the laser applied areas of the musical string will include the first low-friction, light colored coating and the outer surfaces of the non-laser applied areas of the musical string will include the second low-friction dark colored coating. It should be appreciated that since a thin layer of the dark colored low-friction material is applied to the musical string, when that thin layer is removed from the musical string, any diametrical reductions of the diameter of the surface of the low-friction coating will be relatively shallow and not create any substantially sharp edged shoulders which can scrape a musicians fingers or hands as they play a musical instrument which utilizes such coated strings. It should be appreciated that the laser energy which creates the ablation of the second or outer low-friction layer can be reduced along and nearest the edges or margins of the ablated area to create a tapering effect (i.e., a smoothening of the diametrical transition) thus reducing the tactile feeling of a “notch” between the two layers of different colored coatings.


In another embodiment, a base coating or primer is a first color and the low-friction top coating or outer layer is a second contrasting color. In this embodiment, as the low-friction top coating wears away due to use, it exposes the different colored lower layer. Such an embodiment informs or otherwise “warns” the musician to consider changing musical strings.


In another embodiment, a coating which is formulated with magnetic receptive pigments and/or electromagnetic receptive pigments is utilized, wherein these magnetic receptive pigments will provide internal heat when subjected to one or more appropriate magnetic fields or electromagnetic fields. In this embodiment, such magnetic receptive pigments are applied to non-magnetic substrates, such as non-magnetic stainless steel, ceramics, plastic or polymers. Such magnetic receptive pigments are formulated with low-friction materials and appropriate color pigments and binders, such as epoxy and polyimide, which when cured at a suitable temperature provides adhesion to the substrate and also creates the low-friction surface. In this embodiment, the musical string is subsequently internally heated by exciting or energizing the dispersed magnetic receptive particles, which causes select areas of the musical string to change colors from the primary color to a darker color in the areas where the coated device is selectively subjected to the magnetic forces, while not overheating either the binder resin or the outer layer of low-friction material.


In another embodiment, as mentioned above, the coating includes additives, such as silane coupling agents, other materials formulated to improve the bonding capabilities of a coating to the surface of the musical string, particularly smooth surfaces, or other materials which modify the curing characteristics or the drying characteristics of the coating before curing. In another embodiment, the coating includes additives to improve the wear characteristics, corrosion resistance, and/or electrical properties of the coating. For example, in one embodiment, the uncured coating includes approximately 30%-50% by volume of a base resin, 1%-30% of a heat stable pigment, and 0.5%-15% of a pigment that shifts from a first color to a second, contrasting color when heated from a first temperature to a second temperature which is 20-200° F. (11-93° C.) higher than the first temperature. The uncured coating also includes 2%-10% by volume of low-friction particles and trace amounts of a wetting agent, a silane coupling agent, a hardening agent, and/or curing or drying agents.


In another embodiment, a steel musical string is treated with a thin layer of phosphate or a phosphate type cleaner which reacts or binds with the steel surface to promote the adhesion of a coating, improve the corrosion resistance, and improve the chemical protection of the musical string. In another embodiment, conversion coating or anodizing of an aluminum musical string is employed to promote adhesion of a coating to the musical string and increase the surface hardness and corrosion resistance of the musical string.


In another embodiment, an additional clear or transparent top coat layer (as described above) is applied in a separate operation either after the color shift marks are created or after the marks are created in the base coat. In another embodiment, an ultraviolet cure (“uv cure”) low-friction, thin layer of a specially formulated, clear, unpigmented, uv cure resin/fluoropolymer or resin/polyethylene material is formed over the marked musical string after the base coating is applied, cured and post marked. This lowers the friction of the surface since no heat is used to cure the uv material and no change in the marked lower base coating takes place which may be employed for lower temperature base materials like plastics or high friction reinforced plastics. In another embodiment, this additional top coating includes one or more color shifting pigments (i.e., pigments configured to shift color when a suitable amount of energy is applied to such pigments) as described herein.


In another embodiment, a clear or translucent base material is adhered to a musical string that contains laser sensitive or excitable laser receptive pigments. This layer is subsequently topcoated with another clear layer of low friction liquid or low friction powder material which includes PTFE and one or more strengthening agents. In this embodiment, when the laser energy is directed at the coated musical string, the laser pigment turns colors like black or brown, but since no such pigment is in the separate bonded topcoat, the markings in the base coat are seen by the viewer. Accordingly, such markings can form bands, dots, dashes, letters, numbers or any manner of identifying marks.


