Marker Assembly Having Breakaway Feature

Information

  • Patent Application
  • 20100200252
  • Publication Number
    20100200252
  • Date Filed
    June 30, 2009
    14 years ago
  • Date Published
    August 12, 2010
    13 years ago
Abstract
An agricultural implement has a marker assembly that is pivotable in a generally rearward direction when the marker assembly collides with a relatively massive field obstruction. The interconnection of the marker assembly to a central frame of the implement allows the aforementioned pivoting to reduce damage to the central frame and/or the marker assembly during such collisions.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to agricultural implements and, more particularly, to a seeder having a breakaway marker.


Agricultural seeders, which are commonly used to deposit seed, fertilizer, and granular chemicals onto a farm field, generally consist of a towable frame that supports one or more rows of seed units. Seed or other granular product is typically metered to the seed units which in turn deposit the product onto the farm field. The seeder will often include furrowing opening devices, such as coulters, knives, shanks, and the like that cut a furrow into the farm field immediately ahead of the seed units so that the granular product is deposited into a furrow rather than simply atop the farm field. A trailing packer will then pack the furrow to improve germination and/or fertilization.


Agricultural seeders are also commonly outfitted with a pair of marker assemblies. Each marker assembly will generally include a marker frame which carries a marking disc. A seeder will typically have a marker frame extending laterally on opposite sides of the seeder, and the marker frames can be independently raised and lowered by a respective lift assembly, such as a hydraulic cylinder. The marking disc is designed to cut a furrow into the farm field which serves as a marker as to the position of the seeder as the field was passed. Thus, during a subsequent pass of the farm field, the operator can position the seeder so that the next pass is properly aligned with the previous seeding pass to prevent overseeding of a previously seeded area or to prevent undesirable gaps in the seeded rows. Improper uniformity in spacing of the rows as well as distribution of the seed can negatively impact crop yields.


Occasionally, as the seeder is being towed by the tractor across the farm field, the marker frame may collide with an obstacle in the farm field, such as an unseen rock. To reduce the impact of such collisions, the marker frame must be built in a manner and with materials that are capable of withstanding the impact with such objects without causing fracture or other damage to the marker frame. Moreover, since the marker frame is coupled to the main frame of the seeder, the composition of the marker frame must be such that collision of the marker frame with an obstruction does not negatively impact the main towable frame of the seeder. This typically results in relatively heavy, bulky, and ultimately costly marker frames that can significantly impact the overall weight and size of the seeder as well as its cost.


Therefore, there is a need for a marker assembly better suited to handle collisions with field obstructions.


SUMMARY OF THE INVENTION

The present invention is directed to an agricultural implement having a marker assembly that is pivotable in a generally rearward direction when the marker assembly collides with a relatively massive field obstruction. The interconnection of the marker assembly to a central frame of the implement allows the aforementioned pivoting to reduce damage to the central frame and/or the marker assembly during such collisions.


In one embodiment, the marker assembly is connected to the central frame of the implement by a two-part joint assembly. The joint assembly has a first portion that is connected to the central frame of the implement and a second portion that is connected to the marker assembly. The two joint portions are connected by a vertical pivot pin and a tension bolt. When an obstruction of sufficient mass is encountered, the tension bolt will fail thereby allowing the second joint portion, and thus the marker assembly, to pivot rearwardly relative to the first joint portion about the pivoting axis of the pivot pin. The present invention therefore allows the marker assembly to clear the obstruction without damaging the marker assembly or the central frame of the implement.


It is therefore an object of the invention to provide a marker assembly capable of pivoting in a rearward direction when colliding with field obstructions.


It is another object of the invention to limit rearward pivoting of the marker assembly to those collisions when significant damage would result to the marker assembly and/or central frame of the implement if rearward pivoting was not permitted.


Other objects, features, and advantages of the invention will become apparent to those skilled in the art from the following detailed description and accompanying drawings. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.





BRIEF DESCRIPTION OF THE FIGURES

Preferred exemplary embodiments of the invention are illustrated in the accompanying drawings in which like reference numerals represent like parts throughout.


