This application relates to replaceable consumable devices for use with printing apparatus having the ability to read and write data relating to a quantity of marking material contained within the replaceable consumable. More particularly, the subject application relates to ink and toner cartridges having an enhanced storage capacity ink or toner usage efficiency and electronics for interfacing with the associated printing apparatus to store the data relating to a quantity of the marking material. However, it is to be appreciated that the present exemplary embodiments may find use in related and other environments and applications where replaceable cartridges holding consumable materials are used.
It is generally well known in the art to provide ink and toner cartridges with electronic devices storing various data which is useful to the printing device in executing print functions. One form of data used in the past includes data representative of a type of marking material contained in the cartridge. That data is first read by the printing apparatus from electronics carried on the cartridge and is then used to set operational printing parameters within the printing apparatus. This technique best assures that any changes in the chemistry or composition of the marking material are accommodated in the printing apparatus such as by adjusting an amount of power supplied to print heads or fuser stations for generating printed documents having a high quality.
Another form of data commonly stored in electronic devices carried on cartridges includes marking material quantity data. Data of this type is essentially data representative of either an amount of marking material consumed from the cartridge or an amount of marking material remaining in the cartridge at any given time. Typically, both of these were represented as percentages of a completely full cartridge capacity value or of a completely empty cartridge capacity value. In either case, the marking material quantity data is used directly by the printing application to determine a projected printed page capability by calculating a product of a stored value representative of a full quantity of material with the percentage data value obtained from the cartridge multiplied by a constant representative of an average page count per given unit of marking material. During a printer initialization cycle, the marking material quantity data is retrieved from the electronic storage portion of the cartridge and copied into a memory location resident in the printing apparatus. During ensuing printing operations, the printing apparatus either deducts from the remaining material quantity data or adds to the marking material consumed data to keep an accurate account of the depletion state of the consumable cartridge. In some prior art printer and consumable cartridge systems, the printer periodically writes the marking material quantity data to the cartridge memory according to a regular predetermined schedule. In other prior art systems, the printing apparatus simply writes back the consumable quantity data during a power down cycle.
It is important for printing devices to suspend or terminate printing operations well before a complete exhaustion of the marking material. In some cases, such as in ink jet printing, the marking fluid is used to cool the printhead and without it, damage would occur. In other examples, it is important to discourage the formation of bubbles entrained in the fluid conduit system conveying marking material between the replaceable consumable and the printing device. It is important there as well to terminate printing operations well before those systems run dry. In toner based printing systems, it is important to be sure that the printing apparatus always has a supply of toner so that the developer and fusing stations are not adversely affected such as when those systems run dry.
Many original equipment manufacturers (OEMs) adopt a conservative approach to preventing their printing apparatus from running dry. One example of such an approach includes a method of monitoring of the marking material quantity data and terminating printing operations when the marking material quantity data reaches a minimum threshold value, typically of about 20% marking material remaining. As an example, in marking systems with cartridges holding 20 ml. of ink, the printing is terminated when the ink remaining data reaches about 20% of the total or, when the amount of ink remaining in the cartridge is about 4 ml. Of course, this is wasteful but, as noted above, provides an extremely conservative approach. This large amount of ink remaining in the cartridge after the printing apparatus has determined the cartridge to be useless is a significant amount of otherwise valuable product which was paid for by the consumer and which would eventually form part of a landfill.
Oftentimes consumers and other owners of ink cartridges desire to fill those cartridges with marking material in excess of an original quantity of marking material typically supplied by the OEM. In the example above, the consumer might try to fill the cartridge with 24 ml. of ink, rather than with the standard 20 ml. supplied by OEM. It would seem to the consumer that this would be useful for purposes of minimizing the amount of time spent in replacing cartridges and maximizing the page count between cartridge changes to enhance business productivity. However, simply adding additional marking material to the cartridge has no effect on the total number of pages of printed production from that cartridge because, as noted above, the printing apparatus typically decrement/increment the marking material data represented as a percentage of a completely filled or a completely empty state until a predetermined threshold is reached whereupon further printing operations are terminated. In the above example, the printer is programmed to behave as if 20 ml. are present and to consume up to 16 ml., thus leaving 8 ml. of unused ink in the tank. This is extremely wasteful because the additional amount of marking material added by the consumer or owner is not used and, further, the original amount of marking material as specified by the OEM is not used either.
However, it remains highly desirable for consumers and owners of those cartridges to refill them at a capacity in excess of the OEM specifications. Typically this refill is performed by simply adding additional marking material in void spaces in the original unaltered cartridge. Another approach is to modify the OEM cartridge slightly by adding a large bin or storage capacity structure to accommodate additional marking material. Thereafter, the electronics on the cartridges are reset to a full value even tough a substantial portion of the material has been depleted. This is, of course, risky because as explained above, the print heads can be overheated and damaged.
In either case, again, it is highly desirable to provide an enhanced marking material capacity.
The present application provides a replaceable consumable for use in an associated printing device wherein the consumable includes an electronic member having a memory element storing marking material quantity data corresponding to a quantity of marking material contained in the cartridge body and being responsive to data maintenance signals from the printing apparatus to modify the marking material quantity data in the memory element as a non-linear function of the data maintenance signal.
A primary advantage of the invention resides in the ability to fully utilize all of the marking material contained in the consumable obtained from the OEM.
Another primary advantage of the invention resides in the ability for consumers and owners of marking material cartridges to refill those cartridges with marking material quantities in excess of those provided by the OEM.
Yet a further primary advantage of the invention resides in the ability of consumers and owners of marking material cartridges to modify those cartridges to accommodate larger marking material capacities beyond those provided for by the OEM.