In one embodiment, the musical string disclosed herein is sequentially coated, cured and selectively heated. For example, a musical string is entirely coated, entirely cured and then selectively heated at designated locations to cause the pigment and/or binder resin to shift color. In another embodiment, different portions of the musical string are coated, cured and selectively heated simultaneously. In these embodiments, the musical string is coated in a suitable coater or utilizing a suitable coating device, the musical string is cured in a suitable curer or utilizing a suitable curing device and the coated musical string is selectively heated with a selective heater or utilizing a suitable selective heating device.


In another embodiment, the musical string is cleaned (as described above), but the fixed end of the string is covered or masked to prevent any coating from adhering to this portion of the string. In this embodiment, the subsequently applied low friction coating is localized to the area that is exposed to the coating and/or marking process. In another embodiment, the base coating is applied to the musical string (as described above), but the fixed end of the string is subsequently covered or masked to prevent the second or subsequent low friction/corrosion resistant coatings from adhering to the portions of the fixed end of the string that are masked or covered. It should be appreciated that these embodiments provide that the portion or area of the musical string that is in contact with a pick or a bow (at or near the fixed end) is not coated (or thinly coated) and the portion or area of the musical string that is in contact with a musician's fingers and/or the fret board (at or near the adjustable end) includes a suitable amount of low friction/corrosion resistant coatings (and zero, one or more markings as described above) to stop the finger squeaking and reduce fret wear.


It should be appreciated that while the coated string disclosed herein is described as and illustrated as a coated musical string, any suitable string may be coated and utilized as described above. That is, one or more of the above-described coatings may be applied to any suitable type of string in any suitable manner described herein. In one embodiment, the coated string is implemented as a sports string utilized in one or more articles of sporting equipment, such as a tennis racquet string. In one such embodiment, when applied to a sports string (for use in one or more articles of sporting equipment), the coating disclosed herein provides a reduction in inter-string friction which provides a more efficient transfer of energy when the sports string rebounds from being stretched. For example, a tennis racquet string coated with the coating disclosed herein would provide a reduced amount of inter-string friction and thus provide a more efficient transfer of energy from the stretched coated sports string to a tennis ball when the coated tennis racquet string rebounds after striking the tennis ball.


In different embodiments, the coated sports string disclosed herein may be utilized in any suitable stringed sporting equipment in use in the athletic industry, whether by an amateur or professional athlete including, but not limited to: tennis racquets, racquetball racquets, lacrosse sticks, badminton racquets and squash racquets. In different embodiments, such strings can be constructed from any suitable material, including but not limited to natural materials, synthetic materials, combinations of natural and synthetic materials. In different embodiments, such strings are constructed from polyamides, nylon/polyamides, non-metallic composite materials, or metals such as steel (both high-carbon and low-carbon content), stainless steel, aluminum, titanium, copper, nickel, silver, nitinol, and other metals and metal alloys and any combination thereof. In different embodiments, the strings are constructed from parent material or combinations of glass, ceramics, rubber, any suitable polymer material and any suitable plastic, including but not limited to nylon, Perlon®, Kevlar®, PEEK, PEK, PPS, ABS, polycarbonate, epoxy, polyester, and phenolic, or any combination thereof.