In the drawings:



FIG. 1 is an isometric view of a marker assembly according to one embodiment of the invention;



FIG. 2 is a side isometric view of a mounting end of the marker assembly shown in FIG. 1;



FIG. 3 is a rear top isometric view of the mounting end of the marker assembly shown in FIGS. 1 and 2;



FIG. 3A is a top plan view of the marker assembly shown in a breakaway position according to one aspect of the invention;



FIG. 4 is a top isometric view of the interconnection of the inner frame section and central frame section of the marker assembly of FIG. 1;



FIG. 5 is a side isometric view of that shown in FIG. 4;



FIG. 6 is a side isometric view of the interconnection of the central frame section, a caster wheel assembly, and an outer frame section of the marker assembly of FIG. 1;



FIG. 7 is a top isometric view of that shown in FIG. 6;



FIG. 8 is an view of the outer frame section of the marker assembly of FIG. 1;



FIG. 9 is a rear isometric view of that shown in FIG. 6; and



FIG. 10 is an isometric view of a spring link for use with the marker assembly of FIG. 1 according to one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to a marker assembly 10, shown in FIG. 1 in a partially deployed position, for use with an agricultural implement, such as a seeder (not shown). The marker assembly is generally comprised of a multi-linked frame 12 that includes a mounting assembly 14, an inner frame section 16, a central frame section 18, a caster wheel assembly 20, and an outer frame section 22. Each of these will be described in greater detail below. As will become apparent from the following description, the marker assembly 10 is designed to be folded into a transport or stow position and may be extended to a working position. FIG. 1 shows the marker assembly in a pre-deployment position in which the linkage sections 16, 18, and 22 are partially extended. The marker assembly 10 is generally supported by its connection to the frame (not shown) of the agricultural implement and a wheel 24, which is free to caster as will be described. The outer frame section 22 carries a marking disc 26 designed to cut a marking furrow into the soil as the agricultural implement is being towed with the marking disc 26 in a ground engaging position. As will be described more fully below, the distance of the marking disc 26 from the agricultural implement may be varied to provide a user some flexibility in establishing the spacing of the marking furrow from the agricultural implement.


The inner linkage section 16 is generally defined by a pair of spaced but parallel frame tubes 28, 30 connected at one end by a cross tube 32 connected at an opposite end by a cross tube 34. To provide additional stability for the inner frame section, tubes 28, 30 are connected to one another by a series of intersecting plates, generally referenced 36. It is understood that other stability arrangements other than those shown in the figures may be used.


The central frame section 18 also includes a pair of elongate tubes 38, 40 interconnected by a pair of cross tubes 42, 44. A series of intersecting members 46 also extend between the tubes 38, 40 to provide additional structural integrity to the central frame section 18.


The outer frame section 22 includes a pair of elongate tubes 48, 50 that are angled toward one another and are interconnected at one end by a cross tube 52 and another end by a retainer 54. As will be described more fully below, the retainer 54 interconnects tubes 48, 50 to a telescoping tube 56, to which marking disk 26 is connected.


The aforementioned linkage sections will be described in greater detail below with reference to FIGS. 2 through 10.



FIGS. 2 and 3 are partial front top perspective and partial rear top isometric views of the marker assembly 10 and, more particularly, the mounting assembly 14 and the connection of the inner frame section 16 to the mounting assembly 14. The mounting assembly 14 includes a knuckle 58 comprised of an inner knuckle member 60 and an outer knuckle member 62. The inner knuckle member 60 is mountable to the frame of the agricultural implement in a conventional manner and the outer knuckle member 62 is connected to the inner knuckle member 60 by a tension bolt 64 and a vertically oriented pin 66. The tubes 28, 30 are secured to the outer knuckle member 62 by a shaft 68 that is passed through openings (not numbered) in the tubes 28, 30 and through the cross tube 32. The shaft 68 fits within a boss 70 at the side of the tube 28 and a cross bolt 72 is passed through openings in the shaft 68 and the boss 70 to secure the shaft 68 to the boss 70 and thus to the tube 28.


As shown particularly in FIG. 3, the outer knuckle member 62 has a top ear 74 and a bottom ear 75 that fit over lateral plates 76, 78 of the inner knuckle member 60. The lateral plates 76, 78 and the ears have openings (not numbered) that when aligned allow for vertical pivot pin 66 to be dropped into a passage (not shown) formed in the inner knuckle member 60. The vertical pivot 66 is secured to the inner knuckle member 60 by bolt 80. The connection of the inner and outer knuckle members 60, 62 allows the outer knuckle member 62 to pivot relative to inner knuckle member 60 in a generally rearward direction and about a vertical axis defined by the vertical pin 66, as shown in FIG. 3A.


