The present invention relates to a device for electronic targeting evaluation of shots fired on a shooting range and, more particularly, to a target, target system and method of use for electronic targeting evaluation of shots fired on a shooting range, which has a sensor arrangement for detecting the positions of the hits in the vicinity of the target or targets and a mobile device and receiver to provide real-time feedback of results.
Various target shooting systems exist for analyzing the accuracy of a shooter's shot on a target. The means by which these target shooting systems work vary widely as demonstrated by the patents and applications identified below. Other than the standard target shooting equipment, namely a target and a means for projecting a projectile, such as a firearm, the systems disclosed in these patents and applications require some sort of additional, special equipment and lack versatility, portability, the ability to store shot information given a set of user-selected criteria (type of gun, ammo, distance, etc.) and ability to sync multiple shooters with multiple targets, all on a commonly used electronic device such as an iPad.
Cardboard or paper targets are most commonly used at firing ranges for training persons in the use of firearms. Such targets are also used at military and police firing ranges to allow soldiers and police officers to maintain and improve their marksmanship skills. Typically, shooters will shoot onto a paper target, physically walk to the target and write down the scores with a pen and notepad. Alternatively, an observer must either be stationed close to the target or be provided with an expensive spotting scope to advise the marksman of his or her progress. Such an approach subjects the shooter or observer to some danger and in the example of using an observer, requires a second dedicated person to train shooting skills.
Accordingly, there is a need for a target and/or shooting experience to eliminate the risks and time associated with physically walking to the target or observing the target to determine the accuracy of the results.
Some target ranges use a conveyer system to retrieve the target to avoid the risk of physically entering the shooting range. However, this approach does not eliminate the time to log the hits and additional time is spent waiting for the physical target to be conveyed to the shooter for evaluation.
As noted below, there are several companies that make electronic target systems using wired solutions and very basic proprietary computer systems. For example, some computer software used in such systems uses a very basic bulls-eye design or animal silhouettes and produces a score down to the tenth (e.g., 9.4 out of 10.0). Some of these computer systems are used by competitive shooters, avid hunters, military and law enforcement. There are also wireless technologies that allow an electronic target to communicate with a receiver and computer to display the shots on a target. The computer systems used in existing wireless technology consists of a prohibitively expensive, bulky, steel cased, rugged computer monitor that attaches to a Pelican Case that houses a receiver and large battery. The case is large and bulky as well. (for example, see http://www.kongsberg-ts.no/en/index.php?pageID=28&slideid=11).
In one such prior art system the target system uses acoustical measurements to determine the location of the impact of a bullet. As with other current systems, the targets are large, cumbersome and employ a special proprietary computer, not a personal mobile device.
Another one of the prior art targets uses several infrared sensors in conjunction with five microphones. The infrared sensors provide very accurate positioning in the bulls-eye area and the microphones cover the outer range.
Another company named SIUS provides an electronic scoring system such as the SA941 system or S110 system, which provides electronic results real-time to a shooter at a shooting range. The system can accommodate multiple shooters in multiple lanes and provide results to spectators via monitors. The system uses a LON-bus based wired communication and measures the shot's impact using only microphones. Particular equipment must be used depending on the type of weapon (e.g., caliber) and ammunition. The LS10 Laserscore, a target for airguns, uses infrared laser measurement to determine the location of the strike or impact. However, target ranges must be specially equipped to provide such request real-time and such results are transmitted to specially programmed computer systems. U.S. Published Application No. 2012/0194802 describes this SIUS system, such application is hereby incorporated by reference in its entirety. The targets system is very bulky and not for portable use.
In addition to laser or acoustic determination, electronic targeting systems can detect and evaluate the holes shot in the vicinity of a target electro-optically, or detected in other ways, in order to establish the positions of the holes in relation to a target or targets. For example, U.S. Published Application No. 2002/027190 to Ulrich describes such a method, the '190 publication is hereby incorporated by reference in its entirety. As with the SIUS system, Ulrich fails to describe a portable system that can be used with standard mobile devices, such as an Android or Apple tablet, smartphone or mobile phone.
Other systems previously described are as follows:
U.S. Pat. No. 4,204,683 issued 27 May 1980, by Filippini et al. for Device and Method for Detection of the Shots on a Target from a Distance discloses a video system for capturing shots on a target based upon the point of penetration of a light field by a projectile. This system requires a specialized target. The '683 patent is hereby incorporated by reference in its entirety.