It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Claims
  • 1. A method of manufacturing a coated string, said method comprising: (a) applying a first corrosion resistant coating to a surface of a string;(b) applying a second coating to at least a portion of the coated surface of the string, said second coating including: (i) a pigment; and(ii) a plurality of particles of a low-friction material; and(c) heating at least one portion of the applied second coating such that said pigment is heated above a color shifting temperature to cause the pigment to change from a first color to a second different color without substantially degrading said low-friction material.
  • 2. The method of claim 1, which includes curing said applied second coating at a designated cure temperature, said curing causing said plurality of low-friction particles to form an at least partially transparent top coat above said pigment.
  • 3. The method of claim 2, wherein the curing causes the low-friction particles to migrate from a first position below the pigment in the second coating to a second position above the pigment in the second coating.
  • 4. The method of claim 1, wherein the second coating includes a plurality of interspersed anti-microbial particles.
  • 5. The method of claim 4, wherein the anti-microbial particles include at least one of the group consisting of silver particles, glass-silver particles, silver-ceramic particles and ceramic particles.
  • 6. The method of claim 1, which includes repeating (c) for a plurality of portions of the applied second coating.
  • 7. The method of claim 1, which includes applying the second coating to an entire outer surface of the string.
  • 8. The method of claim 1, wherein heating the at least one portion of the applied second coating includes causing the pigment to change from the first color to the second color to form at least one marking selected from the group consisting of: at least one line parallel to a longitudinal direction of the string, at least one line perpendicular to the longitudinal direction of the string, at least one line transverse to the longitudinal direction of the string, at least one line substantially transverse to the longitudinal direction of the string, a size of the string, a type of the string, a material of the string, a part number of the string, a lot number of the string, a lot code of the string, at least one style marking of the string, a batch number of the string, a manufacturing date of the string, a location of manufacturing of the string, a manufacturing code of the string, a serial number of the string, at least one bar code of the string, at least one designated design associated with at least one user.
  • 9. The method of claim 1, wherein said string is selected from the group consisting of: a sports string configured to operate with a sporting equipment and a musical string configured to operate with a musical instrument.
  • 10. The method of claim 9, wherein said musical string is a wound musical string.
  • 11. The method of claim 10, which includes applying the first corrosion resistant coating to at least one of: an inner surface of the wound musical string, an outer surface of the wound musical string and at least one interstice of the wound musical string.
PRIORITY CLAIM

This application is a continuation of, claims priority to and the benefit of U.S. patent application Ser. No. 13/040,829, filed on Mar. 4, 2011, which is a continuation of, claims priority to and the benefit of U.S. patent application Ser. No. 12/766,426, filed on Apr. 23, 2010, now U.S. Pat. No. 7,923,617, which is a continuation of, claims priority to and the benefit of U.S. patent application Ser. No. 12/211,630, filed on Sep. 16, 2008, now U.S. Pat. No. 7,714,217, which is a continuation-in-part of, claims priority to and the benefit of U.S. patent application Ser. No. 12/171,847, filed on Jul. 11, 2008, now U.S. Pat. No. 8,231,926, which is a continuation-in-part of, claims priority to and the benefit of U.S. patent application Ser. No. 11/962,326, filed on Dec. 21, 2007, now U.S. Pat. No. 8,048,471, the entire contents of which are each incorporated by reference herein.