That is, the knuckle 58 is designed so that the outer knuckle member 62, and the inner frame section 16 connected thereto, can rotate in a rearward direction (opposite the direction of travel of the implement). Such rotation is permitted when the tension bolt 64 breaks. The tension bolt 64 is carried by a bolt housing 82 that is defined by an outer housing portion 84 and an inner housing portion 86. The outer housing portion 84 extends from a side of the outer knuckle member 62 and the inner housing portion 86 extends from a side of the inner knuckle member 60. Other than the pivot pin connection described above, the only other connection of the inner and outer knuckle members is by the tension bolt 64 that connects the inner and outer housing portions. When the tension bolt breaks 64, those housing portions become separated, which allows the inner linkage 16, as well as, the other linkages, to pivot rearwardly. The tension bolt 64 is designed to fail, e.g., break, when the deployed marker assembly 10 encounters a field obstruction with sufficient force to overcome the integrity, e.g., tensile force, of the tension bolt 64. When such an obstruction is encountered, the implement will continue to move in a forward direction and will try to pull the marker assembly “through” the obstruction. This can lead to damage in the implement and the marker assembly. As such, the present invention allows the marker assembly 10 to pivot rearward so as to clear the obstruction, if the obstruction is massive enough to cause failure of the tension bolt 64.


As noted above, the marker assembly 10 is designed to be folded into a transport or stow position and may then be extended from such a position to a working position. This aforementioned movement is controlled by a pair of actuators 88, 90, e.g., cylinders. Actuator 88 is designed to move the marker assembly 10 from an upright retracted position to a horizontal stow position for transport and storage. Actuator 90 on the other hand is designed to extend and retract the marker assembly 10. The actuator 90 is connected to the upper link 92, which in turn is connected to cross tube 34 of the inner frame section.


The inner frame section 16 also includes a parallel link 94 that is connected at one end to the outer knuckle member 62 in a conventional manner and is connected at the opposite end to a bridge link 96, as shown in FIG. 4, which will be described more fully below. As will be also be described more fully below, when the actuator 90 is extended, the parallel link 92 is also extended which, in effect, causes a lowering of the inner frame section 16. Because of counterpart parallel links in the central frame section 18, extension of the actuator 90 also causes extension and lowering of the central frame section 18, which in turn causes a lowering of the outer frame section 22. Retraction of the cylinder 90 results in the linkages being retracted to an upright retracted position.


Referring again to FIGS. 2 and 3, the marker assembly 10 also includes a float link 98 that connects the outer knuckle member 62 and the cylinder 90. The float link 98 is bolted to a pair of arms 100, 102 formed with and extending upwardly from the outer knuckle member 62. The bolt 104 effectively forms a pivot which allows the float link 98 to rotate to accommodate the motion of the marker assembly 10 in response to ground contours. A bottom surface 105 of the float link 98 limits how far the float link 98 may pivot and optional bumpers 106, 108 mounted to cross tube 32 may be used to limit downward movement of the float link 98. In a preferred embodiment, the float link 98 allows 30 degrees of vertical movement in response to surface contours with preferably 15 degrees of lift and 15 degrees of lower relative to a neutral position.


The inner frame section 16 also has a rigid link 110 that is connected at one end to the outer knuckle member 62 in a conventional manner and is connected at the opposite end to a lever arm 112, as also shown in FIG. 4. The lever arm 112 forms part of a cam and roller assembly 114 that further includes a cam 116 and a cam roller 118. The cam 116 is interconnected to the cross tube 34 and the cam roller 118. The lever arm 112 is also connected to a center link 119 of the central frame section 18.


During deployment of the marker assembly 10, there is a point at which the wheel 24 will engage the surface and move outwards away from the implement. The point where the wheel 24 engages the surface is set by the rigid link 110 and the cam assembly 114. That is, the rigid link 110 pulls down on the lever arm 112 causing the central frame section 18 to move away from the inner frame section 16. The amount the central frame section 18 moves away is determined by the profile of the cam 116. The cam roller 118 follows the cam profile changing the distance the lever arm 112 is away from the inner section 16. This variation in distance provides control of the distance at which the wheel 24 engages the soil surface. Moreover, the cam assembly 114 provides gradual increases in the loading of the rigid link 110.


