This application claims priority to Chinese Patent Application No.: 201710250305.1, filed with the State Intellectual Property Office on Apr. 17, 2017 and titled “Marking Method and Device,” which is incorporated herein by reference in its entirety.
The present disclosure relates to the field of display panel detection, and more particularly to a marking method and device, and a repair system for display panels.
In the field of display panel detection, a defective position point on the display panel needs to be marked frequently, so as to repair the defect of the display panel in accordance with the marked defective position point.
In the related art, in a lighting state of the display panel, a worker may observe the display panel with naked eyes and adopt a dustless pen or mark pen to mark the defective position point with a “#-shaped mark” or a “+-shaped mark” after the defective position point on the display panel is observed. Afterwards, the worker may adopt a magnifier to magnify the marked defective position point and determine whether the marked defective position point is accurate or not in accordance with the magnified defective position point.
In the process of implementing the present disclosure, at least the following problem is found in the related art: in the related art, the defective position point needs to be confirmed by adopting a magnifier after it's marked, thus the operation process of marking the defective position point is complicated.
The present disclosure provides a marking method and device and a repair system for display panels.
In a first aspect, there is provided a marking device. The marking device includes a magnifying component and a marking component. The magnifying component is configured to magnify a target position point on a target object, and the marking component is configured to mark the target position point on the target object in accordance with the magnified target position point.
In some embodiments, the marking device further includes an adjusting component. The adjusting component is connected to the marking component and configured to adjust a marking angle of the marking component to align the marking component with the target position point.
In some embodiments, the marking device further includes an auxiliary adjusting component. The auxiliary adjusting component is disposed in the marking component and configured to assist the adjusting component in adjusting the marking angle of the marking component.
In some embodiments, the marking component includes an inkjet configured to jet ink to the target position point so as to mark the target position point.
In some embodiments, the inkjet includes an ink cartridge and a nozzle communicated with the ink cartridge. The auxiliary adjusting component includes an infrared laser aligner. The infrared laser aligner is disposed in the nozzle and infrared rays emitted by the infrared laser aligner are collinear with the axis of the nozzle. The adjusting component is configured to adjust the ink jetting angle of the nozzle in accordance with the infrared rays emitted by the infrared laser aligner.
In some embodiments, the inkjet further includes a recycling case. The recycling case is communicated with the nozzle and configured to recycle residual ink in the nozzle.
In some embodiments, the adjusting component includes an adjusting knob, an adjusting part and m adjusting gears meshed in sequence, and m is an integer greater than or equal to 1. The adjusting knob is provided with a rotary gear. The rotary gear is meshed with a first adjusting gear of the m adjusting gears, the shaft of a second adjusting gear of the m adjusting gears is fixedly connected to the adjusting part, the nozzle is fixedly disposed on the adjusting part, and the first adjusting gear and the second adjusting gear are adjusting gears disposed at both ends among the m adjusting gears meshed in sequence.
In some embodiments, the nozzle is a piezoelectric stack nozzle.
In some embodiments, the marking device further includes a power supply component connected to the piezoelectric stack nozzle and configured to supply power to the piezoelectric stack nozzle.
In some embodiments, the marking device further includes a control component electrically connected to the nozzle and the infrared laser aligner respectively and configured to control the infrared laser aligner to emit infrared rays and control the nozzle to jet ink.
In some embodiments, the control component includes a nozzle switch electrically connected to the nozzle and an aligner switch electrically connected to the infrared laser aligner.
In some embodiments, the marking device further includes a jet head support of a hollow structure and provided with a knob opening and a nozzle opening. The ink cartridge, the nozzle, the recycling case, the infrared laser aligner, the adjusting knob, the adjusting part, the m adjusting gears and the power supply component are all disposed in the jet head support. The adjusting knob partially extends out of the knob opening, and the ink jetted by the nozzle is enabled to be jetted out of the jet head support through the nozzle opening.
In some embodiments, the marking device further includes a magnifier body of a hollow structure and fixedly connected to the jet head support. The magnifying component includes a magnifying lens disposed in the magnifier body.
In some embodiments, the nozzle is provided with a penetration hole, and the infrared laser aligner is enabled to pass the nozzle through the penetration hole.
In some embodiments, the value range of an aperture of the penetration hole is 20 micrometers to 30 micrometers.