US Referenced Citations (309)
Number Name Date Kind
1617102 Cohn Feb 1927 A
1772846 Spolidoro Aug 1930 A
2049769 Gray Aug 1936 A
2241282 Wackerle May 1941 A
2241283 Wackerle May 1941 A
2735258 Crandall Feb 1956 A
2861417 Crandall Nov 1958 A
2892374 Ralls, Jr. Jun 1959 A
3085912 Friese Apr 1963 A
3099595 Allbaugh Jul 1963 A
3120144 Bayer Feb 1964 A
3218904 Hartman Nov 1965 A
3706883 McIntyre Dec 1972 A
3771409 Rickey Nov 1973 A
3812842 Rodriguez May 1974 A
3820434 Roberts Jun 1974 A
3845686 Salvo Nov 1974 A
3857934 Bernstein et al. Dec 1974 A
3978756 Feldman Sep 1976 A
4003369 Heilman et al. Jan 1977 A
4008351 Inoue et al. Feb 1977 A
4016714 Crandall et al. Apr 1977 A
4080706 Heilman et al. Mar 1978 A
4120146 Robin Oct 1978 A
4291606 Lepage Sep 1981 A
4336087 Martuch et al. Jun 1982 A
4377620 Alexander Mar 1983 A
4382358 Tappe et al. May 1983 A
4539228 Lazarus Sep 1985 A
4540628 Oberdeck et al. Sep 1985 A
4559861 Patty et al. Dec 1985 A
4570170 Hiraishi et al. Feb 1986 A
4577637 Mueller, Jr. Mar 1986 A
4645491 Evans Feb 1987 A
4712464 Nance Dec 1987 A
4724846 Evans, III Feb 1988 A
4779628 Machek Oct 1988 A
4791848 Blum, Jr. Dec 1988 A
4796637 Mascuch et al. Jan 1989 A
4799496 Hargreaves et al. Jan 1989 A
4846193 Tremulis et al. Jul 1989 A
4854330 Evans, III et al. Aug 1989 A
4875489 Messner et al. Oct 1989 A
4895168 Machek Jan 1990 A
4922923 Gambale et al. May 1990 A
4951686 Herlitze Aug 1990 A
4966163 Kraus et al. Oct 1990 A
5034005 Appling Jul 1991 A
5038458 Wagoner et al. Aug 1991 A
5063935 Gambale Nov 1991 A
5084022 Claude Jan 1992 A
5091284 Bradfield Feb 1992 A
5107852 Davidson et al. Apr 1992 A
5114401 Stuart et al. May 1992 A
5117838 Palmer et al. Jun 1992 A
5117839 Dance Jun 1992 A
5144959 Gambale et al. Sep 1992 A
5149965 Marks Sep 1992 A
5154705 Fleischhacker et al. Oct 1992 A
5165013 Faris Nov 1992 A
5165421 Fleischhacker et al. Nov 1992 A
5174302 Palmer Dec 1992 A
5203777 Lee Apr 1993 A
5211636 Mische May 1993 A
5234002 Chan Aug 1993 A
5241970 Johlin, Jr. et al. Sep 1993 A
5243996 Hall Sep 1993 A
5260985 Mosby Nov 1993 A
5265622 Barbere Nov 1993 A
5267955 Hanson Dec 1993 A
5271415 Foerster et al. Dec 1993 A
5273526 Dance et al. Dec 1993 A
5279546 Mische et al. Jan 1994 A
5279573 Klosterman Jan 1994 A
5282478 Fleischhaker, Jr. et al. Feb 1994 A
5300048 Drewes, Jr. et al. Apr 1994 A
5345945 Hodgson et al. Sep 1994 A
5353808 Viera Oct 1994 A
5360403 Mische Nov 1994 A
5373619 Fleischhacker et al. Dec 1994 A
5376083 Mische Dec 1994 A
5379779 Rowland et al. Jan 1995 A
5409004 Sloan Apr 1995 A
5433200 Fleischhacker, Jr. Jul 1995 A
5443081 Klosterman Aug 1995 A
D363544 Rowland et al. Oct 1995 S
D363776 Rowland et al. Oct 1995 S
5458040 Lawrence, Jr. Oct 1995 A
5479938 Weier Jan 1996 A
5497783 Urick et al. Mar 1996 A
5497786 Urick Mar 1996 A
5498250 Prather Mar 1996 A
5501827 Deeney et al. Mar 1996 A
5546958 Thorud et al. Aug 1996 A
5551444 Finlayson Sep 1996 A
5559297 Yoshikawa et al. Sep 1996 A
5606981 Tartacower et al. Mar 1997 A
5610348 Aladin et al. Mar 1997 A
5619778 Sloot Apr 1997 A
5634897 Dance et al. Jun 1997 A
5638589 Phillips Jun 1997 A
5640970 Arenas Jun 1997 A
5665103 Lafontaine et al. Sep 1997 A
5669878 Dickinson et al. Sep 1997 A
5713351 Billings et al. Feb 1998 A
5724989 Dobson Mar 1998 A
5728042 Schwager Mar 1998 A
H1715 Longeat Apr 1998 H
5740473 Tanaka et al. Apr 1998 A