U.S. Pat. No. 4,514,621 issued to Knight et al. discloses a complex, computerized firing range including transducers located adjacent the target area for detecting airborne shock waves from supersonic projectiles. The '621 patent is hereby incorporated by reference in its entirety.
U.S. Pat. No. 4,763,903 issued 16 Aug. 1988, by Goodwin et al. for Target Scoring and Display System and Method discloses a system for capturing shots on a target based upon the point of penetration of a light field by a projectile. This system requires a specialized target. The '903 patent is hereby incorporated by reference in its entirety.
U.S. Pat. No. 4,949,972 issued 21 Aug. 1990, by Goodwin et al. for Target Scoring and Display System discloses a system for capturing shots on a target based upon the point of penetration of a light field by a projectile. This system requires a specialized target. The '972 patent is hereby incorporated by reference in its entirety.
U.S. Pat. No. 5,092,607 issued 3 Mar. 1992, by Ramsay et al. for Ballistic Impact Indicator discloses a system for alerting a shooter that a bullet has struck a target by causing a strobe light to be triggered using a vibration sensor. The patent does not provide for the location of the strike. The '607 patent is hereby incorporated by reference in its entirety.
U.S. Pat. No. 5,577,733 issued 26 Nov. 1996, by Downing for Targeting System discloses a system for capturing shots on a target based upon the point of penetration of a light field by a projectile. This system requires a specialized target. The '733 patent is hereby incorporated by reference in its entirety.
U.S. Pat. No. 5,775,699 issued 7 Jul. 1998, by Orito et al. for Apparatus with Shooting Target and Method of Scoring Target Shooting discloses an apparatus for capturing shots on a target based upon light reflected through the point of penetration of a target by a projectile. This method requires a specialized target. The '699 patent is hereby incorporated by reference in its entirety.
U.S. Pat. No. 5,924,868 issued 20 Jul. 1999, by Rod for Method and Apparatus for Training a Shooter of a Firearm discloses a video camera mounted on eyewear worn by a shooter to produce a displayed image of the target to assist the shooter in aiming the firearm. This method requires specialized eyewear integrated with a camera. The '868 patent is hereby incorporated by reference in its entirety.
U.S. Pat. No. 7,158,167 issued 2 Jan. 2007 by Yerazunis et al. for Video Recording Device for a Targetable Weapon discloses a video image recording device which is mounted on a gun to record video images before and after firing of the gun. This system requires a specialized camera mounted on and integrated with the gun. Shooting Range discloses a system for capturing shots on a target based upon the point of penetration of a light field by a projectile. The '167 patent is hereby incorporated by reference in its entirety.
US Patent Application 2002/0171924 published 21 Nov. 2002 by Varner et al. for Telescope Viewing System discloses a telescope viewing system with a camera attachable to an eyepiece of the telescope and a computer system in communication with the camera for displaying images, in particular, celestial images, recorded by the camera upon a display screen. This system provides only a telescope viewing system with a camera for capturing images. The '924 publication is hereby incorporated by reference in its entirety.
US Patent Application 2003/0180038 published 25 Sep. 2003 by Gordon for Photographic Firearm Apparatus and Method discloses a telescopic firearm scope integrated with a camera to photograph a target at the instant the target is fired upon. This method requires a specialized scope integrated with a camera for use with a firearm. The '038 publication is hereby incorporated by reference in its entirety.
US Patent Application 2004/0029642 published 12 Feb. 2004 by Akano for Target Practice Laser Transmitting/Receiving System, Target Practice Laser Transmitter, and Target Practice Laser Receiver discloses a target practice laser transmitting and receiving system to capture details of a shot fired upon a target including position, time, distance, ammunition type, weapon type and other variables of the fired shot. This system requires a specialized laser system to capture and analyze shots on a target. The '642 publication is hereby incorporated by reference in its entirety.
US Patent Application 2005/0002668 published 6 Jan. 2005 by Gordon for Photographic Firearm Apparatus and Method discloses a telescopic firearm scope integrated with a camera to photograph a target at the instant the target is fired upon. This method requires a specialized scope integrated with a camera for use with a firearm. The '668 publication is hereby incorporated by reference in its entirety.