Referring to FIGS. 4 through 6, the central frame section 18 includes tubes 38, 40 which are connected to one another by cross tube 42. Tubes 28 and 38 are interconnected to one another by end plates 120 and 122, respectively. Similarly, tubes 30 and 40 are interconnected to one another by end plates 124 and 126, respectively. The end plates are connected to a common pivot rod 128 in a manner that allows the inner frame section 16 and the central frame section 18 to pivot with respect to one another when the marker assembly 10 is being deployed or retracted.


The central frame section 18 also includes a parallel link 130 that is connected to parallel link 94 by bridge link 96. One skilled in the art will appreciate that link 130 reacts to movement of parallel link 94 during deployment and retraction of the marker assembly.


The parallel link 130 is also connected to a bridge link 132, as shown in FIG. 6.


Similarly, tubes 38 and 40 have plates 134 and 136 that are connected to cross tube 44 and to respective tubes 138 and 140 of the wheel mount assembly 20. The bridge link 132 is connected to the outer frame section 22 by a spring linkage 142, which will be described more fully with respect to FIGS. 9 and 10.


Wheel 24 is mounted to a wheel mount 144 that is formed with, or otherwise connected to, tube 138. The wheel 24 has an axle 146 to which an offset arm 148 is connected. The offset arm 148 is in turn connected to a pivot arm 150 that is secured to the wheel mount 144 by a vertical pivot pin 152. The pivot arm 150 is mounted to the pivot pin 152 in a manner that allows the pivot arm 150 to caster freely about the vertical axis defined by the pivot pin 152. This movement of the pivot arm 150 in turn allows the wheel 24 to caster. This is particularly advantageous when the wheel 24 encounters an obstruction to avoid damage to wheel 24 or other components of the marker assembly 10.


Additionally, during deployment of the marker assembly 10, as noted above, the wheel 24 engages the soil surface before the marker assembly 10 is fully deployed. The marker assembly 10 is deployed in a lateral direction, i.e., in a direction perpendicular to the direction of travel of the implement. A conventional wheel is only permitted to rotate along a rotational axis that is perpendicular to the travel direction of the implement and thus during deployment, the wheel is pushed along the soil surface, which can cause damage to the wheel or other components of the marker assembly 10. The present invention, however, allows the wheel 24 to caster and thus, during deployment and when the wheel 24 engages the surface, the wheel 24 can rotate around an axis that is parallel to the direction of travel of the implement to effectively walk the marker assembly to the deployed position. This removes some of the loading on the mount 14 during deployment of the marker assembly 10. Similarly, during retraction of the marker assembly, the wheel 24 can caster to a position to rotate toward the agricultural implement to provide support for the outer and central frame sections until the marker assembly 10 is lifted off the ground by actuator 88.


Referring now to FIG. 8, the outer frame section 22 includes tubes 48, 50 and a telescoping link 56. Retainer 54 includes first and section flanges 154 and 156 to which tubes 48 and 50 are connected. Flange 154 has an opening 158 through which a center tube 160 extends. The center tube 160 is connected to cross tube 52, FIG. 6, by a connecting element 162, FIG. 7, and is connected to flange 156. Flange 156 has an opening (not numbered) through which link 56 may be inserted. The retainer 54 also has a U-bolt 164 that is aligned with the opening in the flange 156 so that the link 56 is passed through the opening (not numbered) defined by the U-bolt 164. Fasteners 166, 168 may be tightened to draw the U-bolt 164 into engagement with the link 56 and secure the link 56 to the flange 156. Marking wheel 26 is connected to a distal end of the link 56.


The construction of the link 56 and retainer 54 allows a user to manually set the point where the link 56 is locked in position. Changing the position where the link 56 is secured to the retainer 54 changes the distance the wheel 26 is from the tubes 48, 50 and thus from the agricultural implement.