5741267 Jorneus et al. Apr 1998 A
5759174 Fischell et al. Jun 1998 A
5782811 Samson et al. Jul 1998 A
5801319 Hebestreit Sep 1998 A
5804633 Loftin et al. Sep 1998 A
5807279 Viera Sep 1998 A
5830155 Frechette et al. Nov 1998 A
5836892 Lorenzo Nov 1998 A
5876783 Dobson Mar 1999 A
5883319 Hebestreit et al. Mar 1999 A
5885227 Finlayson Mar 1999 A
5897819 Miyata et al. Apr 1999 A
5898117 Ishida Apr 1999 A
5907113 Hebestreit et al. May 1999 A
D410671 Aleksa Jun 1999 S
5908413 Lange et al. Jun 1999 A
5919126 Armini Jul 1999 A
5919170 Woessner Jul 1999 A
5920023 Ravagni et al. Jul 1999 A
5941706 Ura Aug 1999 A
5948489 Hopkins Sep 1999 A
5970119 Hofmann Oct 1999 A
5984877 Fleischhacker, Jr. Nov 1999 A
6036682 Lange et al. Mar 2000 A
6042605 Martin et al. Mar 2000 A
6048620 Zhong Apr 2000 A
6050958 Dickinson et al. Apr 2000 A
6083167 Fox et al. Jul 2000 A
6093157 Chandrasekaran Jul 2000 A
6093678 Hamada et al. Jul 2000 A
6113576 Dance et al. Sep 2000 A
6139540 Rost et al. Oct 2000 A
6143013 Samson et al. Nov 2000 A
6168570 Ferrera Jan 2001 B1
6179788 Sullivan Jan 2001 B1
6193706 Thorud et al. Feb 2001 B1
6211450 Ishida Apr 2001 B1
6238847 Axtell, III et al. May 2001 B1
6248942 Hebestreit et al. Jun 2001 B1
6273858 Fox et al. Aug 2001 B1
6277108 McBroom et al. Aug 2001 B1
6306105 Rooney et al. Oct 2001 B1
6315790 Gerberding et al. Nov 2001 B1
6340368 Verbeck Jan 2002 B1
6348646 Parker et al. Feb 2002 B1
6355058 Pacetti et al. Mar 2002 B1
6361557 Gittings et al. Mar 2002 B1
6370304 Mills et al. Apr 2002 B1
6387060 Jalisi May 2002 B1
6402777 Globerman et al. Jun 2002 B1
6425927 Haupt-Stephan et al. Jul 2002 B1
6428512 Anderson et al. Aug 2002 B1
6452080 Coonce Sep 2002 B1
6468079 Fischer et al. Oct 2002 B1
6475169 Ferrera Nov 2002 B2
6491646 Blackledge Dec 2002 B1
6501992 Belden et al. Dec 2002 B1
6503310 Sullivan Jan 2003 B1
6520923 Jalisi Feb 2003 B1
6520934 Lee et al. Feb 2003 B1
6528709 Hebestreit et al. Mar 2003 B2
6540721 Voyles et al. Apr 2003 B1
6554942 Solar et al. Apr 2003 B2
6605049 Wagner et al. Aug 2003 B1
6612998 Gosiengfiao et al. Sep 2003 B2
6613002 Clark et al. Sep 2003 B1
6617515 Yeung Sep 2003 B1
6620114 Vrba et al. Sep 2003 B2
6623504 Vrba et al. Sep 2003 B2
6626869 Bint Sep 2003 B1
6635082 Hossainy et al. Oct 2003 B1
6636758 Sanchez et al. Oct 2003 B2
6652568 Becker et al. Nov 2003 B1
6652579 Cox et al. Nov 2003 B1
6673025 Richardson et al. Jan 2004 B1
6679853 Jalisi Jan 2004 B1
6680121 Sakoske et al. Jan 2004 B2
6733503 Layrolle et al. May 2004 B2
6765136 Van Pamel Jul 2004 B2
D496728 Holsinger Sep 2004 S
6811805 Gilliard et al. Nov 2004 B2
6811958 Iwami et al. Nov 2004 B2
6835454 Randa et al. Dec 2004 B1
6855161 Boylan et al. Feb 2005 B2
6942652 Pressly, Sr. et al. Sep 2005 B1
6994883 Layrolle et al. Feb 2006 B2
7022086 Her Apr 2006 B2
7033325 Sullivan Apr 2006 B1
7147634 Nesbitt Dec 2006 B2
7150756 Levinson et al. Dec 2006 B2
7153277 Skujins et al. Dec 2006 B2
7160297 Nesbitt Jan 2007 B2
7163509 Abe Jan 2007 B2
7182757 Miyata et al. Feb 2007 B2
7217876 Allen et al. May 2007 B2
7241406 Solar et al. Jul 2007 B2
7255685 Pressly, Sr. et al. Aug 2007 B2
7261925 Nesbitt Aug 2007 B2
7278973 Iwami et al. Oct 2007 B2
7288091 Nesbitt Oct 2007 B2
7296333 Jalisi Nov 2007 B2
7309235 Wilk Dec 2007 B2
7311714 Wascher Dec 2007 B1
7390326 Nesbitt Jun 2008 B2
7399296 Poole et al. Jul 2008 B2
7408101 Shelton Aug 2008 B2