US Patent Application 2006/0150468 published 13 Jul. 2006 by Zhao for A Method and System to Display Shooting-Target and Automatic-Identify Last Hitting Point by Digital Image Processing discloses a video-monitor system to capture and display the location of a shot fired on a target. This system requires a specialized camera. The '468 publication is hereby incorporated by reference in its entirety.
US Patent Application 2006/0201046 published 14 Sep. 2006 by Gordon for Photographic Firearm Apparatus and Method discloses a telescopic firearm scope integrated with a camera to photograph a target at the instant the target is fired upon. This method requires a specialized scope integrated with a camera for use with a firearm. The '046 publication is hereby incorporated by reference in its entirety.
US Patent Application 2008/0163536 published 10 Jul. 2008 by Koch et al. for Sighting Mechanism for Fire Arms discloses a sighting mechanism with cameras mounted on a firearm to capture shots fired on a target and to display the shots on a video screen. This system requires a specialized camera integrated with a firearm. The '536 publication is hereby incorporated by reference in its entirety.
US Patent Application 2008/0233543 published 25 Sep. 2008 by Guissin for Video Capture, Recording and Scoring in Firearms and Surveillance discloses a video camera and recording device integrated with a weapon to record shots fired; wherein the camera may be mounted either on the firearm or within the bore of the firearm. This system requires a specialized camera integrated with a firearm. The '543 publication is hereby incorporated by reference in its entirety.
U.S. Patent Application 2011/311949 published 22 Dec. 2011 to Preston et al. for Trajectory Simulation System Utilizing Dynamic Target Feedback That Provides Target Position and Movement Area but does not disclose at least a portable target system that may utilize a standard mobile device. The '949 publication is hereby incorporated by reference in its entirety.
U.S. Patent Application 2012019802 published 2 Aug. 2012 to Walti-Herter for Method For Electronically Determining The Shooting Position On A Shooting Target relates to a method for electronically determining the shooting position on a shooting target using an acoustic system. The '802 publication is hereby incorporated by reference in its entirety.
U.S. Patent Application 2012/0258432 published 11 Oct. 2012 to Weissler for Target Shooting System provides real-time visual and electronic feedback regarding hits but does not involve a reusable target and requires the use of an expensive video system. The '432 publication is hereby incorporated by reference in its entirety.
U.S. Patent Application 2012/2313324 published 13 Dec. 2012 to Frickey for Articulated Target Stand with Multiple Degrees of Adjustment discloses a target stand usable with the target disclosed herein. The '324 publication is hereby incorporated by reference in its entirety.
U.S. Patent Application 2013/0147117 published 13 Jun. 2013 by Graham et al. for an Intelligent Ballistic Target discloses a target body that detects a hit and at a certain number of hits, the target body is released. The '117 publication is not portable nor does it allow for real-time feedback to a standard mobile computing device. The '117 publication is hereby incorporated by reference in its entirety.
U.S. Patent Application 2013/0193645 published 1 Aug. 2013 by Kazakov et al. for a Projectile Target System discloses a sealed projectile target. However, the target has to face the shooter and may not be accurate with oblique shots. The target requires the setup of a target and a camera and is not an all is one system. Further, image processing may be deficient in a non-ideal environment, losing environmental flexibility.
While other target products are available, none solve the portability and ease of use problem. Accordingly, there is a need for a target system that can provide time and cost savings with real-time feedback regarding hits, that works with a variety of projectiles without changing the equipment or setup, is economical and reusable, that is easily portable such that an individual can rely upon using his or her own target for consistency, that does not require specialty set-up that may be prone to human error, increases safety for the user by eliminating the need to enter a live firing range to check targets, provides data storage of shot information, analysis and aggregation, and may be used with a standard mobile computing device such as an iOS or Android-based smartphone or tablet.
The present embodiments address the needs discussed above with a portable, wireless target system that interfaces with a personal computing device to provide real-time feedback.