In some embodiments, m is equal to 3.
In a second aspect, there is provided a marking method for a marking device. The marking device includes a magnifying component and a marking component. The method includes: magnifying a target position point on a target object by the magnifying component; and marking the target position point on the target object by the marking component in accordance with the magnified target position point.
In some embodiments, before the target position point on the target object is marked by the marking component in accordance with the magnified target position point, the method further includes: adjusting the marking angle of the marking component by an adjusting component to align the marking component with the target position point.
In some embodiments, adjusting the marking angle of the marking component by an adjusting component includes: assisting the adjusting component in adjusting the marking angle of the marking component by an auxiliary adjusting component.
In a third aspect, there is provided a repair system for a display panel. The system includes a marking device including a magnifying component and a marking component. The magnifying component is configured to magnify a target position point on a target object, and the marking component is configured to mark the target position point on the target object in accordance with the magnified target position point.
It is to be understood that both the foregoing general description and the following detailed description are exemplary only, and are not intended to limit the present disclosure.
To describe the technical solutions in the embodiments of the present disclosure more clearly, the following briefly introduces the accompanying drawings required for describing the embodiments. Apparently, the accompanying drawings in the following description show merely some embodiments of the present disclosure, and a person of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
The drawings herein are incorporated in and constitute a part of this specification of the present disclosure, showing embodiments consistent with the present disclosure, and explaining the principles of the present disclosure together with the description.
In order to clarify the objects, technical solutions and advantages of the present disclosure, the present disclosure will be further described in detail in connection with the drawings.
In the field of display, a defective position point on a Cell product (for example, a display panel) needs to be marked frequently, so as to repair the defect of the Cell product. Generally, a dustless pen or a mark pen may adopted to mark the defective position point with a “+-shaped mark” or a “#-shaped mark”. During marking, the Cell product may be lighted on at first (i.e., lighting the Cell product), then the Cell product is observed with naked eyes in the lighting state and the defective position point is estimated. After the defective position point is estimated, a dustless pen or a mark pen may be adopted to mark the defective position point with the “+-shaped mark” or the “#-shaped mark”. Afterwards, the marked defect position point is confirmed with a high magnified glass. At present, the surface profile, shape, and the like of an object may be observed by using a common high magnified glass on the market, but the current high magnified glass lacks the function of accurately marking the position point on the object. As a result, once the high magnified glass is taken away, it is very difficult to seek for the marked defective position point again.
In practice, a majority of no good (NG) Cell products are accompanied with the defect of a bright dot and/or a Bit line (the Bit line is a dim bright line in the lighting state), etc. Such type of defects generally take sub-pixel as a unit and have a magnitude of micrometers (μm), and are hard to be accurately observed with naked eyes. Besides, the defective position point is hard to be accurately marked by adopting the dustless pen or the mark pen. Therefore, a big marking error may be generated, and mistakes may be easily made in the subsequent process of repairing the Cell products, thereby causing the Cell products which could be repaired originally to be directly NG, and greatly affecting the improvement of productivity and yield The defect of a bright dot may be as shown in
Referring to
The magnifying component 01 is configured to magnify a target position point (not shown in
In conclusion, in accordance with the marking device provided in the embodiments of the present disclosure, the marking component can mark the target position point on the target object in accordance with the target position point magnified by the magnifying component, and the target position point on the target object can be the defective position point on the display panel. Therefore, there is no need to confirm the defective position point after marking, and it is helpful for solving the problem of the complicated operation process of marking the defective position point in the related art and simplifying the operation process of marking the defective position point.
Continuing to refer to
Continuing to refer to
In some embodiments, as shown in
Continuing to refer to
Referring to
Continuing to refer to
In conclusion, in accordance with the marking device provided in the embodiments of the present disclosure, the marking component can mark the target position point on the target object in accordance with the target position point magnified by the magnifying component, and the target position point on the target object can be the defective position point on the display panel. Therefore, there is no need to confirm the defective position point after marking, and it is helpful for solving the problem of the complicated operation process of marking the defective position point in the related art and simplifying the operation process of marking the defective position point.