7410665 Ragheb et al. Aug 2008 B2
7434437 Kato et al. Oct 2008 B2
7455646 Richardson et al. Nov 2008 B2
7458941 Caillouette Dec 2008 B2
7473417 Zeltinger et al. Jan 2009 B2
7517342 Scott et al. Apr 2009 B2
7608766 Shlesinger Oct 2009 B2
7714217 Nesbitt May 2010 B2
7718212 Nesbitt May 2010 B2
7811623 Nesbitt Oct 2010 B2
8187206 Kinoshita et al. May 2012 B2
8206320 Deal et al. Jun 2012 B2
8292872 Soetermans Oct 2012 B2
20010000857 Hebestreit et al. May 2001 A1
20020082681 Boylan et al. Jun 2002 A1
20020087098 Iwami et al. Jul 2002 A1
20020136893 Schlesinger Sep 2002 A1
20030032896 Bosley, Jr. et al. Feb 2003 A1
20030060731 Fleischhacker Mar 2003 A1
20030060783 Koole et al. Mar 2003 A1
20030060872 Gomringer et al. Mar 2003 A1
20030109865 Greep et al. Jun 2003 A1
20030120302 Minck, Jr. et al. Jun 2003 A1
20030121394 Hebestreit et al. Jul 2003 A1
20030139764 Levinson et al. Jul 2003 A1
20030190478 Kutsuna et al. Oct 2003 A1
20030196538 Katchanov et al. Oct 2003 A1
20030199759 Richard Oct 2003 A1
20030203991 Schottman et al. Oct 2003 A1
20030216642 Pepin et al. Nov 2003 A1
20030229298 Iwami et al. Dec 2003 A1
20040044399 Ventura Mar 2004 A1
20040099124 Deverich May 2004 A1
20040122509 Brodeur Jun 2004 A1
20040220608 D'Aquanni et al. Nov 2004 A1
20040253185 Herweck et al. Dec 2004 A1
20040255751 Schlesinger Dec 2004 A1
20040267161 Osborne et al. Dec 2004 A1
20050003103 Krupa Jan 2005 A1
20050011332 Dronge Jan 2005 A1
20050013842 Qiu et al. Jan 2005 A1
20050038500 Boylan et al. Feb 2005 A1
20050070821 Deal et al. Mar 2005 A1
20050080358 Iwami et al. Apr 2005 A1
20050087520 Wang et al. Apr 2005 A1
20050133941 Schuhmacher Jun 2005 A1
20050148902 Minar et al. Jul 2005 A1
20050154075 Siegel Jul 2005 A1
20050165472 Glocker Jul 2005 A1
20050187466 Glocker et al. Aug 2005 A1
20050261670 Weber et al. Nov 2005 A1
20050288773 Glocker et al. Dec 2005 A1
20060036316 Zeltinger et al. Feb 2006 A1
20060101979 Shelton May 2006 A1
20060118612 Christoffersen et al. Jun 2006 A1
20060149165 Kennedy et al. Jul 2006 A1
20060174745 D'Addario Aug 2006 A1
20060174746 Everly Aug 2006 A1
20060184112 Horn et al. Aug 2006 A1
20060211952 Kennedy Sep 2006 A1
20060257653 Tsujimoto et al. Nov 2006 A1
20060259033 Nesbitt Nov 2006 A1
20060271135 Minar et al. Nov 2006 A1
20060276910 Weber Dec 2006 A1
20070017334 Hebestreit et al. Jan 2007 A1
20070021811 D'Aquanni et al. Jan 2007 A1
20070043333 Kampa et al. Feb 2007 A1
20070093811 Nesbitt Apr 2007 A1
20070100279 Bates May 2007 A1
20070118113 Nesbitt May 2007 A1
20070178133 Rolland Aug 2007 A1
20070207182 Weber et al. Sep 2007 A1
20070208373 Zaver et al. Sep 2007 A1
20070212547 Fredrickson et al. Sep 2007 A1
20070255189 Halanski et al. Nov 2007 A1
20070266542 Melsheimer Nov 2007 A1
20080008654 Clarke et al. Jan 2008 A1
20080027532 Boylan et al. Jan 2008 A1
20080032060 Nesbitt Feb 2008 A1
20080033373 Koole et al. Feb 2008 A1
20080050509 Nesbitt Feb 2008 A1
20080108974 Yee Roth May 2008 A1
20080181969 Blanton et al. Jul 2008 A1
20080228109 Kinoshita et al. Sep 2008 A1
20080288056 Simpson et al. Nov 2008 A1
20090158912 Nesbitt Jun 2009 A1
20090162530 Nesbitt Jun 2009 A1
20090162531 Nesbitt Jun 2009 A1
20090163833 Kinoshita et al. Jun 2009 A1
20090181156 Nesbitt et al. Jul 2009 A1
20090211909 Nesbitt Aug 2009 A1
20090258984 Sandford et al. Oct 2009 A1
20100160486 Blanton et al. Jun 2010 A1