One preferred embodiment is a target system with at least one target, at least one target stand, at least one transmitter, at least one receiver that is typically the base-station and not a mobile device, a plurality of sensors, and a target computer. The target is connected to the stand, preferably removably connected to the stand. In a preferred embodiment, the target removable, collapsible, storable, portable, all of these or combinations of one or more of these target aspects. The sensors are connected to the target computer such that a target strike is registered by the sensors and information detailing the strike, for example, the location and the force of the strike. Preferably, the target computer is located proximate the sensors such that the information may be conveyed wirelessly, wired, or otherwise. Alternatively, the sensors may interface directly with a mobile device application. Preferably the target computer interacts with an application programming interface (API) on the mobile device. The target system includes at least one transceiver, which can be a transmitter, which transmits data from the sensors directly or indirectly. Where transmitted indirectly, the target computer is the transmitter in a preferred embodiment. In a preferred embodiment the transceiver transmits data to a base station which is close to the shooter and will relay the strike or impact data to the shooters mobile device wirelessly, for example, via Bluetooth. Alternatively, Wi-Fi, RFID, or infrared wireless data transfer can be used.
In the preferred embodiment the transmitter is capable of communicating with more than one transceiver or receiver, base station, or mobile device. For example, the data may be conveyed to multiple base stations or multiple mobile devices for purposes of real-time monitoring of all shooters in a competition for example. Unique target identification information is conveyed to the mobile device in a preferred embodiment. The API can perform a determination regarding the whether the target identification correlates to the shooter or whether it is a target of another shooter. In one embodiment, the target ID may be scanned at the beginning of a shooting session. NFC technology could be used to scan a target ID for example, or a bar code, QR code or the like may be used.
An embodiment of the target system includes an electric motor with a wireless receiver connected with at least one target to move the target wirelessly in the X, Y, and Z axis, or any combination of directions.
In some embodiments the target comprises multiple target plates, in others the target is a single piece. The target itself is portable and reusable in the preferred embodiment such that a shooter can take the target with them to any suitable location. In some embodiments the target can fold. Alternatively, the target can be disassembled into smaller portions. In a preferred embodiment the target is manufactured of a material that renders the target reusable, such as a steel target or the like. In an embodiment, portions of the target are made of different materials. For example, one side of a steel target can be Kevlar impregnated rubber. The targets, portions thereof, or overlays of such targets can be made of other materials such as paper, cardboard, plastic, resins, and the like.
In a preferred embodiment the sensors are accelerometers. Other sensors may be used, as would be known by one of ordinary skill in the art. In a preferred embodiment more than one accelerometer is used. More preferably three accelerometers are used. Most preferably four accelerometers are used. In a preferred embodiment the accelerometers are proportionately and evenly distributed on the target. Alternatively, the sensors may be photodiodes or a mixture of accelerometers and photodiodes.
A preferred embodiment of the target system is fully battery powered for portability circumstances, meaning each component may be individually battery powered or may share portable power sources as permitted by proximity.
In the embodiments of the target system, the data related to the target and a projectile strike on the target are conveyed to the shooter real-time via a mobile device, such as a mobile telephone, personal computer, handheld device, iPad, iPhone, tablet computer, laptop, notebook, ultrabook, Android phone, video game platform or other personal computing device capable of wirelessly receiving such data. In a preferred embodiment, the mobile device uses an API to interface, receive, display and store the impact or strike data. Such data can be correlated with a number of other useful information, including location, date, and time. Information may also be stored in a cloud based database. In such cases the receiver is integrated with the mobile device. In a preferred embodiment the receiver is a standard part of the mobile device. In alternative embodiments the receiver is integrated with a detachable memory device, the transmitter is integrated with a detachable memory device, or both. In another embodiment the personal mobile device is in communication with a receiver proximate to a shooter, wherein said mobile device and said receiver are associated by wireless communication, for example, Bluetooth, RF, Wi-Fi, IR, or NFC.
The vibration sensors in some embodiments described herein use a process called trilateration or multi-lateration to determine impact information. Such a process uses at least three or more vibration sensors. In another embodiment, a process of triangulation or multi-angulation is used, where at least three vibration sensors are used. In some embodiments herein, the vibration sensors provide a unique vibration signature when impacted by a projectile.
The vibration signatures include amplitude, phase, frequency, frequency spectrum information, location, time, date, and force of impact, for example. The target impact data may also include a user-defined and assigned identifier. This identifier may be an alphanumeric.