The marking device provided in the embodiments of the present disclosure has a magnifying function and an automatic ink jetting function. The marking device can magnify the defects, such as a sub-pixel point, by 50 times in the lighting state of a Cell product or a chip on glass (COG). Besides, ink may be jetted to mark the defective sub-pixel point (i.e., defective position point) by way of manually operating the switch button. Thus, it is convenient for accurately observing and repairing the defective position point later on a repair device. The marking device provided in the embodiments of the present disclosure is particularly applicable to mark the bright dot defect and the Bit line defect of an OLED product, and can improve productivity and products' yield.
The marking device provided by the embodiments of the present disclosure may be applied to the marking method below. The marking method and marking device in the embodiments of the present disclosure may be referenced to each other. For the marking method, please refer to the following embodiment.
Referring to
Step 101, a target position point on a target object is magnified by a magnifying component.
In some embodiments, the target object may be a display panel, and may be a liquid crystal display panel, an OLED display panel or a QLED display panel. The display panel has a plurality of sub-pixels. The target position point may be a defective position point on the display panel, and is generally a sub-pixel point. The magnifying component is provided with a magnifying lens, and the defective position point on the display panel may be magnified by the magnifying lens. Exemplarily, as shown in
It should be noted that in the observation process, as shown in
Step 102, the marking angle of the marking component is adjusted by an adjusting component to align the marking component with the target position point.
In some embodiments, the adjusting component comprises an adjusting knob, an adjusting part and m adjusting gears meshed in sequence. The marking component may comprise a nozzle that is disposed on the adjusting part. The adjusting knob may be rotated to rotate the rotary gear of the adjusting knob, so as to drive the adjusting gear meshed with the rotary gear to rotate, such that the m adjusting gears are driven in sequence. Finally, the adjusting part is driven to rotate to adjust the jetting angle of the nozzle, so as to align the nozzle with the target position point.
It should be noted that in the embodiments of the present disclosure, in a process of adjusting the marking angle of the marking component through the adjusting component, the adjusting component may be assisted by an auxiliary adjusting component. The auxiliary adjusting component may comprise an infrared laser aligner. The infrared laser aligner is disposed in the nozzle of the marking component, and the infrared rays emitted by the infrared laser aligner may be collinear with the axis of the nozzle. In the process of rotating the adjusting knob, when the projection point of the infrared rays emitted by the infrared laser aligner on the display panel coincides with the target position point, the nozzle is aligned with the target position point.
Step 103, the target position point on the target object is marked by the marking component in accordance with the magnified target position point.
After the marking component is aligned with the target position point, the target position point on the target object may be marked by the marking component in accordance with the magnified target position point. In some embodiments, the marking component comprises an inkjet. The inkjet comprises an ink cartridge and a nozzle communicated with the ink cartridge, and the nozzle may jet ink to the target position point in accordance with the magnified target position point, to mark the target position point. The schematic view of the marked target position point is as shown in
It should be noted that in the embodiments of the present disclosure, after the target position point is marked, the defective position point may be directly repaired by a laser repair accurately, and the repaired display panel is as shown in
In conclusion, in accordance with the marking method provided in the embodiments of the present disclosure, the marking component can mark the target position point on the target object in accordance with the target position point magnified by the magnifying component, and the target position point on the target object can be the defective position point on the display panel. Therefore, there is no need to confirm the defective position point after marking, and it is helpful for solving the problem of the complicated operation process of marking the defective position point in the related art and simplifying the operation process of marking the defective position point.
The embodiments of the present disclosure further provide a repair system for a display panel. The repair system comprises the marking device as shown in any one of
In some embodiments, the repair system for a display panel may also comprise a repair device, and the repair device may be a laser repair.
Understandably, the term “and/or” herein describes the correspondence of the corresponding objects, indicating three kinds of relationship. For example, A and/or B, can be expressed as: A exists alone, A and B exist concurrently, B exists alone. The character “/” generally indicates that the context object is an “OR” relationship.
Persons of ordinary skill in the art can understand that all or part of the steps described in the above embodiments can be completed through hardware, or through relevant hardware instructed by applications stored in a non-transitory computer readable storage medium, such as read-only memory, disk or CD, etc.
The foregoing are merely optional embodiments of the present disclosure, and are not intended to limit the present disclosure. Within the spirit and principles of the disclosure, any modifications, equivalent substitutions, improvements, etc., are within the scope of protection of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201710250305.1 | Apr 2017 | CN | national |