20100199830 Nesbitt Aug 2010 A1
Foreign Referenced Citations (22)
Number Date Country
0 321 091 Jun 1989 EP
0 624 380 Nov 1994 EP
0 771 572 May 1997 EP
0 832 664 Apr 1998 EP
0 987 042 Mar 2000 EP
0 749 334 Jun 2000 EP
1 025 811 Aug 2000 EP
1 062 965 Dec 2000 EP
0 833 676 Sep 2003 EP
1 433 438 Jun 2004 EP
WO9514501 Jun 1995 WO
WO0145592 Jun 2001 WO
WO0247549 Jun 2002 WO
WO2004033016 Apr 2004 WO
WO 2004049970 Jun 2004 WO
WO2004110519 Dec 2004 WO
WO2005094486 Oct 2005 WO
WO2005122961 Dec 2005 WO
WO2006002199 Jan 2006 WO
WO 2006019983 Feb 2006 WO
WO2007100556 Sep 2007 WO
WO2008097359 Aug 2008 WO
Non-Patent Literature Citations (18)
Entry
Office Action for U.S. Appl. No. 13/541,010, dated Mar. 20, 2013.
Office Action for U.S. Appl. No. 13/535,009, dated Feb. 28, 2013.
Plastics Laser Marking in the Aerospace Industry, Article, published by The Sabreen Group, Inc., [online] [retrieved from the Internet Nov. 26, 2007] <URL:www.plasticslasermarking.com/laser—marking—aerospace.htm>.
Marking Processes for Use in Harsh Environments, Article, published by The Sabreen Group, Inc., [online] [retrieved from the Internet Nov. 26, 2007] <URL:www.plasticslasermarking.com/laser—marking—harsh—environments.htm>.
Advancements in Laser Marking of Plastics, Article, published by The Sabreen Group, Inc., prior to Sep. 2008.
Total Solutions for High Contrast Laser Marking of Plastics and Metals Substrates, Article, published by The Sabreen Group, Inc., [online] [retrieved from the Internet Nov. 26, 2007] <URL:www.plasticslasermarking.com/laser—marking.htm>.
Acetal (POM) Engineering Property Data, Article, published by Material Property Data, [online] [retrieved from the Internet Nov. 26, 2007] <URL:www.matweb.com/reference/acetalpolymer.aspx>.
Sabreen, Scott R., New Technologies for High-Speed Color Laser Marking of Plastics, Article, published by Plastics Decorating Magazine, Oct./Nov. 2004.
Total solutions for High Contrast & Color Laser Marking, Article, Published by The Sabreen Group, Inc., [online] [retrieved from the Internet Nov. 26, 2007] <URL:www.plasticslasermarking.com/metals—laser—marking.htm>.
Hydrophilic Coatings, Product Leaflet, published by MCTec, [online] [retrieved from the Internet Nov. 2, 2008] <URL:www.mctecbv.com>.
Guitar strings get Gore-Tex treatment, Article, published by the Gannett News Service, Jan. 28, 1997.
International Search Report and the Written Opinion of the International Searching Authority, dated Jun. 22, 2009, for PCT/US09/42697.
Office Action of U.S. Appl. No. 11/962,326 dated Oct. 20, 2009.
Office Action of U.S. Appl. No. 12/211,630 dated Aug. 18, 2009.
Office Action for U.S. Appl. No. 12/402,218 dated Dec. 23, 2009.
UV40 Dual Care Acrylated Urethane Coating Technical Data Sheet: Chase Specialty Coatings, pp. 1-3, Jul. 2007.
Nagaoka et al., “Low Friction Hydrophillic Surface for medical Device”, BioMaterials, Aug. 11, 1990, pp. 419-424.
ClearClad: “Electrophoretic Coating”, pp. 1-4, 1996-2002.
Related Publications (1)
Number Date Country
20130152761 A1 Jun 2013 US
Continuations (3)
Number Date Country
Parent 13040829 Mar 2011 US
Child 13743094 US
Parent 12766426 Apr 2010 US
Child 13040829 US
Parent 12211630 Sep 2008 US
Child 12766426 US
Continuation in Parts (2)
Number Date Country
Parent 12171847 Jul 2008 US
Child 12211630 US
Parent 11962326 Dec 2007 US
Child 12171847 US