In some embodiments, the target systems described herein further comprise a controller to receive vibration signatures corresponding to the sensed vibrations to determine where the target has been impacted by a projectile. In some embodiments long-range wireless transmitters may be coupled with the target and short-range wireless transmitters may be coupled with the personal mobile computing device configured to virtually report real-time data on a virtual target relating to the projectile impact. In other embodiments a second transmitter is unnecessary as the personal mobile computing device receives the information directly.
There is no limitation regarding the type of projectile that can be used with the embodiments herein, such as a bullet, an arrow, a paintball, a dart, or an athletic ball.
An embodiment of a mobile application used with the target system provides real-time impact information comprising the impact of the projectile on the target relative to a target design on a virtual target, wherein the mobile application optionally determines a score from the impact based on an accuracy algorithm and stored in a database.
The mobile application receives user input comprising the type of weapon used; the type of ammunition used; the distance from the weapon to the target; and weather conditions; wherein said mobile application stores the score based on at least one such input.
a-c depict views of a target and target stand embodiment.
a-5c depict views of a stowed target and target stand embodiment.
a and 6b depict views of a stowed target and target stand embodiment.
a and 8b depict views of a target embodiment and the target stand.
a shows one visual display of strike results.
b shows another visual display of a target embodiment.
c shows a visual display of a second target embodiment.
d shows a visual display of a third target embodiment.
The preferred embodiments of the portable, real-time target system, including the portable target and base and method of use is disclosed herein. Other variations and features known to those of skill in the art may be used with and in conjunction with the embodiments described and disclosed herein without straying from the scope of the invention.
Referring to
In this configuration, the sensors are located in the top portion of the target surface. The mounts 1148 and the pivot axis are in the lower portion of the target to allow for the target to lean forward. Preferably, in this embodiment, the target is angled such that the ricochet is directed downward to the ground. Dampening attachments may be used to absorb some of the impact force and limit the range of the ricochet. In such a case, the strike force of the projectile reported to the shoot must be adjusted by the absorbed force. Alternatively, if not preferable to have an impact dampening effect, the target plate may be mounted on a pivoting connection, either a full pivot to accommodate for uneven surfaces or only in the forward and back direction to position the target facing downward. Such a pivot connection preferably will have a pivot lock to lock the target into position during the firing session.
Alternately, in the embodiments shown in
The target systems herein in some embodiments are configured to measure accuracy, power and speed. Regarding speed, reaction time may be measured by using a target system with a randomized signal to fire, which may be with the application or may be integrated with the target. For example, audial or visual signal may be used. The signal in these situations is coordinated with the target such that the timing between signal and impact may be accurately measured and recorded. Preferably the signal is delivered from the mobile application which is proximate the shooter and does not require excessive volume or brightness. In some modes, the overall score may be a factor of speed, power and accuracy or any combination thereof based on the goals of the shooter.
Vibrations or shock waves caused by the impact of a projectile in the target 1711 will propagate in the target material in a concentric pattern. The sensor closest to the point of impact will be the first sensor to register the shock wave. When that sensor detects the shock wave, it sends a signal to the computer which starts a timer upon reception of said signal. In the same way, the subsequently registering sensors send respective signals to the computer. When the subsequent signals are received by the computer, the value DELTA the registering time, indicative of the run time difference of the shock wave between the first sensor and subsequent sensors, is stored and used by the calculator. The same run time difference is performed between each subsequent sensor and the prior registering sensors, resulting in a plurality of timer value DELTAs indicative of the run time differences between the plurality of sensors. The “run time difference” of the shock wave between two sensors can hence also be expressed as the time-delay between the detections of the shock wave by said two sensors. That is, the value DELTA tab represents the time-delay between the detection of the shock wave by the first sensor to detect the shock wave and the second sensor to detect the shock wave, while the value DELTA tac represents the time-delay between the detections of the shock wave by the first sensor to detect it and the third sensor to detect it. By utilizing the time-delays between the detections of the shock wave by the sensors 1710a-h as well as known parameter values, such as the speed of sound in the target material which corresponds to the velocity of shock wave propagation in the target 11, and the shock wave propagation distances between the sensors 10a-h, a computer 1712, calculates the point of impact X using standard physics and well-known geometry. Shock wave propagation distance shall in this context be construed as the distance the shockwave has to propagate in the target material between two points.