Referring now to FIGS. 9 and 10, as mentioned above, a spring link 142 interconnects the central frame section 18 and the outer frame section 22. The spring linkage 142 is generally comprised of a rod end 170, catch nuts 172, a compression spring 174 contained within a spring housing 176, compression washers 178, and a cylinder end 180. As shown in FIG. 9, the cylinder end 180 is connected to tube 40 by a connector 182 and the rod end 140 is connected to the outer section linkage 22 by a bracket 184.


The spring 174 is retained by washers 178 within housing 176. A linkage rod 186 passes through the housing 176 and has nuts 172 that are sized to catch the washers 178. If the linkage is compressed or extended, the catch nuts 172 press up against the washers 178, which results in compression of the spring 174. By compressing the spring, a force is applied in the opposite direction as the momentum in the marker assembly during deployment, thereby resulting in a reduction in the momentum in the marker assembly during deployment. It will therefore be appreciated that the spring link 142 allows for rapid deployment of the marker assembly without compromising the outer frame section's ability to follow ground contours.


Additionally, while the marker assembly has been shown and described as being configured to pivot rearwardly at mounting assembly 14, it is understood that the marker assembly could be configured to pivot at other points along its length, such as approximate the marking disc 26.


Many changes and modifications could be made to the invention without departing from the spirit thereof The scope of these changes will become apparent from the appended claims.

Claims
  • 1. An agricultural implement towable by a towing vehicle along a direction of travel, comprising: a central frame attachable to a hitch linked to the towing vehicle;a marker frame connected to the central frame;a joint interconnecting the central frame and the marker frame, wherein the joint is adapted to permit the marker frame to pivot away from the central frame when the marker frame encounters a field obstruction with sufficient force to overcome the holding force of the breakaway joint, wherein the joint comprises a first joint member and a second joint member interconnected to one another, wherein the first joint member connects the central frame and the second joint member and the second joint member connects the marker frame to the first joint member;a first actuator having a first end coupled to the first joint member and a second end coupled to the central frame, the first actuator operative to rotate the marker frame relative to the central frame to move the marker frame between a raised position and an over-frame position; anda second actuator having a first end coupled to the second joint member and a second end coupled to the marker frame, the second actuator operative to move the marker frame between the raised position and an extended position.
  • 2. (canceled)
  • 3. The implement of claim 1 further comprising a breakable retainer interconnecting the first joint member and the second joint member, and wherein the breakable retainer automatically breaks in response to the marker frame encountering the field obstruction with sufficient force to overcome the strength of the breakable retainer.
  • 4. The implement of claim 3 wherein the breakable retainer includes a tension bolt.
  • 5. The implement of claim 3 wherein the joint further includes a vertical pivot pin that allows pivoting of the marker frame when the marker frame encounters the field obstruction and the breakable retainer has broken.
  • 6. An agricultural implement comprising: a central frame member;a marker frame carrying a marking disc configured to cut a marker furrow into a farm field, the marker frame coupled to the central frame member, wherein the marker frame is further configured to pivot relative to the central frame member and in a direction opposite a direction of travel of the central frame member when the marker frame encounters an obstruction of a predefined mass; anda pair of hydraulic actuators operative to move the marker frame between an extended working position and an over-center stowed position for transport or storage.
  • 7. The agricultural implement of claim 6 further comprising a knuckle interconnecting the marker frame and the central frame member.
  • 8. The agricultural implement of claim 7 wherein the knuckle has a first knuckle member and a second knuckle member interconnected by a tension bolt.
  • 9. The agricultural implement of claim 8 wherein the tension bolt is configured to break when the marker frame encounters the obstruction thereby allowing the second knuckle member to pivot relative to the first knuckle member.
  • 10. The agricultural implement of claim 7 wherein the marker frame further includes an inner frame member having a first end connected to the knuckle and a second end, a central frame member having a first end pivotably connected to the second end of the inner frame member and a second end, and an outer frame member having a first end pivotably coupled to the second end of the central frame member and a second end having a marking disc.
  • 11. The agricultural implement of claim 10 further comprising a support wheel connected between the second end of the central frame member and the first end of the outer frame member.
  • 12. The agricultural implement of claim 10 wherein the outer frame member includes a telescoping member. 13-17. (canceled)
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of U.S. Ser. No. 61/151,386 filed Feb. 10, 2009.

Provisional Applications (1)
Number Date Country
61151386 Feb 2009 US