Still other advantages and benefits of the invention will become apparent to those skilled in the art upon reading and understanding the following detailed description.
The invention may take form in certain parts, components, structures, and steps, the preferred embodiments of which will be illustrated in the accompanying drawings.
a and 4b are perspective views illustrating a structure of a replaceable consumable formed in accordance with first and second embodiments;
a and 5b are schematic representations of electronic devices in accordance with first and second embodiments;
Turning now to the drawings,
A wide variety of data is typically stored in the storage element 14 including data related to the cartridge such as cartridge ID, ink or toner volume remaining, ink or toner volume depleted, the version of the ink or toner cartridge, the year, month, date and time of manufacture, serial number, and so on. Also, data relating to the ink or toner contained within the chamber of the cartridge main body 12 is typically placed on the storage element 14. This includes data on a type of ink or toner contained therein and data on a remaining quantity or a depleted quantity of one or more ink or toner cartridges stored in the housing. As noted above, data on the remaining quantity or depleted quantity of marking material is most often stored as a percentage of a predetermined full or empty value.
Turning next to
Next, in the consumption phase 32, the total amount of pages remaining is calculated by the printing apparatus in step 37. At this point, the printing apparatus is readied for receiving print jobs at step 38. After print jobs are received from an associated computing device (not shown) the printing apparatus determines a capability of executing the print job based upon the calculated page remaining quantity as determined in step 37. The print job is executed at step 40 if a sufficient amount of marking material is present in the cartridge as determined in step 37. After execution of the print job, the marking material quantity data is decremented in the printer in step 41. Typically, the marking material remaining data is also written into the storage element 14 on the ink cartridge 10 in step 42. In that way, the printer apparatus develops a synchronization with the ink cartridge relative to the marking material remaining data.
Lastly, in the power down phase 33, a marking material remaining data quantity stored in the printing device is written to the cartridge at step 43. Thereafter, the printer executes a power down/off subroutine 44 to attend to various housekeeping needs and the like.
One disadvantage of prior art printing systems and, in particular, with prior art ink and toner cartridges of the type described above is that they suspend printing operations prematurely leaving a substantial amount of marking material unused in the cartridge. This is of course wasteful. Another disadvantage of these prior art systems is that they negate the ability of end users to fill empty cartridges with a quantity of marking material in excess of those provided by the OEM. Lastly, because these prior art systems operate on percentages of a predetermine quantity of marking material for all of the necessary calculations, modifications to the cartridges to increase the capacities thereof are rendered useless as well. The printers simply cannot recognize additional capacities added to cartridges of the prior art.
Therefore, in accordance with the present application, a marking material cartridge is provided with an automatic high yield function which operates independent of host printing devices. More particularly, the preferred embodiments of the subject invention selectively replace marking material quantity data received from the printing apparatus with a revised marking material quantity data representative of a non-zero incremental marking material quantity in excess of the overall marking material quantity supplied by the OEM. In that way, a one time adjustment is made to the material quantity data stored on the cartridge by incrementing marking material remaining data or decrementing marking material consumed data independent of the operations of the host printing device.
In the above regard,
b shows a toner cartridge 60 having a toner cartridge body 62 carrying an electronic device 64. The electronic device includes a memory element (not shown) for storing data and an RF communication circuit shown schematically at 66. The RF circuit is configured for communicating data between the associated printing device (not shown) and the toner cartridge 60. It is to be appreciated that the electronic device 64 may carry a plurality of electronic contacts 67, shown in dashed lines, similar to those described above in connection with the ink cartridge. Preferably either the RF communication circuit 66 or the electronic contacts 67 are used, but not both simultaneously.
a and 5b are schematic representations of the preferred form of the electronic devices 54, 64, respectively in accordance with the embodiments of the present application. It is to be appreciated that either of the preferred forms of the electronic devices 54, 64 can be provided on either the ink cartridge 50 or the toner cartridge 60 or on any other form of material dispensing device. As shown first in
b is a schematic representation of the electronic device 64 carried on the toner cartridge 60 and in accordance with an embodiment of the present application represented in
Next, at step 124, the electronic element compares the revised marking material quantity data QP received from the associated printing apparatus with a predetermined threshold data T and, if the revised marking material quantity data QP is less than the threshold value, the electronic device 54, 64 writes the revised marking material quantity data QP as the new marking material data QNEW in the first memory locations 78, 98 of the respective memory elements 76, 96. Essentially, the marking material quantity data QC is replaced with the revised marking material quantity data QP received from the associated printing apparatus. The symbol “←” means replace as in A←B, A is replaced with the value of B.
At step 124, however, if the revised marking material quantity data QP reaches or goes below the threshold T, a high yield flag F is checked for a logical state at step 128. If the flag is already set, then the write cycle 120 continues in step 126 to essentially, again, replace the marking material quantity data QC with the revised marking material quantity data QP as new marking material data QNEW in the first storage area 78, 98. However, when the high yield flag F is not yet set, the new marking material QNEW stored in the first storage area 78, 98 becomes the revised marking material quantity data QP summed with a predetermined non-zero incremental marking material quantity QFIXED. QFIXED is stored in the second storage areas 80, 100 of the memory elements of the electronic devices 54, 64. Essentially, in step 130, the subject electronic devices do not write the marking material quantity data QC into the memory locations with fidelity but, rather, at an incremental fixed amount QFIXED to better synchronize the internal counters in the associated printer with an actual physical quantity of marking material contained within the cartridges.
In step 132, the high yield flag F is set and the execution path is returned to the normal flow.
The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.