Although the shooting target system 1701 in
The parameter values needed to calculate the point of impact except for the run-time difference of the shock wave between the sensors detecting it, such as the speed of sound in the target material and the propagation distance between the shock sensors, are preferably stored in the computer. In a preferred embodiment the computer includes a user interface for a user to change the parameter values needed to calculate the information related to the point of impact so as to allow the same calculation means 1712 to be used with different targets composed by different materials and/or shaped differently, and/or to allow repositioning of the sensors at a target so as to optimize sensor readings.
The speed of sound in an aluminum or other metal target is approximately 5000 m/sec which means that the shock wave travels approximately 10 cm in 0.02 ms. The shock sensors 1710a-h should be separated by a distance ensuring that the electronic circuit of the calculation means 1712 can distinguish the different sensor signals from each other. The exactness of the point-of-impact determination depends on the accuracy of the timer value readings. Though three sensors could be used to triangulate the strike location, more preferably a larger number of sensors will allow for greater accuracy through data analysis and correction or by recognition of outlier signals to eliminate outlier signals from the calculation. Outlier signals may also be used to identify sensor problems and the need for maintenance of the sensor or system.
As aforementioned, shooting targets, and especially shooting targets used in military shooting exercises, often depicts fictitious enemy soldiers. A target system resolution of less than 1 cm is suitable, preferably less than 0.5 cm, more preferably less than 2.5 mm, most preferably 1 mm or less, which is fully possible to achieve with the target system according to the present invention, is thus sufficient to determine which part of the target that is hit by an incident projectile. In one embodiment the target shape is projected or displayed and coordinated with the system software such that strikes are correlated with particular location strikes on the given target and accuracy scores calculated based on the target selection. This may be achieved by associating each target coordinate or different target regions with a part of the body in a look-up table located in the signal processor 1712 or the indication means of the shooting target system.
With the portability and flexibility of the present invention a shooter may setup the target system in a number locations. Accommodation may be made to account for gusts of wind, rain or other incidental strikes. Wind gusts, hail and rain may cause vibrations in the target material which undesirably may be registered by the sensors and taken for an incident projectile by the signal processor 1712. Such unintended readings can be prevented with use of sufficient number of sensors and an algorithm to identify outlier readings. To avoid this problem, the signal processor is preferably arranged to compare the output signals from the sensors with a predetermined threshold value and ignore signals indicative of outliers. To further minimize the risk of calculating the “point of impact” based on shock waves or vibrations that are not caused by a projectile hitting the target 1711, the signal processor 1712 may be arranged to ignore all output signals from the sensors that are not within a predetermined amplitude interval, which interval is characteristic of shock waves caused by a projectile impact on the target. This amplitude may be adjustable to accommodate the conditions. Yet a further alternative is to analyze the variation of the sensor signal amplitude in time and only calculate the point of impact for those shock wave signals having an amplitude-time signature that matches a predetermined amplitude-time signature which is characteristic of shock waves originating from a hit by a projectile. The smart logic of the signal processor can use historic information of the target strike amplitudes to progressively increase accuracy. Other logic can be applied simultaneously. For example, the amplitude of consecutive shock waves originating from a projectile impact rapidly decrease in amplitude while the amplitudes of consecutive shock waves originating from gusts of wind most likely will fluctuate randomly. That is, the signal processor 1712 may comprise logic that, by studying the amplitude of a plurality of consecutive shock waves, is able to distinguish shock waves or vibrations originating from a projectile impact from other non-projectile generated shock waves.
In
By dividing the target into a plurality of target portions by columns, the shock wave propagation path between the different shock sensors is prolonged, reducing the demands on the response time of the shock sensors and the electronic circuit processing the sensor signals. It also reduces the demands on the computational power of the calculation means since only one target coordinate needs to be calculated in order to establish the point of impact of the projectile. In, e.g., the embodiment shown in
Although there have been described preferred embodiments of this target system, many variations and modifications are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims. The embodiments described herein are not limited by the specific disclosure above, but rather should be limited only by the scope of the appended claims and their equivalents.
For example, the target system may be adapted to apply to larger weaponry target practice.
This application claims the benefit of U.S. Provisional Application No. 61/825,987, filed May 21, 2013 and U.S. Provisional Application No. 61/831,594, filed Jun. 5, 2013, both applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61831594 | Aug 2013 | US | |
61825987 | May 2013 | US |